首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effects of noxious stimulation of the skin by radiant heat were tested on responses of first order interneurones in reflex pathways from group II muscle afferents in mid-lumbar, lower-lumbar and sacral segments of the spinal cord. In mid- and lower-lumbar segments both background discharges and monosynaptically evoked responses of intermediate zone interneurones were facilitated. Those of mid-lumbar dorsal horn interneurones were also facilitated suggesting that both these interneuronal populations contribute to the facilitation of flexion reflexes by nociceptors. In contrast, the dominating effects of noxious heat on sacral dorsal horn group II interneurones were inhibitory. The effects evoked by selective activation of C fibres, after A-delta fibres had been blocked by TTX, were similar to those obtained before TTX application.  相似文献   

2.
Summary A hypothesis is forwarded regarding the role of secondary spindle afferents and the FRA (flexor reflex afferents) in motor control. The hypothesis is based on evidence (cf. Lundberg et al. 1987a, b) summarized in 9 introductory paragraphs. Group II excitation. It is postulated that subsets of excitatory group II interneurones (transmitting disynaptic group II excitation to motoneurones) may be used by the brain to mediate motor commands. It is assumed that the brain selects subsets of interneurones with convergence of secondary afferents from muscles whose activity is required for the movement. During movements depending on coactivation of static -motoneurones impulses in secondary afferents may servo-control transmission to -motoneurones at an interneuronal level. The large group II unitary EPSPs in interneurones are taken to indicate that, given an adequate interneuronal excitability, impulses in single secondary afferents may fire the interneurone and produce EPSPs in motoneurones; interneuronal transmission would then be equivalent to that in a monosynaptic pathway but with impulses from different muscles combining into one line. It is postulated that impulses in the FRA are evoked by the active movements and that the role of the multisensory convergence from the FRA onto the group II interneurones is to provide the high background excitability which allows the secondary spindle afferents to operate as outlined above. The working hypothesis is put forward that a movement governed by the excitatory group II interneurones is initiated by descending activation of these interneurones, but is maintained in a later phase by the combined effect of FRA activity evoked by the movement and by spindle secondaries activated by descending activation of static -motoneurones. As in the original follow up length servo hypothesis (Rossi 1927; Merton 1953), we assume that a movement at least in a certain phase can be governed from the brain solely or mainly via static -motoneurones. However, our hypothesis implies that the excitatory group II reflex connexions have a strength which does not allow transmission to motoneurones at rest and that the increase in the gain of transmission during an active movement is supplied by the movement itself. Group II inhibition. It is suggested that the inhibitory reflex pathways like the excitatory ones have subsets of interneurones with limited group II convergence. When higher centres utilize a subset of excitatory group II interneurones to evoke a given movement, they may mobilize inhibitory subsets to inhibit muscles not required in the movement. Inhibition may be reciprocal of extensors during flexor activation (the spinal pattern), of flexors during extensor activation or of flexors and extensors in more complex movements involving cocontraction of other flexors and extensors. It is postulated that group II inhibition depends on conjoint activation from spindle afferents and other sources (descending and/or the FRA) so that inhibition may be coupled to group II excitation of other motoneurones. Such a coupling would correspond to the --linkage in reciprocal Ia inhibition (Lundberg 1970) and is denoted --linkage in lateral group II inhibition. FRA and other reflex pathways. Results are summarized showing that the FRA evoke convergent excitation in interneurones not only in group II reflex pathways but also in other reflex pathways like the reciprocal Ia inhibitory, the nonreciprocal group I inhibitory and probably also in specialized reflex pathways from cutaneous afferents. It is inferred that facilitation of reflex transmission by impulses in the FRA evoked by the active movement may be a general principle. In this way reflex transmission to -motoneurones may be weak at rest and not disturb passive movements but have a high gain when the reflexes are required to regulate active movement.This work was supported by the Swedish Medical Research Council (project no. 94)  相似文献   

