首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The topography of choline acetyltransferase immunoreactivity was studied in the rat spinal cord with a monoclonal antibody. Cholinergic fibers were most prominent in lamina III of the dorsal horn and originated from cholinergic neurons within the spinal cord. Lamina X, which was rich in cholinergic neurons and fibers, provided cholinergic interconnections between the dorsal, intermediate and ventral gray. Within the ventral gray, choline acetyltransferase immunoreactive boutons were found on motor neurons. This study suggests that the cholinergic innervation of the spinal cord arises from neurons intrinsic to the spinal cord. The cholinergic neurons within the spinal cord may provide several, overlapping levels of regulation of spinal cord neurons.  相似文献   

2.
3.
A monoclonal antibody to choline acetyltransferase (ChAT) has been used in an immunocytochemical study of the postnatal development of ChAT-containing neurons in cervical and thoracic spinal cord. Specimens from rat pups ranging in age from 1 to 28 days postnatal (dpn) were studied and compared with adult specimens (Barber et al., '84). The development of established cholinergic neurons, the somatic motoneurons and sympathetic preganglionic cells, has been described as has that of previously unidentified ChAT-positive neurons in the dorsal, intermediate, and central gray matter. Cell bodies of somatic and visceral motoneurons contained moderate amounts of ChAT-positive reaction product at birth that gradually increased in intensity until 14-21 dpn. The most intensely stained ChAT-positive neurons in 1-5-dpn specimens were named partition cells because this cell group extended from the central gray to an area dorsal to the lateral motoneurons, and thereby divided the spinal cord into dorsal and ventral halves. Partition cells were medium to large in size with 5-7 primary dendrites, and axons that, in fortuitous sections, could be traced into the ventrolateral motoneuron pools, the ventral funiculi, or the ventral commissure. Small ChAT-positive cells clustered around the central canal and scattered in laminae III-VI of the dorsal horn were detectable at birth. These neurons were moderately immunoreactive at 11-14 dpn and intensely ChAT positive by 21 dpn. The band of ChAT-positive terminal-like structures demonstrated in lamina III of adult specimens (Barber et al., '84) was first visible in 11-14-dpn specimens. By 28 dpn, both laminae I and III contained punctate bands that approximated the density of those observed in adult spinal cord. This investigation has demonstrated ChAT within individual neurons of developing spinal cord, and has identified a group of neurons, the partition cells, that exhibit intense ChAT-positive immunoreactivity earlier than any other putative cholinergic cells in spinal cord, including motoneurons. Another important observation has been that each ChAT-positive neuronal type achieves adult levels of staining intensity at different times during development. A likely explanation for this differential staining is that various groups of neurons acquire their mature concentration of ChAT molecules at different developmental stages. In turn, this may correlate with the maturation of cholinergic synaptic activity manifest by individual cells or groups of neurons.  相似文献   

4.
Summary Choline acetyltransferase (CAT) activity was measured in various regions of rat spinal cord. In the ventral cord, enzyme activity was 2 to 3 times higher than in dorsal cord. In dorsal spinal cord, there was a gradient in enzyme activity, increasing CAT activity being observed in more caudal segments. In autonomic regions intermediate levels were measured. Bilateral transection of the sciatic nerve reduced CAT activity in the ventral horn of lumbar spinal cord, whereas CAT activity in the dorsal horn remained unchanged. Capsaicin pretreatment had no effect on CAT activity in any spinal cord region. Although a similar distribution of cholinergic neurones and primary afferent endings in rat dorsal spinal cord was described, no conclusive statement as to a possible functional interaction can be given.  相似文献   

