首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.

Aim:

To investigate the reverse mode function of Na+/Ca2+ exchangers NCX1.1 and NCX1.5 expressed in CHO cells as well as their modulations by PKC and PKA.

Methods:

CHO-K1 cells were transfected with pcDNA3.1 (+) plasmid carrying cDNA of rat cardiac NCX1.1 and brain NCX1.5. The expression of NCX1.1 and NCX1.5 was examined using Western blot analysis. The intracellular Ca2+ level ([Ca2+]i) was measured using Ca2+ imaging. Whole-cell NCX currents were recorded using patch-clamp technique. Reverse mode NCX activity was elicited by perfusion with Na+-free medium. Ca2+ paradox was induced by Ca2+-free EBSS medium, followed by Ca2+-containing solution (1.8 or 3.8 mmol/L CaCl2).

Results:

The protein levels of NCX1.1 and NCX1.5 expressed in CHO cells had no significant difference. The reverse modes of NCX1.1 and NCX1.5 in CHO cells exhibited a transient increase of [Ca2+]i, which was followed by a Ca2+ level plateau at higher external Ca2+ concentrations. In contrast, the wild type CHO cells showed a steady increase of [Ca2+]i at higher external Ca2+ concentrations. The PKC activator PMA (0.3-10 μmol/L) and PKA activator 8-Br-cAMP (10-100 μmol/L) significantly enhanced the reverse mode activity of NCX1.1 and NCX1.5 in CHO cells. NCX1.1 was 2.4-fold more sensitive to PKC activation than NCX1.5, whereas the sensitivity of the two NCX isoforms to PKA activation had no difference. Both PKC- and PKA-enhanced NCX reverse mode activities in CHO cells were suppressed by NCX inhibitor KB-R7943 (30 μmol/L).

Conclusion:

Both NCX1.1 and NCX1.5 are functional in regulating and maintaining stable [Ca2+]i in CHO cells and differentially regulated by PKA and PKC. The two NCX isoforms might be useful drug targets for heart and brain protection.  相似文献   

2.

BACKGROUND AND PURPOSE

SKF 96365 is well known for its suppressing effect on human glioblastoma growth by inhibiting pre-activated transient receptor potential canonical (TRPC) channels and Ca2+ influx. The effect of SKF 96363 on glioblastoma cells, however, may be multifaceted and this possibility has been largely ignored.

EXPERIMENTAL APPROACH

The effects of SKF 96365 on cell cycle and cell viability of cultured human glioblastoma cells were characterized. Western blot, Ca2+ imaging and patch clamp recordings were used to delineate cell death mechanisms. siRNA gene knockdown provided additional evidence.

KEY RESULTS

SKF 96365 repressed glioblastoma cell growth via increasing intracellular Ca2+ ([Ca2+]i) irrespective of whether TRPC channels were blocked or not. The effect of SKF 96365 primarily resulted from enhanced reverse operation of the Na+/Ca2+ exchanger (NCX) with an EC50 of 9.79 μM. SKF 96365 arrested the glioblastoma cells in the S and G2 phases and activated p38-MAPK and JNK, which were all prevented by the Ca2+ chelator BAPTA-AM or EGTA. The expression of NCX in glioblastoma cells was significantly higher than in normal human astrocytes. Knockdown of the NCX1 isoforms diminished the effect of SKF 96365 on glioblastoma cells.

CONCLUSIONS AND IMPLICATIONS

At the same concentration, SKF 96365 blocks TRPC channels and enhances the reverse mode of the NCX causing [Ca2+]i accumulation and cytotoxicity. This finding suggests an alternative pharmacological mechanism of SKF 96365. It also indicates that modulation of the NCX is an effective method to disrupt Ca2+ homeostasis and suppress human glioblastoma cells.  相似文献   

3.

Background and purpose:

Large-conductance Ca2+-activated K+ channels (BKCa), located on the arterial and corporal smooth muscle, are potential targets for treatment of erectile dysfunction (ED). This study investigated whether NS11021 (1-(3,5-Bis-trifluoromethyl-phenyl)-3-[4-bromo-2-(1H-tetrazol-5-yl)-phenyl]-thiourea), a novel opener of BKCa channels, relaxes erectile tissue in vitro and enhances erectile responses in intact rats. The effects were compared with sildenafil, an inhibitor of phosphodiesterase type 5.