3.
Reflex pathways from group II muscle afferents   总被引:11,自引:0,他引:11  
The interneuronally mediated reflex actions evoked by electrical stimulation of group II muscle afferents in low spinal cats have been reinvestigated with intracellular recording with motoneurones to knee flexors and ankle extensors. The results of Eccles and Lundberg (1959) have been confirmed and extended. There was wide convergence from flexors and extensors of group II excitation to flexor and group II inhibition to extensor motoneurones. Some quantitative differences in the effect from the different nerves are described. Latency measurements suggest that the minimal linkage is disynaptic in the excitatory interneuronal pathways and trisynaptic in the inhibitory pathways. Disynaptic group II EPSPs were found in 14% of the ankle extensor motoneurones but were much more common in unanaesthetized high spinal cats (Wilson and Kato 1965). From these results and corresponding ones on flexors (Holmqvist and Lundberg 1961) it is postulated that secondary afferents in addition to the weak monosynaptic connexions (Kirkwood and Sears 1975) have disynaptic excitatory pathways and trisynaptic inhibitory pathways to both flexor and extensor motoneurones. It is proposed that the group II actions of the flexor reflex pattern characterizing the anaesthetized low spinal cat are due to suppression of the inhibitory pathway to flexor motoneurones and the excitatory pathway to extensor motoneurones. In some ankle extensor motoneurones the disynaptic group II EPSPs occurred in combination with IPSPs from the FRA (including group II and III muscle afferents). The possibility is considered that these group II EPSPs are mediated by an interneuronal group II pathway with little or no input from group III muscle afferents but probably from extramuscular receptors. In other ankle extensor motoneurones group II EPSPs were combined with EPSPs from group III muscle afferents, cutaneous afferents and joint afferents. It is postulated that these group II EPSPs are mediated by an interneuronal pathway from the FRA which also supply interneuronal pathways giving inhibition to extensor or/and flexor motoneurones and excitation to flexors as postulated by Eccles and Lundberg (1959) and Holmqvist and Lundberg (1961).  相似文献   

