首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Fifteen luminous bacterial strains were isolated from the Tyrrhenian Sea coastal waters off northeastern Sicily and characterised by a combination of phenotypic and molecular tests in order to identify them and to determine their intraspecific genetic variability. Five luminous type strains, Vibrio splendidus NCIMB 1, V. harveyi NCIMB 1280, V. fischeri NCIMB 1281, V. orientalis NCIMB 2195 and Photobacterium leiognathi NCIMB 2193, were used as reference. On the basis of their phenotypic characters, the isolates were assigned to the family Vibrionaceae and all were related to the V. harveyi reference strain. Amplified 16S ribosomal DNA restriction analysis (ARDRA) enabled the strains to be subdivided into three groups, two of which exhibited the same restriction pattern as the two reference strains, V. harveyi and V. splendidus. Comparison of the full 16S rDNA sequence and of a 100-bp highly variable 16S rDNA region (selected as a 'signature' sequence for the luminous bacteria) confirmed ARDRA data and suggested that the strains of the third group could be considered a subspecies of V. harveyi or a tyrrhenian biovar, different from the other reference strains whose 16S rDNAs have already been sequenced. Random amplified polymorphic DNA (RAPD) fingerprinting and analysis of plasmid content suggested a high degree of intraspecific genetic variability within the largest ARDRA group. Data obtained suggest that the ARDRA method and the sequencing of the 16S rDNA signature region could be a powerful tool for a rapid identification of marine luminous bacteria.  相似文献   

2.
A total of 53 field and reference strains, including the type strains of the seven named species (nomenspecies) and belonging to the 18 described genomic species (DNA groups) of the genus Acinetobacter, were studied by amplified ribosomal DNA restriction analysis (ARDRA). Restriction analysis with the enzymes AluI, CfoI, MboI, RsaI, and MspI of the enzymatically amplified 16S rRNA genes allowed us to identify all species except the genomic species 4 (Acinetobacter haemolyticus) and 7 (A. johnsonii), 5 (A. junii) and 17, and 10 and 11, which clustered pairwise in three respective groups. Further analysis with the enzyme HaeIII, HinfI, NciI, ScrFI, or TaqI did not allow us to differentiate the species within these three clusters. However, use of a few additional simple phenotypic tests (hemolysis, growth at 37 degrees C, production of acid from glucose, and gelatin hydrolysis) can be used to differentiate between the species within these clusters. ARDRA proved to be a rapid and reliable method for the identification of most of the Acinetobacter genomic species, including the closely related DNA groups 1 (A. calcoaceticus), 2 (A. baumannii), 3, and 13. The results of this study suggest that ARDRA can be used for the identification of Acinetobacter species and as such may help to elucidate the ecology and clinical significance of the different species of this genus. Since ARDRA uses universal 16S rRNA gene primers, it is expected to be applicable to the identification of most bacterial species. Furthermore, ARDRA is less prone to contamination problems than PCR for detection, since the use of cultured organisms results in a large initial quantity of target DNA.  相似文献   

3.
Paralytic shellfish toxins (PSTs) are sodium channel blocking (SCB) toxins, produced by cyanobacteria, as well as by marine dinoflagellates and their associated bacteria, and cause serious health and economic concern worldwide. In a previous study, approximately 70% of the bacteria enriched from PST-contaminated shellfish tissue and isolated on marine agar medium were observed to produce SCB toxins. In the study reported here, the high percentage of cultivable toxigenic bacteria is demonstrated to be obtained through a marked selection on marine agar medium. The cultivable as well as the total bacterial diversity associated with PST-contaminated shellfish collected from the Magallanes region in the south of Chile has been analysed. Approximately 80% of bacterial isolates, analysed by restriction analysis of PCR amplified ribosomal DNA (i.e., ARDRA fingerprinting), were limited to only two genotypic OTUs (operational taxonomic unit). Sequence determination and analysis of the 16S rDNA from representative isolates of both OTUs established them to be closely related to species of the Psychrobacter genus of the gamma-subclass of the Proteobacteria. The total bacterial diversity in the shellfish was further analysed, using a cultivation-independent strategy of extraction of total DNA from contaminated tissue, PCR-amplification of bacterial 16S rRNA genes, cloning of the PCR products and analysis of the cloned 16S rDNA sequence types by fingerprinting and sequencing. Only 2% of the cloned sequence types corresponded to species of the Psychrobacter genus. The 16S rDNA sequence types detected clustered with species of the y-Proteobacteria subclass, the Cytophaga-Flexibacter-Bacteroides (CFB), the Fusobacteria and the Firmicutes phyla. The level of diversity observed within the libraries of cloned 16S rDNA was markedly greater than that observed among isolates obtained through marine agar enrichment cultures from the same shellfish tissue. Additionally the predominant cloned 16S rDNA sequence types detected from samples of the surrounding seawater demonstrated no correlation with those observed in the PST-contaminated mussels.  相似文献   