Experimental approach:

Patch clamp was used to record whole cell current in rat isolated corpus cavernosum smooth muscle cells (SMCs) and human umbilical vein endothelial cells (HUVECs). Isometric tension was measured in intracavernous arterial rings and corpus cavernosum strips isolated from rats and men, and simultaneous measurements of intracellular Ca2+ concentration ([Ca2+]i) and tension were performed in intracavernous arteries. Erectile response was measured in anaesthetized rats.

Key results:

In patch clamp recordings, NS11021 increased currents sensitive to the selective BKCa channel blocker, iberiotoxin (IbTX) in SMCs, but did not modulate K+ current in HUVECs. NS11021 reduced [Ca2+]i and tension in penile arteries. IbTX inhibited the vasorelaxation induced by NS11021 and sildenafil in human erectile tissue. NS11021 and sildenafil but not vehicle increased erectile responses in anaesthetized rats, an effect which was abolished after pretreatment with tetraethylammonium.

Conclusions and implications:

NS11021 leads to relaxation of both intracavernous arteries and corpus cavernosum strips primarily through opening of BKCa channels. It is also effective in facilitating erectile responses in anaesthetized rats. These results suggest a potential for use of BKCa openers in the treatment of ED.  相似文献   

4.

Background and purpose:

Epithelial surface hydration is critical for proper gut function. However, colonic tissues from individuals with inflammatory bowel disease or animals with colitis are hyporesponsive to Cl secretagogues. The Cl secretory responses to the muscarinic receptor agonist bethanechol are virtually absent in colons of mice with dextran sodium sulphate (DSS)-induced colitis. Our aim was to define the mechanism underlying this cholinergic hyporesponsiveness.

Experimental approach:

Colitis was induced by 4% DSS water, given orally. Epithelial ion transport was measured in Ussing chambers. Colonic crypts were isolated and processed for mRNA expression via RT-PCR and protein expression via immunoblotting and immunolocalization.

Key results:

Expression of muscarinic M3 receptors in colonic epithelium was not decreased during colitis. Short-circuit current (ISC) responses to other Ca2+-dependent secretagogues (histamine, thapsigargin, cyclopiazonic acid and calcium ionophore) were either absent or severely attenuated in colonic tissue from DSS-treated mice. mRNA levels of several ion transport molecules (a Ca2+-regulated Cl channel, the intermediate-conductance Ca2+-activated K+ channel, the cystic fibrosis transmembrane conductance regulator, the Na+/K+-ATPase pump or the Na+/K+/2Cl co-transporter) were not reduced in colonic crypts from DSS-treated mice. However, protein expression of Na+/K+-ATPase α1 subunits was decreased twofold during colitis. Activation of Ca2+-activated K+ channels increased ISC significantly less in DSS colons compared with control, as did the protein kinase C activator, phorbol 12-myristate 13-acetate.

Conclusions and implications:

Decreased Na+/K+-ATPase expression probably contributes to overall epithelial hyporesponsiveness during colitis, while dysfunctional K+ channels may account, at least partially, for lack of epithelial secretory responses to Ca2+-mediated secretagogues.  相似文献   

5.

Aim:

Intracellular Ca2+ ([Ca2+]i) overload occurs in myocardial ischemia. An increase in the late sodium current (INaL) causes intracellular Na+ overload and subsequently [Ca2+]i overload via the reverse-mode sodium-calcium exchanger (NCX). Thus, inhibition of INaL is a potential therapeutic target for cardiac diseases associated with [Ca2+]i overload. The aim of this study was to investigate the effects of ketamine on Na+-dependent Ca2+ overload in ventricular myocytes in vitro.

Methods:

Ventricular myocytes were enzymatically isolated from hearts of rabbits. INaL, NCX current (INCX) and L-type Ca2+ current (ICaL) were recorded using whole-cell patch-clamp technique. Myocyte shortening and [Ca2+]i transients were measured simultaneously using a video-based edge detection and dual excitation fluorescence photomultiplier system.

