首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 217 毫秒
1.
Pulmonary arterial hypertension (PAH) affects vascular proliferation and remodeling in small pulmonary arteries and results in right ventricular failure and death due to a progressive increase in pulmonary vascular resistance. Recent advances in understanding of the molecular mechanisms involved in PAH suggest that endothelial dysfunction plays a major role. Impaired production of vasoactive mediators, such as prostacyclin and nitric oxide, accompanied with prolonged overexpression of vasoconstrictors such as endothelin-1, affects vascular tone and reinforces vascular remodeling. As the latter substances represent logical pharmacological targets, new drugs affecting these mechanisms have evolved during the past 2 decades and led to umpteen placebo-controlled trials in bygone years. Prognosis and quality of life of patients suffering from PAH seem to improve due to these new treatment strategies resulting in a reduction of mortality and morbidity, but there is still a substantial need for further long-term and head-to-head trials.  相似文献   

2.
BackgroundHypoxic pulmonary arterial hypertension (PAH) is a disabling disease with limited treatment options. Hypoxic pulmonary vascular remodeling is a major cause of hypoxic PAH. Pharmacological agents that can inhibit the remodeling process may have great therapeutic value.ObjectiveTo examine the effect of intermedin (IMD), a new calcitonin gene-related peptide family of peptide, on hypoxic pulmonary vascular remodeling.MethodsRats were exposed to normoxia or hypoxia (∼10% O2), or exposed to hypoxia and treated with IMD, administered by an implanted mini-osmotic pump (6.5 μg/rat/day), for 4 weeks. The effects of IMD infusion on the development of hypoxic PAH and right ventricle (RV) hypertrophy, on pulmonary vascular remodeling, on pulmonary artery smooth muscle cell (PASMC) proliferation and apoptosis, and on the activations of l-arginine nitric oxide (NO) pathway and endoplasmic reticulum stress apoptotic pathway were examined.ResultsRats exposed to hypoxia developed PAH and RV hypertrophy. IMD treatment alleviated PAH and prevented RV hypertrophy. IMD inhibited hypoxic pulmonary vascular remodeling as indicated by reduced wall thickness and increased lumen diameter of pulmonary arterioles, and decreased muscularization of distal pulmonary vasculature in hypoxia-exposed rats. IMD treatment inhibited PASMC proliferation and promoted PASMC apoptosis. IMD treatment increased tissue level of constitutive NO synthase activity and tissue NO content in lungs, and enhanced l-arginine uptake into pulmonary vascular tissues. IMD treatment increased cellular levels of glucose-regulated protein (GRP) 78 and GRP94, two major markers of endoplasmic reticulum (ER) stress, and increased caspase-12 expression, the ER stress-specific caspase, in lungs and cultured PASMCs.ConclusionsThese results demonstrate that IMD treatment attenuates hypoxic pulmonary vascular remodeling, and thereby hypoxic PAH mainly by inhibiting PASMC proliferation. Promotion of PASMC apoptosis may also contribute to the inhibitory effect of IMD. Activations l-arginine–NO pathway and of ER stress-specific apoptosis pathway could be the mechanisms mediating the anti-proliferative and pro-apoptotic effects of IMD.  相似文献   