5.
This report examines the generation of cholinergic neurons in the spinal cord in order to determine whether the transmitter phenotype of neurons is associated with specific patterns of neurogenesis. Previous immunocytochemical studies identified four groups of choline acetyltransferase (ChAT)-positive neurons in the cervical enlargement of the rat spinal cord. These cell groups vary in both somatic size and location along the previously described ventrodorsal neurogenic gradient of the spinal cord. Thus, large (and small) motoneurons are located in the ventral horn, medium-sized partition cells are found in the intermediate gray matter, small central canal cluster cells are situated within lamina X, and small dorsal horn neurons are scattered predominantly through laminae III-V. The relationships among the birthdays of these four subsets of cholinergic neurons have been examined by combining 3H-thymidine autoradiography and ChAT immunocytochemistry. Embryonic day 11 was the earliest time that neurons were generated within the cervical enlargement. Large and small ChAT-positive motoneurons were produced on E11 and 12, with 70% of both groups being born on E11. ChAT-positive partition cells were produced between E11 and 13, with their peak generation occurring on E12. Approximately 70% of the cholinergic central canal cluster and dorsal horn cells were born on E13, and the remainder of each of these groups was generated on E14. Other investigators have shown that all neurons within the rat cervical spinal cord are produced in a ventrodorsal sequence between E11 and E16. In contrast, ChAT-positive neurons are born only from E11 to E14 and are among the earliest cells generated in the ventral, intermediate, and dorsal subdivisions of the spinal cord. However, all cholinergic neurons are not generated simultaneously; rather their birthdays are correlated with their positions along the ventrodorsal gradient of neurogenesis. The fact that large motoneurons and medium-sized partition cells are born before small central canal cluster and dorsal horn cells would appear to support the generalization that large neurons are generated before small ones. However, the location of spinal cholinergic neurons within the neurogenic gradient seems to be more importantly associated with the time of cell generation than somal size. For example, when large and small motoneurons located at the same dorsoventral spinal level are compared, both sizes of cells are generated at the same time and in similar proportions.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
7.
The topographic location of the enzyme choline acetyltransferase (ChAT) has recently been determined within the human spinal cord2. ChAT, which is regarded as a specific marker of cholinergic structures in nervous tissue, showed an area of high activity in the ventrolateral part of the ventral horn, probably related to motor neurons. In addition, an area of high ChAT activity was found in the apical part of the dorsal horn. As amyotrophic lateral sclerosis (ALS) is characterized by progressive degeneration of the cortico-spinal tracts and the lower motor neurons, we considered it of value to investigate the involvement of spinal cholinergic structures in this disorder. Substance P is regarded as the transmitter of incoming pain signals to the dorsal horn of the spinal cord, a subject recently reviewed by Marx10. As disturbed sensation of pain is not a symptom of ALS, there seemed reason to correlate the spinal concentration of this peptide with the activities of ChAT in ALS.  相似文献   

8.
uinea pig antiserum specific to the purified bovine choline acetyltransferase was used to demonstrate the localization of this enzyme in rabbit forebrain by the peroxidase-antiperoxidase immunohistochemical method. Choline acetyltransferase was localized in olfactory bulb, olfactory tract, olfactory tubercle, piriform cortex, septum, diagonal band, basal ganglia, thalamus, hypothalamus, subthalamus, habenula, cerebral cortex, hippocampal region, corpus callosum, internal capsule, fornix, longitudinal striae and other areas. The findings reflect the distribution of cholinergic axons and, possibly, their terminals. These observations correlate well with biochemical determinations of choline acetyltransferase and with previously proposed cholinergic pathways.  相似文献   

9.
Biochemical, physiological and behavioral evidence suggests that acetylcholine (ACh) may play a neurotransmitter role in central vestibular function. However, the anatomic basis for a possible cholinergic influence on the vestibular nuclear complex (VNC) is unknown. To investigate vestibular cholinergic anatomy, we have made selective lesions of neurons intrinsic to the VNC, and of most known afferents to the VNC, and we have measured the activity of choline acetyltransferase (ChAT), a specific marker for cholinergic neurons, following such lesions. We found that a kainic acid lesion of the VNC, and lesions of vestibular afferents, including the VIIIth cranial nerve, cerebellum, spinal cord, vestibular commissure and the interstitial nucleus of Cajal, did not affect VNC ChAT activity. We conclude that there are no cholinergic neurons intrinsic to the VNC, and that these lesioned afferents are not cholinergic. It is likely, therefore, that a cholinergic projection to the VNC arises from a region other than those lesioned; possibilities include the nuclei of the reticular formation, the upper cervical cord and local pontomedullary nuclei.  相似文献   