Results:

Ketamine (20, 40, 80 μmol/L) inhibited INaL in a concentration-dependent manner. In the presence of sea anemone toxin II (ATX, 30 nmol/L), INaL was augmented by more than 3-fold, while ketamine concentration-dependently suppressed the ATX-augmented INaL. Ketamine (40 μmol/L) also significantly suppressed hypoxia or H2O2-induced enhancement of INaL. Furthermore, ketamine concentration-dependently attenuated ATX-induced enhancement of reverse-mode INCX. In addition, ketamine (40 μmol/L) inhibited ICaL by 33.4%. In the presence of ATX (3 nmol/L), the rate and amplitude of cell shortening and relaxation, the diastolic [Ca2+]i, and the rate and amplitude of [Ca2+]i rise and decay were significantly increased, which were reverted to control levels by tetrodotoxin (TTX, 2 μmol/L) or by ketamine (40 μmol/L).

Conclusion:

Ketamine protects isolated rabbit ventricular myocytes against [Ca2+]i overload by inhibiting INaL and ICaL.  相似文献   

6.

BACKGROUND AND PURPOSE

The Ca2+ paradox is an important phenomenon associated with Ca2+ overload-mediated cellular injury in myocardium. The present study was undertaken to elucidate molecular and cellular mechanisms for the development of the Ca2+ paradox.

EXPERIMENTAL APPROACH

Fluorescence imaging was performed on fluo-3 loaded quiescent mouse ventricular myocytes using confocal laser scanning microscope.

KEY RESULTS

The Ca2+ paradox was readily evoked by restoration of the extracellular Ca2+ following 10–20 min of nominally Ca2+-free superfusion. The Ca2+ paradox was significantly reduced by blockers of transient receptor potential canonical (TRPC) channels (2-aminoethoxydiphenyl borate, Gd3+, La3+) and anti-TRPC1 antibody. The sarcoplasmic reticulum (SR) Ca2+ content, assessed by caffeine application, gradually declined during Ca2+-free superfusion, which was further accelerated by metabolic inhibition. Block of SR Ca2+ leak by tetracaine prevented Ca2+ paradox. The Na+/Ca2+ exchange (NCX) blocker KB-R7943 significantly inhibited Ca2+ paradox when applied throughout superfusion period, but had little effect when added for a period of 3 min before and during Ca2+ restoration. The SR Ca2+ content was better preserved during Ca2+ depletion by KB-R7943. Immunocytochemistry confirmed the expression of TRPC1, in addition to TRPC3 and TRPC4, in mouse ventricular myocytes.

CONCLUSIONS AND IMPLICATIONS

These results provide evidence that (i) the Ca2+ paradox is primarily mediated by Ca2+ entry through TRPC (probably TRPC1) channels that are presumably activated by SR Ca2+ depletion; and (ii) reverse mode NCX contributes little to the Ca2+ paradox, whereas inhibition of NCX during Ca2+ depletion improves SR Ca2+ loading, and is associated with reduced incidence of Ca2+ paradox in mouse ventricular myocytes.  相似文献   

7.
8.

Aim:

Congo red, a secondary diazo dye, is usually used as an indicator for the presence of amyloid fibrils. Recent studies show that congo red exerts neuroprotective effects in a variety of models of neurodegenerative diseases. However, its pharmacological profile remains unknown. In this study, we investigated the effects of congo red on ACh-induced Ca2+ oscillations in mouse pancreatic acinar cells in vitro.

Methods:

Acutely dissociated pancreatic acinar cells of mice were prepared. A U-tube drug application system was used to deliver drugs into the bath. Intracellular Ca2+ oscillations were monitored by whole-cell recording of Ca2+-activated Cl currents and by using confocal Ca2+ imaging. For intracellular drug application, the drug was added in pipette solution and diffused into cell after the whole-cell configuration was established.

Results:

Bath application of ACh (10 nmol/L) induced typical Ca2+ oscillations in dissociated pancreatic acinar cells. Addition of congo red (1, 10, 100 μmol/L) dose-dependently enhanced Ach-induced Ca2+ oscillations, but congo red alone did not induce any detectable response. Furthermore, this enhancement depended on the concentrations of ACh: congo red markedly enhanced the Ca2+ oscillations induced by ACh (10–30 nmol/L), but did not alter the Ca2+ oscillations induced by ACh (100–10000 nmol/L). Congo red also enhanced the Ca2+ oscillations induced by bath application of IP3 (30 μmol/L). Intracellular application of congo red failed to alter ACh-induced Ca2+ oscillations.