3.
Objective: To investigate the effects of angiotensin-converting enzyme 2 (ACE2) activation on pulmonary arterial cell apoptosis during pulmonary vascular remodeling associated with pulmonary arterial hypertension (PAH) and to elucidate potential mechanisms related to Hippo signaling. Methods: PAH model was developed by injecting monocrotaline combined with left pneumonectomy using Sprague-Dawley rat. Then, resorcinolnaphthalein (Res; ACE2 activator), MLN-4760 (ACE2 inhibitor), A-779 (Mas inhibitor), and 4-((5,10-dimethyl-6-oxo-6,10-dihydro-5H-pyrimido[5,4-b]thieno[3,2-e][1,4]diazepin-2-yl)amino) benzenesulfonamide (XMU-MP-1; MST1/2 inhibitor) were administered via continuous subcutaneous or intraperitoneal injection for 3 weeks. Animals were randomly divided into six groups: control, PAH, PAH+Res, PAH+Res+MLN-4760, PAH+Res+A-779, and PAH+Res+XMU-MP-1. On 21 day, hemodynamics and pathologic lesions were evaluated. Apoptosis and apoptosis-associated proteins were detected by TUNEL and western blotting. ACE2 activity and Hippo pathway components including large tumor suppressor 1 (LATS1), Yes-associated protein (Yap), and phosphorylated Yap (p-Yap) were investigated by fluorogenic peptide assays and western blotting. Results: In the PAH models, the mean pulmonary arterial pressure, right ventricular hypertrophy index, pulmonary vascular remodeling, anti-apoptotic protein Bcl-2 and Yap were all increased but the pulmonary arterial cell apoptosis, pro-apoptotic proteins caspase-3 and Bax were lower. ACE2 activation significantly ameliorated pulmonary arterial remodeling, this action was related to increased apoptosis and up-regulation of LATS1 and p-Yap. These protective effects were mitigated by the co-administration of A779 or MLN-4760. Moreover, inhibiting the Hippo/LATS1/Yap pathway with XMU-MP-1 blocked apoptosis in pulmonary vascular cells induced by ACE2 activation during the prevention of PAH. Conclusions: Our findings suggest that ACE2 activation attenuates pulmonary vascular remodeling by inducing pulmonary arterial cell apoptosis via Hippo/Yap signaling during the development of PAH.  相似文献   

4.
BackgroundPulmonary arterial hypertension (PAH) is characterized by a progressive increase in pulmonary vascular resistance and elevation of pulmonary arterial pressure, leading to right ventricular failure and eventual death. Currently, no curative therapy for PAH is available, and the overall prognosis is very poor. Recently, direct activators of soluble guanylyl cyclase (sGC) have been tested as a novel therapeutic modality in experimental models of pulmonary arterial hypertension (PAH).ObjectiveIn this study, we used in vitro and in vivo models to evaluate the therapeutic potential of 3-(5′-hydroxymethyl-2′-furyl)-1-benzylindazole (YC-1), a dual functioning chemical, as a direct activator of guanylyl cyclase and an inhibitor of hypoxia-inducible factor-1.MethodsWe analyzed the effects of YC-1 on cell proliferation and the levels of p21 and p53 in human pulmonary artery smooth muscle cells (HPASMCs) under hypoxia. We also determined the effects of YC-1 on expression of endothelin-1 (ET-1) and phosphorylation status of endothelial nitric oxide synthase (eNOS) at Ser1179 in human pulmonary artery endothelial cells (HPAECs) under hypoxia. In mice, hypoxic PAH was induced by exposure to normobaric hypoxic conditions for 28 days. To assess preventive or therapeutic effects, randomized mice were subjected to once daily i.p. injections of YC-1 for the entire hypoxic period (5 mg/kg) or for the last seven days of a 28-day hypoxic period (5 and 10 mg/kg). On day 28, we measured the right ventricular systolic pressure (RVSP) and determined the degrees of right ventricular hypertrophy (RVH) and vascular remodeling.ResultsIn HPASMCs, YC-1 inhibited hypoxia-induced proliferation and induction of p53 and p21 in a concentration-dependent manner. Also, YC-1 suppressed the hypoxia-induced expression of ET-1 mRNA and dephosphorylation of eNOS at Ser1179 in HPAECs. In the preventive in vivo model, a daily dose of 5 mg/kg YC-1 significantly prevented the elevation of RVSP, development of RVH, and pulmonary vascular remodeling, which were caused by hypoxic exposure. In the therapeutic model, YC-1 at daily doses of 5 and 10 mg/kg alleviated RVH and pulmonary vascular remodeling but did not prevent the elevation of RVSP.ConclusionsOur results indicate that YC-1 prevents the development of hypoxia-induced PAH in a preventive model and alleviates RVH and pulmonary vascular remodeling in a therapeutic model. Therefore, these data imply that YC-1 has therapeutic potential for use in a single or combination therapy for PAH.  相似文献   