10.
Monoclonal antibody to human choline acetyltransferase (ChAT) was successfully produced from a mouse hybridoma cell line. The antibody was found to be of the IgM molecular species. By using this monoclonal antibody, immunohistochemical staining for ChAT was obtained on human brain sections. Only large sized cells were stained in the putamen and the substantia innominata. The specificity of the staining was comparable to that with polyclonal rabbit antibody to human ChAT produced by standard immunization procedures. No staining was observed when mouse monoclonal antibodies prepared against other human or bacterial antigens, or when normal mouse IgM, was employed.  相似文献   

11.
Binding of labelled l-quinuclidinylbenzylate was studied in cryosections and homogenates of human and rat spinal cord. For the cryosections an autoradiographic method was used. With both techniques a higher density of muscarinic binding sites was found in rat than in human spinal cord. In the autoradiograhs very high densities of muscarinic binding sites were observed in the motor neurone area and in the apical part of the dorsal horn. The latter high density region was not always found in homogenates from dissected tissue samples. The autoradiographic technique has a better resolution for detecting discrete regional variations in the receptor content of the spinal cord.  相似文献   

12.
13.
Monoclonal antibodies to choline acetyltransferase (ChAT) were used in an immunocytochemical study to characterize putative cholinergic neurons and synaptic junctions in rat caudate-putamen. Light microscopy (LM) revealed that ChAT-positive neurons are distributed throughout the striatum. These cells have large oval or multipolar somata, and exhibit three to four primary dendrites that branch and extend long distances. Quantitative analysis of counterstained preparations indicated that ChAT-positive neurons constitute 1.7% of the total neuronal population. Electron microscopy (EM) of immunoreactive neurons initially studied by LM revealed somata characterized by deeply invaginated nuclei and by abundant amounts of organelle-rich cytoplasm. Surfaces of ChAT-positive neurons are frequently smooth, but occasional somatic protrusions and dendritic spines occur. Although infrequently observed, axons of ChAT-positive neurons branch, receive synapses, and become myelinated. Unlabeled boutons make both symmetrical and asymmetrical synapses with ChAT-positive somata and proximal dendrites, but are more numerous on distal dendrites. In addition, some unlabeled terminals form asymmetrical synapses with ChAT-positive somata and dendrites that are distinguished by prominent subsynaptic dense bodies. Light microscopy demonstrated a dense distribution of ChAT-positive fibers and punctate structures in the striatum, and these structures appear to correlate, respectively, with labeled preterminal axons and presynaptic boutons identified by EM. ChAT-positive boutons contain pleomorphic vesicles, and make symmetrical synapses primarily with unlabeled dendritic shafts. Furthermore, they establish synaptic contacts with somata, dendrites and axon initial segments of unlabeled neurons that ultrastructurally resemble medium spiny neurons. These observations, together with the results of other investigations, suggest that medium spiny GABAergic projection neurons receive a cholinergic innervation that is probably derived from ChAT-positive striatal cells. The results of this study also indicate that cholinergic neurons within caudate-putamen belong to a single population of cells that have large somata and extensive sparsely spined dendrites. Such neurons, in combination with dense concentrations of ChAT-positive fibers and terminals, are the likely basis for the large amounts of ChAT and acetylcholine detected biochemically within the neostriatum.  相似文献   

14.
15.
The present investigation examines the effects of phosphatase inhibition on short-term regulation of cholinergic function, with particular emphasis on choline acetyltransferase, the enzyme which synthesizes acetylcholine. Rat hippocampal synaptosomes were treated with either okadaic acid (10 nM) or calyculin-A (50 nM) to inhibit protein phosphatases 1 and 2A for 20 min prior to subfractionation of nerve terminals and measurement of choline acetyltransferase activity, or quantification of high-affinity choline transport and acetylcholine synthesis. Inhibition of synaptosomal phosphatases did not alter total or salt-soluble choline acetyltransferase activity, but membrane-bound and water-soluble forms of the enzyme were selectively increased in okadaic acid-treated nerve terminals to 129±11% and 137±10% of control, respectively. High-affinity choline transport was reduced to 77±6% and 76±7% of control in calyculin-A- and okadaic acid-treated nerve terminals, respectively. Acetylcholine synthesis was reduced to 73±6% of control in calyculin-A-treated synaptosomes only; acetylcholine synthesis was at control levels in okadaic acid-treated cultures correlating with enhanced choline acetyltransferase activity in the water-soluble and nonionically membrane-bound fractions. These investigations indicate a role for phosphoprotein phosphatases in the regulation of acetylcholine synthesis in the cholinergic nerve terminal. The observed increases in choline acetyltransferase activity in two subcellular fractions appears to compensate for decreased choline precursor availability, allowing acetylcholine synthesis to be maintained at control levels. The uncoupling of choline transport and acetylcholine synthesis in this situation represents a unique functional role for a subfraction of choline acetyltransferase.  相似文献   