Conclusion:

Congo red significantly modulates intracellular Ca2+ signaling in pancreatic acinar cells, and this pharmacological effect should be fully considered when developing congo red as a novel therapeutic drug.  相似文献   

9.

Aim:

To examine if magnesium lithospermate B (MLB), a potent inhibitor of Na+/K+-ATPase, leads to the elevation of intracellular Ca2+ level as observed in cells treated with cardiac glycosides.

Methods:

Viability of SH-SY5Y neuroblastoma cells treated with various concentrations of ouabain or MLB was measured. Intracellular Ca2+ levels were visualized using Fluo4-AM (fluorescent dye) when cells were treated with ouabain or MLB in the presence or absence of KB-R7943 (Na+/Ca2+ exchanger inhibitor) and 2-APB (IP3 receptor antagonist). Molecular modeling was conducted for the docking of ouabain or MLB to Na+/K+-ATPase. Changes of cell body and dendrite morphology were monitored under a microscope.

Results:

severe toxicity was observed in cells treated with ouabain of concentration higher than 1 μmol/L for 24 h while no apparent toxicity was observed in those treated with MLB. Intracellular Ca2+ levels were substantially elevated by MLB (1 μmol/L) and ouabain (1 μmol/L) in similar patterns, and significantly reduced in the presence of KB-R7943 (10 μmol/L) or 2-APB (100 μmol/L). Equivalent interaction with the binding cavity of Na+/K+-ATPase was simulated for ouabain and MLB by forming five hydrogen bonds, respectively. Treatment of ouabain (1 μmol/L), but not MLB (1 μmol/L), induced dendritic shrink of SH-SY5Y cells.

Conclusion:

Comparable to ouabain, MLB leads to the elevation of intracellular Ca2+ level presumably via the same mechanism by inhibiting Na+/K+-ATPase. The elevated Ca2+ levels seem to be supplied by Ca2+ influx through the reversed mode of the Na+/Ca2+ exchanger and intracellular release from endoplasmic reticulum.  相似文献   

10.

Background and purpose:

N-arachidonoyl glycine (NAGly) is an endogenous lipid that is structurally similar to the endocannabinoid, N-arachidonoyl ethanolamide (anandamide). While NAGly does not activate cannabinoid receptors, it exerts cannabimimetic effects in pain regulation. Here, we have determined if NAGly, like anandamide, modulates vascular tone.

Experimental approach:

In rat isolated small mesenteric arteries, the relaxant responses to NAGly were characterized. Effects of N-arachidonoyl serine and N-arachidonoyl γ-aminobutyric acid were also examined.

Key results:

In endothelium-intact arteries, NAGly-induced relaxation (pEC50%= 5.7 ± 0.2; relaxation at 30 µM = 98 ± 1%) was attenuated by l-NAME (a nitric oxide synthase inhibitor) or iberiotoxin [selective blocker of large conductance Ca2+-activated K+ channels (BKCa)], and abolished by high extracellular K+ concentration. Endothelial removal reduced the potency of NAGly, and the resultant relaxation was inhibited by iberiotoxin, but not l-NAME. NAGly responses were sensitive to the novel cannabinoid receptor antagonist O-1918 independently of endothelial integrity, whereas pertussis toxin, which uncouples Gi/o proteins, attenuated NAGly relaxation only in endothelium-intact arteries. Treatments with antagonists for CB1, CB2 and TRPV1 receptors, or inhibitors of fatty acid amide hydrolase and COX had no effect. The two other arachidonoyl amino acids also induced iberiotoxin- and L-NAME-sensitive relaxations.

Conclusion and implications:

NAGly acts as a vasorelaxant predominantly via activation of BKCa in rat small mesenteric arteries. We suggest that NAGly activates an unknown Gi/o-coupled receptor, stimulating endothelial release of nitric oxide which in turn activates BKCa in the smooth muscle. In addition, NAGly might also activate BKCa through Gi/o- and nitric oxide-independent mechanisms.  相似文献   

11.