5.
ObjectivesThe REPAIR (Right vEntricular remodeling in Pulmonary ArterIal hypeRtension) study evaluated the effect of macitentan on right ventricular (RV) and hemodynamic outcomes in patients with pulmonary arterial hypertension (PAH), using cardiac magnetic resonance (CMR) and right heart catheterization (RHC).BackgroundRV failure is the primary cause of death in PAH. CMR is regarded as the most accurate noninvasive method for assessing RV function and remodeling and CMR measures of RV function and structure are strongly prognostic for survival in patients with PAH. Despite this, CMR is not routinely used in PAH clinical trials.MethodsREPAIR was a 52-week, open-label, single-arm, multicenter, phase 4 study evaluating the effect of macitentan 10 mg, with or without phosphodiesterase type-5 inhibition, on RV remodeling and function and cardiopulmonary hemodynamics. Primary endpoints were change from baseline to week 26 in RV stroke volume, determined by CMR; and pulmonary vascular resistance, determined by RHC. Efficacy measures were assessed for all patients with baseline and week 26 data for both primary endpoints.ResultsAt a prespecified interim analysis in 42 patients, both primary endpoints were met, enrollment was stopped, and the study was declared positive. At final analysis (n = 71), RV stroke volume increased by 12 mL (96% confidence level: 8.4-15.6 mL; P < 0.0001) and pulmonary vascular resistance decreased by 38% (99% confidence level: 31%-44%; P < 0.0001) at week 26. Significant positive changes were also observed in secondary and exploratory CMR (RV and left ventricular), hemodynamic, and functional endpoints at week 26. Improvements in CMR RV and left ventricular variables and functional parameters were maintained at week 52. Safety (n = 87) was consistent with previous clinical trials.ConclusionsIn the context of this study, macitentan treatment in patients with PAH resulted in significant and clinically-relevant improvements in RV function and structure and cardiopulmonary hemodynamics. At 52 weeks, improvements in RV function and structure were sustained. (REPAIR: Right vEntricular remodeling in Pulmonary ArterIal hypeRtension [REPAIR]; NCT02310672)  相似文献   

6.
肺动脉高压(pulmonary arterial hypertension,PAH)是各种原因所致的一种慢性肺血管性疾病,主要表现为肺动脉重构和肺血管阻力进行性增加,最后导致右心室功能衰竭和死亡,预后极差。PAH时交感神经表现为过度激活,交感激活后可以通过多种机制参与肺动脉重构及加重右心室功能紊乱。干预交感神经可以改善PAH的预后,其原因与改善PAH的右心室功能和肺动脉重构密切相关,但是不良反应也较多,交感神经系统参与PAH发生发展的确切机制尚不完全知道,仍需进一步研究。  相似文献   

7.
Background and aimsEarly postnatal life is a critical developmental period that affects health of the whole life. Extrauterine growth restriction (EUGR) causes cardiovascular development problems and diseases, including pulmonary arterial hypertension (PAH). PAH is characterized by proliferation, migration, and anti-apoptosis of pulmonary artery smooth muscle cells (PASMCs). However, the role of PASMCs in EUGR has not been studied. Thus, we hypothesized that PASMCs dysfunction played a role in EUGR-induced pulmonary hypertension.Methods and resultsHere we identified that postnatal nutritional restriction-induced EUGR rats exhibited an elevated mean pulmonary arterial pressure and vascular remodeling at 12 weeks old. PASMCs of EUGR rats showed increased cell proliferation and migration features. In EUGR-induced PAH rats, Notch3 signaling was activated. Relative mRNA and protein expression levels of Notch3 intracellular domain (Notch3 ICD), and Notch target gene Hey1 in PASMCs were upregulated. We further demonstrated that pharmacological inhibition of Notch3 activity by using a γ-secretase inhibitor DAPT, which blocked the cleavage of Notch proteins to ICD peptides, could effectively inhibit PASMC proliferation. Specifically knocked down of Notch3 in rat PASMCs by shRNA restored the abnormal PASMC phenotype in vitro. We found that administration of Notch signaling inhibitor DAPT could successfully reduce mean pulmonary arterial pressure in EUGR rats.ConclusionsThe present study demonstrated that upregulation of Notch3 signaling in PASMCs was crucial for the development of EUGR-induced PAH. Blocking Notch3-Hey1 signaling pathway in PASMCs provides a potential therapeutic target for PAH.  相似文献   