4.
目的 建立基于16S rDNA快速鉴定细菌的PeR测序方法(PCR-SBT).方法 通过一组16S rDNA通用引物扩增得到基因组全长,PCR产物经纯化后直接测序分析.利用BLAST软件从GenBank数据库中搜索相关菌株的16S rDNA全序列,采用Clustal X软件进行多序列比对和同源性分析,确定细菌的种属,并与常规生化鉴定结果比较.利用大肠杆菌基因组一系列稀释度标本进行PeR扩增,检测方法的敏感性.结果 实验利用多对引物建立了16S rDNA全长序列分析方法,13个标准菌株通过PCR-SBT方法获得约1400 bp的全长序列.比对分析13个标准菌株测序结果与预期标准序列完全一致,证实建立的PCR-SBT方法结果可靠.利用建立的PCR-SBT法,对实验室从血小板制品和脐带血中分离得到不同未知菌株进行鉴定,成功确定了这些菌株的种属.以大肠杆菌DNA为模板,方法的最低检测限为反应体系DNA含量0.2 ng.结论 建立的基于16S rDNA的PCR-SBT方法是可行的,可快速准确地检测及鉴定细菌种类,尽早发现细菌污染血制品,对污染血制品输注后的针对性治疗方面具有潜在的应用价值.  相似文献   

5.
Amplified 16S ribosomal DNA (rDNA) restriction analysis (ARDRA), using enzymes HaeIII and HpaII, was applied to 176 fresh and 299 stored clinical isolates of putative Actinomyces spp. referred to the Anaerobe Reference Unit of the Public Health Laboratory Service for confirmation of identity. Results were compared with ARDRA results obtained previously for reference strains and with conventional phenotypic reactions. Identities of some strains were confirmed by analysis of partial 16S rDNA sequences. Of the 475 isolates, 331 (70%) were clearly assigned to recognized Actinomyces species, including 94 isolates assigned to six recently described species. A further 52 isolates in 12 ARDRA profiles were designated as apparently resembling recognized species, and 44 isolates, in 18 novel profiles, were confirmed as members of genera other than Actinomyces. The identities of 48 isolates in nine profiles remain uncertain, and they may represent novel species of Actinomyces. For the majority of species, phenotypic results, published reactions for the species, and ARDRA profiles concurred. However, of 113 stored isolates originally identified as A. meyeri or resembling A. meyeri by phenotypic tests, only 21 were confirmed as A. meyeri by ARDRA; 63 were reassigned as A. turicensis, 7 as other recognized species, and 22 as unidentified actinomycetes. Analyses of incidence and clinical associations of Actinomyces spp. add to the currently sparse knowledge of some recently described species.  相似文献   