Background and Purpose

Ca2+ imaging reveals subcellular Ca2+ sparks and global Ca2+ waves/oscillations in vascular smooth muscle. It is well established that Ca2+ sparks can relax arteries, but we have previously reported that sparks can summate to generate Ca2+ waves/oscillations in unpressurized retinal arterioles, leading to constriction. We have extended these studies to test the functional significance of Ca2+ sparks in the generation of myogenic tone in pressurized arterioles.

Experimental Approach

Isolated retinal arterioles (25–40 μm external diameter) were pressurized to 70 mmHg, leading to active constriction. Ca2+ signals were imaged from arteriolar smooth muscle in the same vessels using Fluo4 and confocal laser microscopy.

Key Results

Tone development was associated with an increased frequency of Ca2+ sparks and oscillations. Vasomotion was observed in 40% of arterioles and was associated with synchronization of Ca2+ oscillations, quantifiable as an increased cross-correlation coefficient. Inhibition of Ca2+ sparks with ryanodine, tetracaine, cyclopiazonic acid or nimodipine, or following removal of extracellular Ca2+, resulted in arteriolar relaxation. Cyclopiazonic acid-induced dilatation was associated with decreased Ca2+ sparks and oscillations but with a sustained rise in the mean global cytoplasmic [Ca2+] ([Ca2+]c), as measured using Fura2 and microfluorimetry.

Conclusions and Implications

This study provides direct evidence that Ca2+ sparks can play an excitatory role in pressurized arterioles, promoting myogenic tone. This contrasts with the generally accepted model in which sparks promote relaxation of vascular smooth muscle. Changes in vessel tone in the presence of cyclopiazonic acid correlated more closely with changes in spark and oscillation frequency than global [Ca2+]c, underlining the importance of frequency-modulated signalling in vascular smooth muscle.  相似文献   

12.
The calcium-activated K+ (BKCa) channel is one of the potassium-selective ion channels that are present in the nervous and vascular systems. Ca2+ is the main regulator of BKCa channel activation. The BKCa channel contains two high affinity Ca2+ binding sites, namely, regulators of K+ conductance, RCK1 and the Ca2+ bowl. Lysophosphatidic acid (LPA, 1-radyl-2-hydroxy-sn-glycero-3-phosphate) is one of the neurolipids. LPA affects diverse cellular functions on many cell types through G protein-coupled LPA receptor subtypes. The activation of LPA receptors induces transient elevation of intracellular Ca2+ levels through diverse G proteins such as Gαq/11, Gαi, Gα12/13, and Gαs and the related signal transduction pathway. In the present study, we examined LPA effects on BKCa channel activity expressed in Xenopus oocytes, which are known to endogenously express the LPA receptor. Treatment with LPA induced a large outward current in a reversible and concentration-dependent manner. However, repeated treatment with LPA induced a rapid desensitization, and the LPA receptor antagonist Ki16425 blocked LPA action. LPA-mediated BKCa channel activation was also attenuated by the PLC inhibitor U-73122, IP3 inhibitor 2-APB, Ca2+ chelator BAPTA, or PKC inhibitor calphostin. In addition, mutations in RCK1 and RCK2 also attenuated LPA-mediated BKCa channel activation. The present study indicates that LPA-mediated activation of the BKCa channel is achieved through the PLC, IP3, Ca2+, and PKC pathway and that LPA-mediated activation of the BKCa channel could be one of the biological effects of LPA in the nervous and vascular systems.  相似文献   

13.

Aim:

To investigate the effects of docosahexaenoic acid (DHA) on large-conductance Ca2+-activated K+(BKCa) channels and voltage-dependent K+ (KV) channels in rat coronary artery smooth muscle cells (CASMCs).

Methods:

Rat CASMCs were isolated by an enzyme digestion method. BKCa and KV currents in individual CASMCs were recorded by the patch-clamp technique in a whole-cell configuration at room temperature. Effects of DHA on BKCa and KV channels were observed when it was applied at 10, 20, 30, 40, 50, 60, 70, and 80 μmol/L.