4.
Reflex pathways from group II muscle afferents   总被引:5,自引:0,他引:5  
The convergence of group II muscle afferents on interneurones in reflex pathways has been elucidated by investigating interaction in transmission to motoneurones. Recording was also made from interneurones activated from group II afferents. Maximal group II EPSPs evoked in motoneurones from different muscles (extensors or flexors and extensors) did not summate linearly but with a deficit of 35-40%. The corresponding deficit in summation with Ia EPSPs was 7%. It is suggested that the difference in deficit is caused largely by occlusion due to shared interneuronal discharge zones and that it gives an approximate minimal measure of the convergence of group II afferents from different muscles on the interneurones. Tests with weak group II volleys from different muscles gave no or little evidence for spatial facilitation in the disynaptic excitatory pathway to flexor motoneurones, and there was no or little temporal facilitation of transmission in this pathway. It is suggested that group II excitation of the interneurones in this pathway depends on few afferents giving large unitary EPSPs. Convergence of cutaneous afferents and joint afferents on the interneurones was evidenced by spatial facilitation from these afferents of group II transmission to motoneurones. Convergence on interneurones in the trisynaptic inhibitory pathway from group II afferents to extensor motoneurones was also investigated with the spatial facilitation technique. There was convergence on common interneurones of group II afferents from different muscles (extensors or flexors and extensors) and from cutaneous afferents as well as joint afferents. Trisynaptic group II IPSPs, including those depending on spatial facilitation from different muscles were resistant to recurrent depression from motor axon collaterals and are therefore not mediated by the reciprocal Ia inhibitory pathway. Interneurones with monosynaptic group II EPSPs were recorded from in the dorsal horn and intermediate region. Graded stimulation revealed large unitary EPSPs from few group II afferents. The EPSP evoked by a single group II afferent may produce firing (extracellular recording). Convergence of monosynaptic group II EPSPs from different muscles was rather limited but could be from flexors and extensors. Extensive multisensory convergence onto some of these interneurones was indicated by di- or polysynaptic EPSPs from group II and III muscle afferents, from joint afferents and from cutaneous afferents.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
6.
1. Properties of dorsal horn interneurones that process information from group II muscle afferents in the sacral segments of the spinal cord have been investigated in the cat using both intracellular and extracellular recording. 2. The interneurones were excited by group II muscle afferents and cutaneous afferents but not by group I muscle afferents. They were most effectively excited by group II afferents of the posterior biceps, semitendinosus, triceps surae and quadriceps muscle nerves and by cutaneous afferents running in the cutaneous femoris, pudendal and sural nerves. The earliest synaptic actions were evoked monosynaptically and were very tightly locked to the stimuli. 3. EPSPs evoked monosynaptically by group II muscle afferents and cutaneous afferents of the most effective nerves were often cut short by disynaptic IPSPs. As a consequence of this negative feedback the EPSPs gave rise to single or double spike potentials and only a minority of interneurones responded with repetitive discharges. However, the neurones that did respond repetitively did so at a very high frequency of discharges (0.8-1.2 ms intervals between the first 2-3 spikes). 4. Sacral dorsal horn group II interneurones do not appear to act directly upon motoneurones because: (i) these interneurones are located outside the area within which last order interneurones have previously been found and (ii) the latencies of PSPs evoked in motoneurones by stimulation of the posterior biceps and semitendinosus, cutaneous femoris and pudendal nerves (i.e. the main nerves providing input to sacral interneurones) are compatible with a tri- but not with a disynaptic coupling. Spatial facilitation of EPSPs and IPSPs following synchronous stimulation of group II and cutaneous afferents of these nerves shows, however, that sacral interneurones may induce excitation or inhibition of motoneurones via other interneurones. 5. Comparison of the properties of group II interneurones in the sacral segments with those of previously studied group II interneurones in the midlumbar segments leads to the conclusion that these two populations of neurones are specialized for the processing of information from different muscles and skin areas. In addition, equivalents of only one of the two subpopulations of midlumbar interneurones have been found at the level of the pudendal nucleus: neurones with input from group II but not from group I muscle afferents. Neurones integrating information from group I and II muscle afferents and in direct contact with motoneurones thus seem to be scarce in the sacral segments.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
8.
The aim of the study was to verify the hypothesis that trisynaptic actions of group II muscle afferents upon motoneurones are, at least in part, mediated by dorsal horn interneurones exciting the same intermediate zone interneurones that are interposed in disynaptic pathways from group II afferents. Population EPSPs (field potentials) and responses of individual interneurones evoked by group II afferents in the dorsal horn and in the intermediate zone were analysed in order to assess the possibility of a causal relationship between them. When direct actions of group II afferents in the intermediate zone were abolished by presynaptic inhibition, distinct later components of field potentials and delayed interneuronal responses were induced at latencies 0.5-1 ms longer than those seen originally. Both the latency and a marked temporal facilitation define these later group II actions as being evoked disynaptically. Under the same conditions, single stimuli activated more than one half of dorsal horn interneurones, and the second and third stimuli activated all of these interneurones. Responses of dorsal horn interneurones preceded disynaptically evoked responses of intermediate zone interneurones. The study indicates that intermediate zone interneurones may be activated by group II afferents both directly and via dorsal horn interneurones and that synaptic actions of group II afferents upon these interneurones, and their subsequent actions upon motoneurones, may be modulated in parallel at the level of intermediate zone and dorsal horn interneurones.  相似文献   

