首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Recent emergence of exosomes as information carriers between cells has introduced us to a new previously unknown biological communication system. Multi‐directional cross‐talk mediated by exosomes carrying proteins, lipids and nucleic acids between normal cells, cells harbouring a pathogen or cancer and immune cells has been instrumental in determining outcomes of physiological as well as pathological conditions. Exosomes play a key role in the broad spectrum of human diseases. In cancer, tumour‐derived exosomes carry multiple immunoinhibitory signals, disable anti‐tumour immune effector cells and promote tumour escape from immune control. Exosomes delivering negative signals to immune cells in cancer, viral infections, autoimmune or other diseases may interfere with therapy and influence outcome. Exosomes can activate tissue cells to produce inhibitory factors and thus can suppress the host immune responses indirectly. Exosomes also promise to be non‐invasive disease biomarkers with a dual capability to provide insights into immune dysfunction as well as disease progression and outcome.  相似文献   

2.
肾脏疾病的发病率和死亡率在全球范围内呈上升趋势[1]。早发现、早干预和早治疗对改善预后至关重要。但目前临床广泛应用的血清肌酐和血尿素氮等指标受到的影响因素多,且缺乏足够的灵敏性。研究表明只有当肾小球滤过率降低50%以上时,血清肌酐水平才有明显上升.  相似文献   

3.
《Autoimmunity reviews》2019,18(6):607-614
Autoimmune diseases (ADs) are a broad spectrum of disorders featured by the body's immune responses being directed against its own tissues, resulting in prolonged inflammation and subsequent tissue damage. Recently, the exposure to ambient air pollution has been implicated in the occurrence and development of ADs. Mechanisms linking air pollution exposures and ADs mainly include systemic inflammation, increased oxidative stress, epigenetic modifications induced by exposures and immune response caused by airway damage. The lung may be an autoimmunity initiation site in autoimmune diseases (ADs). Air pollutants can bind to the Aryl hydrocarbon receptor (AHR) to regulate Th17 and Treg cells. Oxidative stress and inducible bronchus associated lymphoid tissue caused by the pollutants can influence T, B cells, resulting in the production of proinflammatory cytokines. These cytokines stimulate B cell and dendritic cells, resulting in a lot of antibodies and self-reactive T lymphocytes. Moreover, air pollutants may induce epigenetic changes to contribute to ADs. In this review, we will concern the associations between air pollution and immune–inflammatory responses, as well as mechanisms linking air pollution exposure and autoimmunity. In addition, we focus on the potential roles of air pollution in major autoimmune diseases including systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), multiple sclerosis (MS), and type 1 diabetes mellitus (T1DM).  相似文献   

4.
Many different cells produce and release membraneous microvesicles (MV) or exosomes into their microenvironment. Exosomes represent a specific subtype of secreted derived vesicles which are defined as homogenous vesicles of 30–100 nm lined by a lipid bilayer, which contain a specific set of proteins, lipids, and nucleic acids. There are clear evidences that they serve as important biological signals messengers and carriers in physiological as well as in pathological processes. Those derived from tumours (tumour‐derived exosomes, TD‐exosomes) function as protumourigenic factors that can mediate intercellular communication in the tumour microenvironment and also contribute to cancer progression. The main functions of exosomes in the cancer microenvironment include the following: promotion of primary cancer growth, stimulation of angiogenesis, activation of stromal fibroblasts, sculpting the cancer ECM, generation of a premetastatic niche and suppression of host immune response. Exosomes have recently emerged as potentially promising diagnostic and prognostic biomarkers in cancer and other diseases. This article is a summary of information about the structure and origin of exosomes and also indicates the importance of exosomes and microRNAs in lung cancer. The role of exosomes in NSCLC is little known, and its explanation requires thorough research.  相似文献   

5.
Many autoimmune diseases (ADs) share similar underlying pathology and have a tendency to cluster within families, supporting the involvement of shared susceptibility genes. To date, most of the genetic variants associated with systemic lupus erythematosus (SLE) susceptibility also show association with others ADs. ITGAM and its associated 'predisposing' variant (rs1143679, Arg77His), predicted to alter the tertiary structures of the ligand-binding domain of ITGAM, may play a key role for SLE pathogenesis. The aim of this study is to examine whether the ITGAM variant is also associated with other ADs. We evaluated case-control association between rs1143679 and ADs (N=18,457) including primary Sj?gren's syndrome, systemic sclerosis, multiple sclerosis, rheumatoid arthritis, juvenile idiopathic arthritis, celiac disease, and type-1 diabetes. We also performed meta-analyses using our data in addition to available published data. Although the risk allele 'A' is relatively more frequent among cases for each disease, it was not significantly associated with any other ADs tested in this study. However, the meta-analysis for systemic sclerosis was associated with rs1143679 (p(meta)=0.008). In summary, this study explored the role of ITGAM in general autoimmunity in seven non-lupus ADs, and only found association for systemic sclerosis when our results were combined with published results. Thus ITGAM may not be a general autoimmunity gene but this variant may be specifically associated with SLE and systemic sclerosis.  相似文献   