Results:

When DHA concentrations were greater than 10 μmol/L, BKCa currents increased in a dose-dependent manner. At a testing potential of +80 mV, 6.1%±0.3%, 76.5%±3.8%, 120.6%±5.5%, 248.0%±12.3%, 348.7%±17.3%, 374.2%±18.7%, 432.2%±21.6%, and 443.1%±22.1% of BKCa currents were increased at the above concentrations, respectively. The half-effective concentration (EC50) of DHA on BKCa currents was 37.53±1.65 μmol/L. When DHA concentrations were greater than 20 μmol/L, KV currents were gradually blocked by increasing concentrations of DHA. At a testing potential of +50 mV, 0.40%±0.02%, 1.37%±0.06%, 11.80%±0.59%, 26.50%±1.75%, 56.50%±2.89%, 73.30%±3.66%, 79.70%±3.94%, and 78.1%±3.91% of KV currents were blocked at the different concentrations listed above, respectively. The EC50 of DHA on KV currents was 44.20±0.63 μmol/L.

Conclusion:

DHA can activate BKCa channels and block KV channels in rat CASMCs, and the EC50 of DHA for BKCa channels is lower than that for KV channels; these findings indicate that the vasorelaxation effects of DHA on vascular smooth muscle cells are mainly due to its activation of BKCa channels.  相似文献   

14.

Aim:

To investigate whether resveratrol suppressed oxidative stress-induced arrhythmogenic activity and Ca2+ overload in ventricular myocytes and to explore the underlying mechanisms.

Methods:

Hydrogen peroxide (H2O2, 200 μmol/L)) was used to induce oxidative stress in rabbit ventricular myocytes. Cell shortening and calcium transients were simultaneously recorded to detect arrhythmogenic activity and to measure intracellular Ca2+ ([Ca2+]i). Ca2+/calmodulin-dependent protein kinases II (CaMKII) activity was measured using a CaMKII kit or Western blotting analysis. Voltage-activated Na+ and Ca2+ currents were examined using whole-cell recording in myocytes.

Results:

H2O2 markedly prolonged Ca2+ transient duration (CaTD), and induced early afterdepolarization (EAD)-like and delayed afterdepolarization (DAD)-like arrhythmogenic activity in myocytes paced at 0.16 Hz or 0.5 Hz. Application of resveratrol (30 or 50 μmol/L) dose-dependently suppressed H2O2-induced EAD-like arrhythmogenic activity and attenuated CaTD prolongation. Co-treatment with resveratrol (50 μmol/L) effectively prevented both EAD-like and DAD-like arrhythmogenic activity induced by H2O2. In addition, resveratrol markedly blunted H2O2-induced diastolic [Ca2+]i accumulation and prevented the myocytes from developing hypercontracture. In whole-cell recording studies, H2O2 significantly enhanced the late Na+ current (INa,L) and L-type Ca2+ current (ICa,L) in myocytes, which were dramatically suppressed or prevented by resveratrol. Furthermore, H2O2-induced ROS production and CaMKII activation were significantly prevented by resveratrol.

Conclusion:

Resveratrol protects ventricular myocytes against oxidative stress-induced arrhythmogenic activity and Ca2+ overload through inhibition of INa,L/ICa,L, reduction of ROS generation, and prevention of CaMKII activation.  相似文献   

15.
[Ca2+]i transients by reverse mode of cardiac Na+/Ca2+ exchanger (NCX1) were recorded in fura-2 loaded BHK cells with stable expression of NCX1. Repeated stimulation of reverse NCX1 produced a long-lasting decrease of Ca2+ transients (''rundown''). Rundown of NCX1 was independent of membrane PIP2 depletion. Although the activation of protein kinase C (PKC) was observed during the Ca2+ transients, neither a selective PKC inhibitor (calphostin C) nor a PKC activator (PMA) changed the degrees of rundown. By comparison, a non-specific PKC inhibitor, staurosporine (STS), reversed rundown in a dose-dependent and reversible manner. The action of STS was unaffected by pretreatment of the cells with calphostin C, PMA, or forskolin. Taken together, the results suggest that the stimulation of reverse NCX1 by STS is independent of PKC and/or PKA inhibition.  相似文献   

16.

BACKGROUND AND PURPOSE

The aim of this study was to clarify the mechanisms by which hydrogen sulphide (H2S) affects ion secretion across rat distal colonic epithelium.