6.
In this work we isolated a culturable endophytic aerobic heterotrophic bacterial community from the stem and root tissues of elm trees (Ulmus spp.) and analyzed its fluctuations. A total of 724 bacterial isolates were collected at different times (April, June, September and December) from two elm trees, one infected with Elm Yellows phytoplasmas, and one which was healthy-looking. The isolates were grouped into 82 haplotypes, identified by means of amplified ribosomal DNA restriction analysis (ARDRA) using the restriction enzyme AluI, suggesting that the genetic diversity of the bacterial community was very high. The taxonomic position of the isolates belonging to the twelve main haplotypes, representing more than 72% of the total population, was determined by 16S rDNA sequencing. The main genera were Bacillus, Curtobacterium, Pseudomonas, Stenotrophomonas, Sphingomonas, Enterobacter, and Staphylococcus. The fluctuations in the bacterial community, determined by different parameters (seasonal changes, plant organ, presence of phytoplasmas) were studied, revealing that they were influenced both by variations in temperature (warm or cold according to the season) and by the organ examined (roots or stems). The role of the phytopathogenic status in these fluctuations was also discussed.  相似文献   

7.
8.
Bai Y  Yang D  Wang J  Xu S  Wang X  An L 《Research in microbiology》2006,157(8):741-751
Microbes have been discovered in permafrost sediments for nearly a century. However, microbiological analyses of alpine permafrost are very scarce. This study is a first attempt to describe the phylogenetic diversity of a culturable bacterial community isolated from alpine permafrost in the Tianshan Mountains in northwestern China. Aerobic 2.5-6.0x10(5) CFU/gdw (CFU per 1 gram of dry weight) on modified PYGV medium were recovered from alpine permafrost samples at 4 degrees C; among these, 91 bacterial isolates with different morphotypes were characterized by phenotypic properties, such as morphology, colony pigmentation, Gram staining, endospore formation and temperature range of growth. The isolates were further categorized based on amplified rDNA restriction analysis (ARDRA), and 51 representative isolates possessing distinct ARDRA patterns selected for subsequent 16S rDNA sequencing and phylogenetic analysis. The phylogenetic trees placed the 51 isolates in four major groups: the high-G+C Gram-positives, the low-G+C Gram-positives, Proteobacteria and the Cytophaga-Flavobacterium-Bacteroides (CFB) phylum. The most abundant and diverse isolates were members of Gram-positive bacteria, particularly the Arthrobacter as a dominant group in alpine permafrost culturable populations. Results of the Jukes-Cantor evolutionary distance matrix suggested that the vast majority of the isolates were different strains of known species, and three may represent new species within the genus Chryseobacterium of the CFB phylum. From this study, it is proposed that alpine permafrost sediments in the Tianshan Mountains provide a specific ecological niche for prolonging survival of diverse microbial lineages.  相似文献   

9.
The identification of pathogens in patients with bacterial keratitis remains problematic because standard diagnostic tests are negative for 40 to 60% of patients. A cross-sectional study was undertaken to determine if PCR and sequence analysis of 16S ribosomal DNA (rDNA) could be used to detect bacterial pathogens in patients with keratitis. Corneal specimens were collected for culture and rDNA typing. Variable segments of each rDNA specimen were amplified by PCR, sequenced, and aligned with the sequences in GenBank. Eleven patients had microbiologically documented bacterial keratitis, while 17 patients had keratitis due to other causes. Nine (82%) of 11 bacterial keratitis patients were PCR positive; each sequencing result matched the culture results. Seventeen (100%) patients with nonbacterial keratitis were PCR negative. Our data suggest that 16S rDNA typing holds promise as a rapid alternative to culture for identifying pathogens in patients with bacterial keratitis.  相似文献   