9.
1. Ascending tract neurones located in the dorsal horn of sacral segments of the spinal cord have been investigated by extracellular and intracellular recording in the anaesthetized cat. The aim was to determine whether information from group II afferents that terminate within the sacral segments is conveyed to supraspinal structures and which types of neurones are involved. 2. A considerable proportion of ascending tract neurones found in the dorsal horn in the same segments as the pudendal (Onuf's) motor nucleus were excited by group II muscle afferents. The great majority (93%) of these neurones had axons ascending in ipsilateral funiculi. Spinocervical tract neurones constituted the largest proportion (82%) of such neurones, while very few spinocerebellar tract and propriospinal neurones and no postsynaptic dorsal column neurones were found among them. 3. In addition to activation by group II muscle afferents all of the neurones were strongly excited by cutaneous afferents. The most potent excitation was evoked by afferents of the posterior biceps-semitendinosus and gastrocnemius muscle nerves and by afferents of the cutaneous femoris, sural and pudendal nerves. The latencies of intracellularly recorded excitatory potentials were indicative of a high incidence of monosynaptic coupling between the afferents and ascending tract neurones. 4. The highly effective monosynaptic excitation of spinocervical tract neurones in the sacral segments by group II afferents is in contrast to the weak disynaptically mediated actions of group II afferents on such neurones in the L6-L7 segments but comparable to the actions of group II afferents on ascending tract neurones in the midlumbar segments. 5. Both the patterns of peripheral input and the latencies of synaptic actions in ascending tract neurones were similar to those in interneurones at the same locations (accompanying report). Similar information is therefore likely to be processed by both categories of neurones. 6. The role of sacral spinocervical tract neurones as a system for transmitting information from group II muscle afferents to supraspinal centres and the potential contribution of this system to the perception of limb position are discussed.  相似文献   

10.
11.
The aim of this study was to analyse neurotransmitter content, projection areas and target cells of commissural interneurons with input from group I and/or II muscle afferents in lumbar segments in the cat. Axonal projections of 15 intracellularly labelled commissural interneurons were reconstructed. Ten interneurons (nine located in laminae VI–VII, one in lamina VIII) were glutamatergic; only one interneuron (located in lamina VIII) was glycinergic. Contralateral terminal projections were found both in motor nuclei and within laminae VI–VIII. In order to identify target cells of commissural interneurons, effects of stimulation of contralateral group I and II muscle afferents were investigated on interneurons within these laminae. Three tests were used: intracellular records from individual interneurons, modulation of probability of activation of extracellularly recorded interneurons and modulation of their actions on motoneurons using disynaptic PSPs evoked in motoneurons as a measure. All these tests revealed much more frequent and/or stronger excitatory actions of contralateral afferents. The results indicate that commissural interneurons with input from contralateral group I and II afferents target premotor interneurons in disynaptic pathways from ipsilateral group I and II afferents and that excitatory disynaptic actions of contralateral afferents on these interneurons are mediated primarily by intermediate zone commissural interneurons. A second group of commissural interneurons activated by reticulospinal neurons, previously described, frequently had similar, but occasionally opposing, actions to the cells described here, thus indicating that these two subpopulations may act on the same premotor interneurons and either mutually enhance or counteract each other's actions.  相似文献   

12.
Two alpha 2 noradrenaline antagonists, idazoxan and yohimbine, were injected in midlumbar segments of the spinal cord to test whether they counteract depression of field potentials evoked by group II muscle afferents by conditioning stimuli applied in the brainstem. The tested field potentials were those evoked monosynaptically in the intermediate zone of midlumbar segments. Their depression reflected thus the depression of transmission between group II fibres and their first relay neurones. The conditioning stimuli were applied either within the ipsilateral locus coeruleus/subcoeruleus or outside these nuclei (in the raphe magnus, raphe obscurus, or cuneiform nuclei). The brainstem evoked depression of the tested field potentials (n = 12) was reduced following injection of idazoxan or yohimbine to about two thirds of that which was evoked originally but in three cases to about one half. The study leads thus to the conclusion that noradrenergic descending tract neurones contribute to the depression of transmission from group II afferents to spinal interneurones and that such noradrenergic neurones are activated by stimuli applied within as well as outside their nuclei. However, the relative contribution of monoaminergic and non-monoaminergic descending tract neurones to the control of transmission from group II afferents to these neurones remains to be established.  相似文献   