8.
肺动脉高压(PAH)是一种进展快、预后欠佳、死亡率高的心血管疾病。研究表明,肺血管重构是PAH发生发展的重要病理基础,而肺动脉平滑肌细胞的增殖和肥大是PAH肺血管重构的主要病理改变。在PAH时,肺血管平滑肌细胞由收缩表型向增殖状态的合成表型转化,主要表现为肺血管平滑肌细胞的增殖和肥大。上述病理改变最终导致肺血管管腔狭窄,管壁僵硬,进而促进PAH的发生发展。本文对肺动脉平滑肌细胞在PAH中的关键作用及作用机制进行阐述,为临床防治PAH提供新靶点和新策略。  相似文献   

9.
Background and aimPulmonary arterial hypertension (PAH) is characterized by pulmonary vascular remodeling, which is mainly caused by inflammation. Inhibiting inflammation can relieve PAH. Grape seed procyanidin (GSP) possesses remarkable anti-inflammatory property and vascular protective function. In this experiment, we verified the anti-inflammatory property of GSP in cigarette smoke-exposed PAH rats and revealed its molecular mechanism.Methods and resultsIn vivo, 45 Sprague Dawley (SD) rats were divided into 5 groups randomly, treated with normoxia/cigarette smoke (CS)/GSP + CS/CS + solvent/GSP. After GSP + CS administration, a decrease in mPAP, PVR, RVHI, WT%, and WA% was detected in the rats as compared to those treated with CS. In vitro, the proliferation of pulmonary arterial smooth muscle cells (PASMCs) caused by cigarette smoke extract (CSE) was effectively attenuated with GSP + CSE administration. Furthermore, GSP significantly increased the expression of peroxisome proliferator-activated receptor γ (PPAR-γ) together with the lowered expression level of cyclooxygenase 2 (COX-2) in PASMCs co-incubated with CSE.ConclusionThese findings indicate that GSP ameliorates inflammation by the PPAR-γ/COX-2 pathway and finally inhibits the proliferation of PASMCs, which leads to pulmonary vascular remodeling.  相似文献   

10.
李晶  王军 《国际呼吸杂志》2011,31(3):238-240
肺动脉高压是一种肺血流受限引起肺血管阻力和压力持续性增高,最终导致右心衰竭甚至死亡的综合征.病理生理学改变主要为肺血管收缩、重塑及原位血栓形成.研究表明,钾离子通道尤其电压依赖性钾离子通道功能与表达水平的降低是引起肺血管平滑肌细胞增殖和凋亡异常、肺血管重塑的关键因素.本文着重论述近年来有关电压依赖性钾离子通道与肺动脉高...  相似文献   

11.
Abstract

Objectives: Systemic sclerosis (SSc) is an intractable connective tissue disease that causes skin and organ fibrosis. Interstitial lung disease (ILD) and pulmonary arterial hypertension (PAH) affect its prognosis. YKL-40 protein impacts inflammation and tissue remodeling. Therefore, we evaluated the utility of YKL-40 blood levels in identifying patients with SSc complicated by PAH, as confirmed by immunohistochemistry (IHC) examination.

Methods: We retrospectively analyzed 78 patients with SSc and performed IHC on 7 normal and 7 SSc skin samples in the Japanese population. Age-adjusted YKL-40 serum levels were analyzed.