10.
Twelve bacterial species including Streptococcus uberis, S. parauberis, S. agalactiae, S. dysgalactiae, S. bovis, S. mitis, S. salivarius, S. saccharolyticus, Enterococcus faecium, E. faecalis, E. avium, and Aerococcus viridans were examined for their 16S ribosomal DNA fingerprint patterns. Oligonucleotide primers complementary to 16S rRNA genes were used to amplify by the polymerase chain reaction 16S ribosomal gene fragments from genomic DNAs. The molecular sizes of the amplified 16S ribosomal DNA (rDNA) fragments from the 12 species examined ranged from 1,400 to 1,500 bp. Restriction fragment length polymorphism analysis of 16S rDNA was performed with 11 different restriction endonucleases. All 12 species examined could be differentiated on the basis of characteristic 16S rDNA fingerprint patterns by using the restriction endonucleases HhaI, RsaI, and MspI. A scheme for the differentiation of the 12 species is presented. Eleven isolates representing 11 species were obtained from cows with intramammary infections and were examined by 16S rDNA fingerprinting. All 11 species isolated from cows were differentiated by using HhaI, RsaI, and MspI restriction endonucleases. The results of this study demonstrate the potential application of 16S rDNA fingerprinting for the identification and differentiation of bacterial species.  相似文献   

11.
CDC group IV c-2, an environmental gram-negative bacillus recently proposed for inclusion in the genus Ralstonia, has been isolated in several human infections. Biochemical characterization and 16S ribosomal DNA (rDNA) sequencing with phylogenetic analysis were used to characterize eight clinical isolates and four type strains. Other typing tools, such as pulsed-field gel electrophoresis (PFGE) and randomly amplified polymorphic DNA (RAPD) analysis, were also used. PFGE typing of clinical isolates was unsuccessful because the DNA was degraded, and RAPD analysis was poorly discriminatory. In contrast, the type strains were clearly distinguished with both PFGE and RAPD analysis. All of the 16S rDNA sequences were identical. Comparison of the 16S rDNA sequences to the GenBank sequences showed that they were consistent with CDC group IV c-2 belonging to the genus Ralstonia. The closest matches were obtained with Ralstonia eutropha. However, four differences in 32 biochemical tests separated R. eutropha from CDC group IV c-2, which suggests that CDC group IV c-2 is a new species of the genus Ralstonia.  相似文献   

12.
Ralstonia paucula (formerly CDC group IV c-2) can cause serious human infections. Confronted in 1995 with five cases of nosocomial bacteremia, we found that pulsed-field gel electrophoresis could not distinguish between the isolates and that randomly amplified polymorphic DNA analysis was poorly discriminatory. In this study, we used PCR-ribotyping and PCR-restriction fragment length polymorphism analysis of the spacer 16S-23S ribosomal DNA (rDNA); both methods were unable to differentiate R. paucula isolates. Eighteen strains belonging to other Ralstonia species (one R. eutropha strain, six R. pickettii strains, three R. solanacearum strains, and eight R. gilardii strains) were also tested by PCR-ribotyping, which failed to distinguish between the four species. The 16S-23S rDNA intergenic spacer of R. paucula contains the tRNA(Ile) and tRNA(Ala) genes, which are identical to genes described for R. pickettii and R. solanacearum.  相似文献   

13.
The bacterial flora of the intestine and the bacteria found in liver, mesenteric lymph nodes, portal and arterial blood after D-galactosamine-induced liver injury, with and without pretreatment with Lactobacillus plantarum DSM 9843, were studied in the rat. Dominating representatives were identified to species level by 16S rDNA sequencing and typed by randomly amplified polymorphic DNA (RAPD) and by restriction endonuclease analysis (REA) for strain definition. It was proven that bacterial strains from the intestine occur at extraintestinal sites after liver injury. Lactobacillus spp. dominated the intestinal flora and were also the most frequently found genus in the liver and the mesenteric lymph nodes. Some of the blood isolates, identified as Staphylococcus aureus, Proteus vulgaris and Bacteroides merdae, were not found as a dominating part of the mucosal flora. Treatment with L. plantarum before liver injury decreased translocation and made the intestinal flora increasingly dominated by lactobacilli.  相似文献   