EXPERIMENTAL APPROACH

Changes in short-circuit current induced by the H2S-donor, sodium hydrosulphide (NaHS; 10 mmol·L−1), were measured in Ussing chambers after permeabilization of the apical membrane with nystatin. Cytosolic Ca2+ concentration ([Ca2+]i) and Ca2+ in intracellular stores were measured with fluorescent dyes. Changes in mitochondrial membrane potential were estimated with rhodamine 123.

KEY RESULTS

NaHS had a biphasic effect on overall currents across the basolateral membrane: an initial inhibition followed by a secondary stimulation. Both a scilliroside-sensitive action on the Na+-K+-ATPase and modulation of glibenclamide-sensitive and tetrapentylammonium-sensitive (i.e. ATP-sensitive and Ca2+-dependent) basolateral K+ channels were involved in this action. Experiments with rhodamine 123 revealed that NaHS induced a hyperpolarization of the mitochondrial membrane. NaHS evoked a biphasic change in [Ca2+]i, an initial decrease followed by a secondary increase, known to be mediated by the release of stored Ca2+. Initial falls in [Ca2+]i were not mediated by a sequestration of Ca2+ in intracellular Ca2+ storing organelles, as the Mag-Fura-2 signal was unaffected by NaHS. Falls in [Ca2+]i were inhibited by 2′,4′-dichlorobenzamil, an inhibitor of the Na+-Ca2+-exchanger, and attenuated in Na+-free buffer, suggesting a transient stimulation of Ca2+ outflow by this transporter, directly demonstrated by Mn2+ quenching experiments.

CONCLUSIONS AND IMPLICATIONS

ATP-sensitive and Ca2+-dependent basolateral K+ conductances, the basolateral Na+-K+-pump as well as Ca2+ transporters were involved in the action of H2S in regulating colonic ion secretion.  相似文献   

17.

Background and purpose:

Ca2+-calmodulin (Ca2+CaM) is widely accepted as an inhibitor of cardiac ryanodine receptors (RyR2); however, the effects of physiologically relevant CaM concentrations have not been fully investigated.

Experimental approach:

We investigated the effects of low concentrations of Ca2+CaM (50–100 nmol·L−1) on the gating of native sheep RyR2, reconstituted into bilayers. Suramin displaces CaM from RyR2 and we have used a gel-shift assay to provide evidence of the mechanism underlying this effect. Finally, using suramin to displace endogenous CaM from RyR2 in permeabilized cardiac cells, we have investigated the effects of 50 nmol·L−1 CaM on sarcoplasmic reticulum (SR) Ca2+-release.

Key results:

Ca2+CaM activated or inhibited single RyR2, but activation was much more likely at low (50–100 nmol·L−1) concentrations. Also, suramin displaced CaM from a peptide of the CaM binding domain of RyR2, indicating that, like the skeletal isoform (RyR1), suramin directly competes with CaM for its binding site on the channel. Pre-treatment of rat permeabilized ventricular myocytes with suramin to displace CaM, followed by addition of 50 nmol·L−1 CaM to the mock cytoplasmic solution caused an increase in the frequency of spontaneous Ca2+-release events. Application of caffeine demonstrated that 50 nmol·L−1 CaM reduced SR Ca2+ content.

Conclusions and implications:

We describe for the first time how Ca2+CaM is capable, not only of inactivating, but also of activating RyR2 channels in bilayers in a CaM kinase II-independent manner. Similarly, in cardiac cells, CaM stimulates SR Ca2+-release and the use of caffeine suggests that this is a RyR2-mediated effect.  相似文献   

18.

Background and Purpose

Oestrogens can interact directly with membrane receptors and channels and can activate vascular BKCa channels. We hypothesized that novel oestrogen derivatives could relax smooth muscle by an extracllular effect on the α and β1 subunits of the BKCa channel, rather than at an intracellular site.

Experimental Approach

We studied the effects of novel oestrogens on the tension of pre-contracted isolated rat aortic rings, and on the electrophysiological properties of HEK 293 cells expressing the hSloα or hSloα+β1 subunits. Two of the derivatives incorporated a quaternary ammonium side-chain making them membrane impermeable.

Key Results

Oestrone, oestrone oxime and Quat DME-oestradiol relaxed pre-contracted rat aorta, but only Quat DME-oestradiol-induced relaxation was iberiotoxin sensitive. However, only potassium currents recorded in HEK 293 cells over-expressing both hSloα and hSloβ1 were activated by oestrone, oestrone oxime and Quat DME-oestradiol.