Results: YKL-40 age percentile was significantly elevated in SSc patients. There was no difference between patients with SSc with and without ILD and PAH. YKL-40 age percentile was greater in patients with PAH complication. YKL-40 immunostaining was negative in normal skin and prominent in the subcutaneous vascular wall of all SSc samples. Receiver operating characteristic (ROC) curve analysis indicated that YKL-40 age percentile correctly differentiated between patients with and without PAH with a sensitivity of 80% and a specificity of 94.1%.

Conclusion: A higher YKL-40 level with PAH may be reflective of angiogenesis due to capillary injury in SSc. YKL-40 may offer a useful and easily applicable diagnostic biomarker of SSc complicated with PAH.  相似文献   

12.
Pulmonary arterial hypertension (PAH) is a debilitating disease that results from progressive remodeling and inflammation of pulmonary arteries. PAH develops gradually, is difficult to diagnose, and has a high mortality rate. Although mutation in the bone morphogenetic protein receptor 2 (BMPR2) gene has been identified as the main genetic cause of PAH, the underlying pathways involving the pathophysiology of PAH are complex and still not fully understood. Endothelial dysfunction has been observed in PAH development that results in a multitude of disturbances in the cellular processes in pulmonary vessels. Changes in the pulmonary vasculature caused by the disruption of BMPR2 signaling are observed in three main vascular components; endothelial cells, smooth muscle cells, and fibroblasts. BMPR2 also has a prominent role in maintenance of the immune system. The disruption of BMPR2 signaling pathway causes an increased degree of inflammation and decreases the ability of the immune system to resolve it. Inflammatory processes and changes in pulmonary vasculature interact with one another, resulting in the progression of chronic PAH. In this review, we highlight the various components of vascular remodeling and immune response that are caused by disruption of BMPR2 signaling, including the clinical evidence and the prospects of these components as a potential target for PAH therapy. Indeed, development of drugs to target the pathogenic pathways involved in PAH may complement existing treatment regimens and improve patient prognosis.  相似文献   

13.
Liu D  Wang J  Kinzel B  Müeller M  Mao X  Valdez R  Liu Y  Li E 《Blood》2007,110(5):1502-1510
Germ-line mutations in bone morphogenic protein type II receptor (Bmpr2) confer susceptibility to pulmonary arterial hypertension (PAH), which is characterized by obstructive vascular lesions in small arteries. The molecular and cellular mechanisms that account for the etiology of this disorder remain elusive, as does the role of Bmpr2 in postnatal tissue homeostasis. Here we show that in adult mice, stably silencing Bmpr2 expression by RNA interference does not increase pulmonary arterial resistance but results in severe mucosal hemorrhage, incomplete mural cell coverage on vessel walls, and gastrointestinal hyperplasia. We present evidence that BMP receptor signaling regulates vascular remodeling during angiogenesis by maintaining the expression of endothelial guidance molecules that promote vessel patterning and maturation and by counteracting growth factor–induced AKT activation. Attenuation of this function may cause vascular dysmorphogenesis and predisposition to angioproliferative diseases. Our findings provide a mechanistic link between PAH and other diseases associated with the BMP/TGF-ß pathways, such as hereditary hemorrhagic telangiectasia and juvenile polyposis syndrome.  相似文献   