14.
15.
For 279 clinically isolated specimens identified by commercial kits as enterococci, genotypic identification was performed by two multiplex PCRs, one with ddl(E. faecalis) and ddl(E. faecium) primers and another with vanC-1 and vanC-2/3 primers, and by 16S ribosomal DNA (rDNA) sequencing. For 253 strains, phenotypic and genotypic results were the same. Multiplex PCR allowed for the identification of 13 discordant results. Six strains were not enterococci and were identified by 16S rDNA sequencing. For 5 discordant and 10 concordant enterococcal strains, 16S rDNA sequencing was needed. Because many supplementary tests are frequently necessary for phenotypic identification, the molecular approach is a good alternative.  相似文献   

16.
As part of a larger study to investigate tick-borne infections in dogs from Thailand and Venezuela, documentation of coinfection with three Ehrlichia species in two dogs, one from each country, became the focus of the present study. Although neither dog had clinical signs attributable to ehrlichiosis, both dogs were anemic and neutropenic and the Thai dog was thrombocytopenic. Genus- and species-specific PCR targeting the 16S rRNA genes indicated that both dogs were coinfected with Ehrlichia canis, E. platys, and E. equi. To our knowledge, these results provide the first molecular documentation for the presence of E. equi in dogs from these countries. Using universal bacterial PCR primers, one nearly full-length 16S rRNA gene could be amplified from each dog. The sequences were identical to each other and almost identical to that of E. platys (AF156784), providing the first E. platys 16S ribosomal DNA (rDNA) sequences reported from these two geographically divergent countries. To determine whether these sequence differences allow differentiation between these two strains and other published 16S rDNA E. platys sequences, we performed a phylogenetic analysis of the rRNA, incorporating the consideration of secondary structure.  相似文献   

17.
Due to the inadequate automation in the amplification and sequencing procedures, the use of 16S rRNA gene sequence-based methods in clinical microbiology laboratories is largely limited to identification of strains that are difficult to identify by phenotypic methods. In this study, using conventional full-sequence 16S rRNA gene sequencing as the "gold standard," we evaluated the usefulness of the MicroSeq 500 16S ribosomal DNA (rDNA)-based bacterial identification system, which involves amplification and sequencing of the first 527-bp fragment of the 16S rRNA genes of bacterial strains and analysis of the sequences using the database of the system, for identification of clinically significant bacterial isolates with ambiguous biochemical profiles. Among 37 clinically significant bacterial strains that showed ambiguous biochemical profiles, representing 37 nonduplicating aerobic gram-positive and gram-negative, anaerobic, and Mycobacterium species, the MicroSeq 500 16S rDNA-based bacterial identification system was successful in identifying 30 (81.1%) of them. Five (13.5%) isolates were misidentified at the genus level (Granulicatella adiacens was misidentified as Abiotrophia defectiva, Helcococcus kunzii was misidentified as Clostridium hastiforme, Olsenella uli was misidentified as Atopobium rimae, Leptotrichia buccalis was misidentified as Fusobacterium mortiferum, and Bergeyella zoohelcum was misidentified as Rimerella anatipestifer), and two (5.4%) were misidentified at the species level (Actinomyces odontolyticus was misidentified as Actinomyces meyeri and Arcobacter cryaerophilus was misidentified as Arcobacter butzleri). When the same 527-bp DNA sequences of these seven isolates were compared to the known 16S rRNA gene sequences in the GenBank, five yielded the correct identity, with good discrimination between the best and second best match sequences, meaning that the reason for misidentification in these five isolates was due to a lack of the 16S rRNA gene sequences of these bacteria in the database of the MicroSeq 500 16S rDNA-based bacterial identification system. In conclusion, the MicroSeq 500 16S rDNA-based bacterial identification system is useful for identification of most clinically important bacterial strains with ambiguous biochemical profiles, but the database of the MicroSeq 500 16S rDNA-based bacterial identification system has to be expanded in order to encompass the rarely encountered bacterial species and achieve better accuracy in bacterial identification.  相似文献   