13.
The aim of the study was to analyze interactions between neuronal networks mediating centrally initiated movements and reflex reactions evoked by peripheral afferents; specifically whether interneurons in pathways from group Ib afferents and from group II muscle afferents mediate actions of reticulospinal neurons on spinal motoneurons by contralaterally located commissural interneurons. To this end reticulospinal tract fibers were stimulated in the contralateral medial longitudinal fascicle (MLF) in chloralose-anesthetized cats in which the ipsilateral half of the spinal cord was transected rostral to the lumbosacral enlargement. In the majority of interneurons mediating reflex actions of group Ib and group II afferents, MLF stimuli evoked either excitatory or inhibitory postsynaptic potentials (EPSPs and IPSPs, respectively) or both EPSPs and IPSPs attributable to disynaptic actions by commissural interneurons. In addition, in some interneurons EPSPs were evoked at latencies compatible with monosynaptic actions of crossed axon collaterals of MLF fibers. Intracellular records from motoneurons demonstrated that both excitation and inhibition from group Ib and group II afferents are modulated by contralaterally descending reticulospinal neurons. The results lead to the conclusion that commissural interneurons activated by reticulospinal neurons affect motoneurons not only directly, but also by enhancing or weakening activation of premotor interneurons in pathways from group Ib and group II afferents. The results also show that both excitatory and inhibitory premotor interneurons are affected in this way and that commissural interneurons may assist in the selection of reflex actions of group Ib and group II afferents during centrally initiated movements.  相似文献   

14.
The effects of dopamine and its agonists on transmission from muscle afferents to spinal neurones were investigated in the cat and guinea-pig spinal cord, by measuring the drug effects on the amplitude of monosynaptic field potentials evoked by electrical stimulation of group I and group II muscle afferents. Local iontophoretic application of dopamine, the dopamine D1/D5 agonist SKF-38393 and the D2/D3/D4 agonist quinpirole all depressed the group II field potentials evoked at the base of the dorsal horn. Group II field potentials in the intermediate zone were depressed by dopamine to a similar degree as the dorsal horn field potentials, whereas the dopamine agonists were without effect upon them. The intermediate zone field potentials evoked by group I muscle afferents were not depressed by any of the drugs. The dopamine-evoked depression of the group II-evoked field potentials in the dorsal horn in the guinea-pig spinal cord was reduced by the simultaneous application of haloperidol. The results demonstrate that dopamine receptors mediate the depression of transmission from group II muscle afferents to interneurones in the dorsal horn, but not to neurones in the intermediate zone of the spinal cord.  相似文献   

15.
The aim of this study was to investigate differences in the effects of presynaptic inhibition of transmission from group II muscle afferents to neurones in the dorsal horn and in the intermediate zone and the consequences of these differences for reflex actions of group II afferents upon α-motoneurones. The degree of presynaptic inhibition was estimated from the degree of depression of monosynaptic components of population EPSPs (field potentials) evoked by group II muscle afferents in deeply anaesthetized cats. The decrease in the area of field potentials was considerably larger and longer lasting in the intermediate zone, where they were often obliterated, than in the dorsal horn, where they were reduced to about two-thirds. Presynaptic inhibition of field potentials evoked by other afferents at the same locations was much weaker. Intracellular records from α-motoneurones revealed that short latency EPSPs and IPSPs evoked from group II afferents are considerably reduced by conditioning stimuli that effectively depress intermediate zone field potentials of group II origin. The results of this study lead to the conclusion that strong presynaptic inhibition of transmission to intermediate zone interneurones allows a selective depression of disynaptic actions of group II muscle afferents on α- and γ-motoneurones, mediated by these interneurones, and favours polysynaptic actions of these afferents.  相似文献   

16.
The hippocampus (HPC) may be functionally heterogeneous in supporting spatial learning in rats. Thus, dorsal but not ventral HPC lesions have been reported to impair acquisition in the Morris water task which consists of finding a submerged platform in a pool filled with opaque water. To further investigate the functional differences between dorsal and ventral HPC regions, we used a one-trial matching to position water task in which the submerged platform occupied a different position during each session. This task is very sensitive to HPC damage. The results show that either dorsal or ventral HPC NMDA lesions disrupt the rapid acquisition of new place information. The acquisition deficit diminishes with training in both lesion groups. The data thus suggest that the entire HPC axis is involved in acquisition of spatial information.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号