14.
BackgroundPulmonary arterial hypertension (PAH) is a progressive disease, characterized by a persistent elevation of pulmonary arterial pressure and pulmonary vascular remodelling. Recent studies implicated that long noncoding RNAs (lncRNAs) play important roles in the development of various diseases. However, the underlying mechanisms of lncRNAs in PAH remain unclear. Here we show evidence for the modulation of human pulmonary smooth muscle cell (HPASMC) proliferation and vascular remodelling by lncRNA taurine upregulated gene1 (TUG1).MethodsTUG1 expression and localization was detected by real-time polymerase chain reaction (PCR) and fluorescence in situ hybridization. Proliferation and apoptosis were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), western blot, bromodeoxyuridine incorporation, flow cytometry, scratch-wound assay, 4′,6-diamidino-2-phenylindole (DAPI), and caspase-3 activity. Luciferase activity and microscale thermophoresis were used to identify biomolecular interactions. The right ventricular systolic pressure and right ventricular hypertrophy were measured to evaluate cardiopulmonary function.ResultsTUG1 was upregulated in the pulmonary arteries of mice after a hypoxic assault and showed a significant increase in patients with PAH. TUG1 knockdown significantly prevented the development of PAH in vivo. Moreover, TUG1 promoted the proliferative responses of HPASMCs, including cell viability, 5-bromodeoxyuridine incorporation, the expression of proliferating cell nuclear antigen, and cell-cycle progression. All these functions of TUG1 were likely to be associated with miR-328.ConclusionsThe present study indicates that TUG1, a novel potential target for the treatment of PAH, is necessary for HPASMC proliferation and pulmonary vascular remodelling.  相似文献   

15.
Pulmonary arterial hypertension (PAH) is a lung vascular disease characterized with a progressive increase of pulmonary vascular resistance and obliterative pulmonary vascular remodeling resulting in right heart failure and premature death. In this brief review, we document the recent advances in identifying genetically modified murine models of PH, with a focus on the recent discovery of the mouse model of Tie2 Cre-mediated deletion of prolyl hydroxylase 2, which exhibits progressive obliterative vascular remodeling, severe PAH, and right heart failure, thus recapitulating many of the features of clinical PAH. We will also discuss the translational potential of recent findings arising from experimental studies of murine PH models.  相似文献   

16.
血吸虫病相关性肺动脉高压因其临床表现、实验室检查和血流动力学特征与特发性、遗传性、HIV和自身免疫性疾病所致肺动脉高压类似而被归为WHO 定义的第I类肺动脉高压,通常是肝脾型血吸虫病的一种危及生命的并发症。以血管壁改变、重构、血管收缩为特征,病变主要位于肺血管的毛细血管前段,可导致肺血管阻力显著和持续增加、右心室衰竭乃至死亡。尽管虫卵沉积到肺部和随后的炎症级联反应是血吸虫病相关性肺动脉高压发生的关键因素,但其确切发病机制、病程和治疗仍有很大不确定性。本文主要探讨血吸虫病相关性肺动脉高压的病理生理学和免疫学机制,以期为临床诊断和治疗提供帮助。  相似文献   

17.
ObjectivesThis study aimed to investigate sympathetic nerve (SN) ultrastructural changes and hemodynamic and pulmonary artery (PA) pathological improvements by pulmonary arterial denervation (PADN) in animals with pulmonary arterial hypertension (PAH), as well as the underlying mechanisms.BackgroundSN overactivity plays a role in PAH. Previous studies have reported short-term improvements in pulmonary arterial pressure (PAP) and cardiac function by PADN, but PA remodeling and the associated mechanisms remain unclear.MethodsForty dogs were randomly (ratio of 1:3) assigned to the control (intra-atrial injection of N-dimethylacetamide, 3 mg/kg) and test (intra-atrial injection of dehydrogenized-monocrotaline, 3 mg/kg) groups. After 8 weeks, the animals in the test group with a mean PAP >25 mm Hg (n = 20) were randomized (ratio of 1:1) into the sham and PADN groups. At 14 weeks, the hemodynamics, medial wall thickness and PA muscularization, and messenger ribonucleic acid expression of genes in lung tissues were measured. Another 35 PAH dogs were used to measure the SN conduction velocity, electron microscopic assessment, and nerve distribution.ResultsPADN induced significant SN demyelination and axon loss and slowed SN conduction velocity over time, with resulting profound reductions in the mean PAP (23.5 ± 2.3 mm Hg vs. 33.7 ± 5.8 mm Hg), pulmonary vessel resistance (3.5 ± 2.3 Wood units vs. 7.7 ± 1.7 Wood units), medial wall thickness (22.3 ± 3.3% vs. 30.4 ± 4.1%), and full muscularization (40.3 ± 9.3% vs. 57.1 ± 5.7%) and increased nonmuscularization (29.8 ± 6.1% vs. 12.9 ± 4.9%) compared with the Sham group (all p < 0.001). PADN inhibited the messenger ribonucleic acid expression of genes correlated with inflammation, proliferation, and vasoconstriction.ConclusionsPADN induces permanent SN injury and subsequent improvements in hemodynamics and PA remodeling in animals with PAH through mechanisms that may be experimentally and clinically beneficial.  相似文献   