18.
The goal of this study was to determine whether sequence analysis of internal transcribed spacer/5.8S ribosomal DNA (rDNA) can be used to detect fungal pathogens in patients with ocular infections (endophthalmitis and keratitis). Internal transcribed spacer 1 (ITS1) and ITS2 and 5.8S rDNA were amplified by PCR and seminested PCR to detect fungal DNA. Fifty strains of 12 fungal species (yeasts and molds) were used to test the selected primers and conditions of the PCR. PCR and seminested PCR of this region were carried out to evaluate the sensitivity and specificity of the method. It proved possible to amplify the ITS2/5.8S region of all the fungal strains by this PCR method. All negative controls (human and bacterial DNA) were PCR negative. The sensitivity of the seminested PCR amplification reaction by DNA dilutions was 1 organism per PCR, and the sensitivity by cell dilutions was fewer than 10 organisms per PCR. Intraocular sampling or corneal scraping was undertaken for all patients with suspected infectious endophthalmitis or keratitis (nonherpetic), respectively, between November 1999 and February 2001. PCRs were subsequently performed with 11 ocular samples. The amplified DNA was sequenced, and aligned against sequences in GenBank at the National Institutes of Health. The results were PCR positive for fungal primers for three corneal scrapings, one aqueous sample, and one vitreous sample; one of them was negative by culture. Molecular fungal identification was successful in all cases. Bacterial detection by PCR was positive for three aqueous samples and one vitreous sample; one of these was negative by culture. Amplification of ITS2/5.8S rDNA and molecular typing shows potential as a rapid technique for identifying fungi in ocular samples.  相似文献   

19.
Objective: To evaluate the feasibility of using 16S rDNA universal primer PCR (followed by sequencing) and 65-kDa heat shock Mycobacterium tuberculosis protein gene PCR as a method to determine a bacterial etiology in culture-negative cerebrospinal fluid (CSF) samples.
Methods: One hundred and forty-nine CSF samples from 128 patients were processed. DNA was extracted from the CSF samples and amplified with the eubacterial 16S rDNA primers P11E and P13B, and with the 65-kDa heat shock protein gene mycobacterial primers. The amplicons were identified by sequencing and specific oligoprobe hybridization.
Results: Overall, a microbiological diagnosis was made in 11 of 125 ultimately culture-negative cases. The use of 65-kDa heat shock protein gene PCR was needed to improve the diagnosis of tuberculous meningitis; in four patients, prospectively studied, the outcome of antituberculous therapy could also be followed.
Conclusions: In culture-negative bacterial meningitis it is possible to improve the microbiological diagnosis by use of 16S rDNA amplification and sequencing, together with amplification of a more specific gene in mycobacteria.  相似文献   

20.
The feasibility of sequence analysis of the 16S-23S ribosomal DNA (rDNA) intergenic spacer (ITS) for the identification of clinically relevant viridans group streptococci (VS) was evaluated. The ITS regions of 29 reference strains (11 species) of VS were amplified by PCR and sequenced. These 11 species were Streptococcus anginosus, S. constellatus, S. gordonii, S. intermedius, S. mitis, S. mutans, S. oralis, S. parasanguinis, S. salivarius, S. sanguinis, and S. uberis. The ITS lengths (246 to 391 bp) and sequences were highly conserved among strains within a species. The intraspecies similarity scores for the ITS sequences ranged from 0.98 to 1.0, except for the score for S. gordonii strains. The interspecies similarity scores for the ITS sequences varied from 0.31 to 0.93. Phylogenetic analysis of the ITS regions revealed that evolution of the regions of some species of VS is not parallel to that of the 16S rRNA genes. One hundred six clinical isolates of VS were identified by the Rapid ID 32 STREP system (bioMérieux Vitek, Marcy l'Etoile, France) and by ITS sequencing, and the level of disagreement between the two methods was 18% (19 isolates). Most isolates producing discrepant results could be unambiguously assigned to a specific species by their ITS sequences. The accuracy of using ITS sequencing for identification of VS was verified by 16S rDNA sequencing for all strains except strains of S. oralis and S. mitis, which were difficult to differentiate by their 16S rDNA sequences. In conclusion, identification of species of VS by ITS sequencing is reliable and could be used as an alternative accurate method for identification of VS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号