16.
We have previously described a graded spinal cord injury model in the rat. Mild contusive injury results in an initially severe functional deficit that is attenuated over time to reveal the mild chronic deficits that characterize this injury. In this study, we have shown that mild contusive injury also results in a significant decrease in choline acetyltransferase (ChAT) activity during the first week after injury. At 1 week ChAT activity is maximally reduced at the site of the contusion and is also significantly lowered throughout the spinal cord. ChAT activity then rebounds during the following 3 weeks, partially at the injury site where there is considerable loss of gray and white matter, and completely in rostral and caudal cord segments. The rebound in ChAT activity is temporally associated with the partial recovery of function. Further, the changes in ChAT activity after injury are mirrored by changes in nerve growth factor-like immunoreactivity (NGF-LI) as determined by a specific two-site ELISA. NGF-LI increases significantly after injury, reaching a maximum at 7 days after contusion and at the injury site. However, levels of NGF-LI are also significantly increased throughout the spinal cord. NGF-LI then decreases at 2 and 4 weeks as ChAT activity rebounds. Further experiments will be needed to examine the possibility of a role for NGF in promoting the recovery of function after spinal cord injury.  相似文献   

17.
18.
We provide evidence that callosal projections within the primary somatosensory cortex of the rat are distributed in a detailed pattern which is complementary to the pattern of specific thalamocortical projections to this cortical region.  相似文献   

19.
Acetylcholine (ACh) is known to be a key neurotransmitter in the central and peripheral nervous systems, but it is also produced in a variety of non‐neuronal tissues and cells, including lymphocytes, placenta, amniotic membrane, vascular endothelial cells, keratinocytes, and epithelial cells in the digestive and respiratory tracts. To investigate contribution made by the high‐affinity choline transporter (CHT1) to ACh synthesis in both cholinergic neurons and nonneuronal cells, we transfected rat CHT1 cDNA into NIH3T3ChAT cells, a mouse fibroblast line expressing mouse choline acetyltransferase (ChAT), to establish the NIH3T3ChAT 112‐1 cell line, which stably expresses both CHT1 and ChAT. NIH3T3ChAT 112‐1 cells showed increased binding of the CHT1 inhibitor [3H]hemicholinium‐3 (HC‐3) and greater [3H]choline uptake and ACh synthesis than NIH3T3ChAT 103‐1 cells, a CHT1‐negative control cell line. HC‐3 significantly inhibited ACh synthesis in NIH3T3ChAT 112‐1 cells but did not affect synthesis in NIH3T3ChAT 103‐1 cells. ACh synthesis in NIH3T3ChAT 112‐1 cells was also reduced by amiloride, an inhibitor of organic cation transporters (OCTs) involved in low‐affinity choline uptake, and by procaine and lidocaine, two local anesthetics that inhibit plasma membrane phospholipid metabolism. These results suggest that CHT1 plays a key role in ACh synthesis in NIH3T3ChAT 112‐1 cells and that choline taken up by OCTs or derived from the plasma membrane is also utilized for ACh synthesis in both cholinergic neurons and nonneuronal cholinergic cells, such as lymphocytes. © 2009 Wiley‐Liss, Inc.  相似文献   

20.
Guinea pig antiserum specific to purified bovine choline acetyltransferase was found to cross-react with human enzyme. The peroxidase-antiperoxidase immunohistochemical method was then used to demonstrate the localization of choline acetyltransferase in formalin-fixed and paraffin-embedded human cerebellum from normal as well as from Huntington's disease brains. Choline acetyltransferase was localized exclusively in the mossy fibers and the glomeruli of the cerebellar folia. These immunohistochemical findings reveal the distribution of cholinergic axons and their terminals. The results are not only similar to our previous studies using the same method on the localization of choline acetyltansferase in rabbit cerebellum, but also de onstrate that some mossy fibers are cholinergic as suggested by others.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号