18.
HIV-related pulmonary arterial hypertension (PAH) is one of the long-term complications of HIV infection that has become increasingly apparent in recent years. The clinical presentation and underlying pathology of PAH in HIV is similar to that in other forms of the disease, although there are data to suggest subtle differences, such as a greater inflammatory component in the HIV-related form. Advances continue to be made in defining the underlying pathogenesis of PAH, but the overall processes leading to vascular dysfunction and remodeling remain unclear. It would appear that PAH has a multifactorial etiology, with various risk factors--probably acting on an underlying genetic predisposition--that lead to the pulmonary vascular dysfunction that characterizes the disease. A range of growth factors, chemokines, cytokines and other inflammatory mediators, together with mediators involved in vasoconstriction and dilation, have been implicated in the pulmonary vascular remodeling resulting from this dysfunction. An increased understanding of the processes and factors involved in PAH has led to the development of new therapeutic strategies that have improved the management of various forms of PAH, including PAH associated with HIV (HIV-PAH). Recent results from studies into other potential mediators of PAH offer the possibility of new targets for therapy in this progressive and serious condition.  相似文献   

19.
The pathobiology of pulmonary arterial hypertension (PAH) reflects a multifactorial process and complex evolution that involves dysfunction of underlying cellular pathways and mediators. Among these, the endothelin system has been shown to be important in the pathogenesis of PAH. Endothelin-1 (ET-1), which is found in high levels in PAH, is a known potent vasoconstrictor with proliferative vascular remodeling properties. Left unchecked, endothelin excess, along with other derangements, may contribute to the development and perpetuation of PAH. There is now substantial evidence from clinical trials and long-term data that monotherapy with an endothelin receptor antagonist (ERA) is a beneficial, therapeutic approach in PAH. Combination therapy of an ERA with a prostanoid or phosphodiesterase-5 inhibitor, two drug classes that have different mechanisms of action, is conceptually appealing, but the evidence for its efficacy and safety are still being investigated. This review provides an overview of endothelin biology and the clinical use of ERAs for the treatment of PAH. The use of ERAs for other forms of pulmonary hypertension will not be reviewed here.  相似文献   

20.
Pulmonary Arterial hypertension (PAH) is a chronic and progressive disease characterized by an increase in pulmonary vascular resistance due to severe remodeling of the small pulmonary arteries. In PAH, the endothelial cells fail to maintain their homeostatic balance, with the consequent impaired production of vasodilators and over-expression of vasoconstrictors and proliferators. Current treatment of PAH is based on the discovery of three main pathways of endothelial dysfunction (prostacyclin, nitric oxide and endothelin-1), and includes drugs such as prostacyclin analogs, phosphodiesterase-5 inhibitors and endothelin receptor antagonists (ERAs). Recently approved drugs that act through these classic pathways include riociguat (cyclic GMP stimulator) and macitentan (a tissue specific dual ERA). However, several new drugs and new pathways are under study. New targeted therapies include tyrosine kinase inhibitors, Rho kinase inhibitors and serotonin receptor blockers. There are now ten drugs approved for the treatment of PAH that, alone or in combination, have changed the natural history of this disease. The new drugs will allow us to further modified the patients’ life expectancy and move towards a cure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号