Conclusion and Implications

The novel oestrogens were able to relax smooth muscle, but through different mechanisms. In particular, oestrone oxime required the presence of the endothelium to exert much of its effect, whilst Quat DME-oestradiol depended both on NO and BKCa channel activation. The activation of BKCa currents in HEK 293 cells expressing hSloα+β1 by Quat DME-oestradiol is consistent with an extracellular binding site between the two subunits. The binding site resides between the extracellular N terminal of the α subunit and the extracellular loop between TM1 and 2 of the β1 subunit. Membrane-impermeant Quat DME-oestradiol lacks an exchangeable hydrogen on the A ring obviating antioxidant activity.  相似文献   

19.

BACKGROUND AND PURPOSE

The endocannabinoid anandamide (N-arachidonoyl ethanolamide; AEA) exerts negative inotropic and antiarrhythmic effects in ventricular myocytes.

EXPERIMENTAL APPROACH

Whole-cell patch-clamp technique and radioligand-binding methods were used to analyse the effects of anandamide in rat ventricular myocytes.

KEY RESULTS

In the presence of 1–10 μM AEA, suppression of both Na+ and L-type Ca2+ channels was observed. Inhibition of Na+ channels was voltage and Pertussis toxin (PTX) – independent. Radioligand-binding studies indicated that specific binding of [3H] batrachotoxin (BTX) to ventricular muscle membranes was also inhibited significantly by 10 μM metAEA, a non-metabolized AEA analogue, with a marked decrease in Bmax values but no change in Kd. Further studies on L-type Ca2+ channels indicated that AEA potently inhibited these channels (IC50 0.1 μM) in a voltage- and PTX-independent manner. AEA inhibited maximal amplitudes without affecting the kinetics of Ba2+ currents. MetAEA also inhibited Na+ and L-type Ca2+ currents. Radioligand studies indicated that specific binding of [3H]isradipine, was inhibited significantly by metAEA. (10 μM), changing Bmax but not Kd.

CONCLUSION AND IMPLICATIONS

Results indicate that AEA inhibited the function of voltage-dependent Na+ and L-type Ca2+ channels in rat ventricular myocytes, independent of CB1 and CB2 receptor activation.  相似文献   

20.

Aim:

Sustained pulmonary vasoconstriction as experienced at high altitude can lead to pulmonary hypertension (PH). The main purpose of this study is to investigate the vasorelaxant effect of echinacoside (ECH), a phenylethanoid glycoside from the Tibetan herb Lagotis brevituba Maxim and Cistanche tubulosa, on the pulmonary artery and its potential mechanism.

Methods:

Pulmonary arterial rings obtained from male Wistar rats were suspended in organ chambers filled with Krebs-Henseleit solution, and isometric tension was measured using a force transducer. Intracellular Ca2+ levels were measured in cultured rat pulmonary arterial smooth muscle cells (PASMCs) using Fluo 4-AM.

Results:

ECH (30–300 μmol/L) relaxed rat pulmonary arteries precontracted by noradrenaline (NE) in a concentration-dependent manner, and this effect could be observed in both intact endothelium and endothelium-denuded rings, but with a significantly lower maximum response and a higher EC50 in endothelium-denuded rings. This effect was significantly blocked by L-NAME, TEA, and BaCl2. However, IMT, 4-AP, and Gli did not inhibit ECH-induced relaxation. Under extracellular Ca2+-free conditions, the maximum contraction was reduced to 24.54%±2.97% and 10.60%±2.07% in rings treated with 100 and 300 μmol/L of ECH, respectively. Under extracellular calcium influx conditions, the maximum contraction was reduced to 112.42%±7.30%, 100.29%±8.66%, and 74.74%±4.95% in rings treated with 30, 100, and 300 μmol/L of ECH, respectively. After cells were loaded with Fluo 4-AM, the mean fluorescence intensity was lower in cells treated with ECH (100 μmol/L) than with NE.

Conclusion:

ECH suppresses NE-induced contraction of rat pulmonary artery via reducing intracellular Ca2+ levels, and induces its relaxation through the NO-cGMP pathway and opening of K+ channels (BKCa and KIR).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号