6.
Autoimmune diseases (ADs) are a spectrum of diseases originating from loss of immunologic self-tolerance and T cell abnormal autoreactivity, causing organ damage and death. However, the pathogenic mechanism of ADs remains unclear. The current treatments of ADs include nonsteroidal anti-inflammatory drugs (NSAIDS), antimalarials, corticosteroids, immunosuppressive drugs, and biological therapies. With the need to prevent side effects resulting from current treatments and acquire better clinical remission, developing a novel pharmaceutical treatment is extremely urgent. The concept of T cell vaccination (TCV) has been raised as the finding that immunization with attenuated autoreactive T cells is capable of inducing T cell-dependent inhibition of autoimmune responses. TCV may act as an approach to control unwanted adaptive immune response through eliminating the autoreactive T cells. Over the past decades, the effect of TCV has been justified in several animal models of autoimmune diseases including experimental autoimmune encephalomyelitis (EAE), murine autoimmune diabetes in nonobese diabetic (NOD) mice, collagen-induced arthritis (CIA), and so on. Meanwhile, clinical trials of TCV have confirmed the safety and efficacy in corresponding autoimmune diseases ranging from multiple sclerosis (MS) to systemic lupus erythematosus (SLE). This review aims to summarize the ongoing experimental and clinical trials and elucidate possible molecule mechanisms of TCV.  相似文献   

7.
《Autoimmunity reviews》2022,21(12):103210
Autoimmune diseases (ADs) are a broad range of disorders which are characterized by long-term inflammation and tissue damage arising from an immune response against one's own tissues. It is now widely accepted that the causes of ADs include environmental factors, genetic susceptibility and immune dysregulation. However, the exact etiology of ADs has not been fully elucidated to date. Because observational studies are plagued by confounding factors and reverse causality, no firm conclusions can be drawn about the etiology of ADs. Over the years, Mendelian randomization (MR) analysis has come into focus, offering unique perspectives and insights into the etiology of ADs and promising the discovery of potential therapeutic interventions. In MR analysis, genetic variation (alleles are randomly dispensed during meiosis, usually irrespective of environmental or lifestyle factors) is used instead of modifiable exposure to explore the link between exposure factors and disease or other outcomes. Therefore, MR analysis can provide a valuable method for exploring the causal relationship between different risk factors and ADs when its inherent assumptions and limitations are fully considered. This review summarized the recent findings of MR in major ADs, including systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), multiple sclerosis (MS), and type 1 diabetes mellitus (T1DM), focused on the effects of different risk factors on ADs risks. In addition, we also discussed the opportunities and challenges of MR methods in ADs research.  相似文献   

8.
Interest in the role of extracellular vesicles in various diseases including cancer has been increasing. Extracellular vesicles include microvesicles, exosomes, apoptotic bodies, and argosomes, and are classified by size, content, synthesis, and function. Currently, the best characterized are exosomes and microvesicles. Exosomes are small vesicles (40-100 nm) involved in intercellular communication regardless of the distance between them. They are found in various biological fluids such as plasma, serum, and breast milk, and are formed from multivesicular bodies through the inward budding of the endosome membrane. Microvesicles are 100-1000 nm vesicles released from the cell by the outward budding of the plasma membrane. The therapeutic potential of extracellular vesicles is very broad, with applications including a route of drug delivery and as biomarkers for diagnosis. Extracellular vesicles extracted from stem cells may be used for treatment of many diseases including kidney diseases. This review highlights mechanisms of synthesis and function, and the potential uses of well-characterized extracellular vesicles, mainly exosomes, with a special focus on renal functions and diseases.  相似文献   

9.
《Autoimmunity reviews》2023,22(4):103289
Cluster of differentiation 38 (CD38) is a multifunctional cell surface protein involved in nicotinamide adenine dinucleotide (NAD+) homeostasis in types of cells and tissues, which can be found in many immune cells and non-immune cells. Previous studies have shown that CD38 plays an important role in regulating innate immunity. Recently, many studies have revealed the importance of CD38 in autoimmune diseases, such as rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), multiple sclerosis (MS), type 1 diabetes (T1D) and inflammatory bowel disease, among others. In this report, we will briefly discuss the complex immunological functions of CD38 and focus on recent advances in the role of CD38 in the development and pathogenesis of autoimmune diseases, as well as their potential as therapeutic targets for systemic diseases, intending to make a comprehensive understanding of CD38 and its promising therapeutic potential in these systemic diseases.  相似文献   

10.
外泌体是一类直径介于30~100 nm之间的胞外囊泡,包含多种蛋白质、核酸与脂类成分,可由大多数细胞分泌.外泌体在细胞间通讯中发挥着重要作用.越来越多的研究表明,外泌体可通过多种途径将其内含物运送至受体细胞,进而调控受体细胞的功能,特别是促进肿瘤细胞的生长与转移,但其中的机制尚未完全清楚.同时,凭借其传递特性,外泌体在运载药物与肿瘤诊断方面也具有巨大潜能.本综述主要介绍外泌体的基本概况及其与肿瘤发展相关的最新进展,为肿瘤的诊疗提供新的靶点与方向.  相似文献   

11.
《Autoimmunity reviews》2019,18(6):593-606
Systemic vasculitis is diverse group of autoimmune disorders which are characterized by inflammation of blood vessel walls with deep aching and burning pain. Their underlying etiology and pathophysiology still remain poorly understood. Extracellular vesicles (EVs), including exosomes, microvesicles (MVs), and apoptotic bodies, are membrane vesicular structures that are released either during cell activation, or when cells undergo programmed cell death, including apoptosis, necroptosis, and pyroptosis. Although EVs were thought as cell dusts, but now they have been found to be potently active since they harbor bioactive molecules, such as proteins, lipids, nucleic acids, or multi-molecular complexes. EVs can serve as novel mediators for cell-to-cell communications by delivery bioactive molecules from their parental cells to the recipient cells. Earlier studies mainly focused on MVs budding from membrane surface. Recent studies demonstrated that EVs may also carry molecules from cytoplasm or even from nucleus of their parental cells, and these EVs may carry autoantigens and are important in vasculitis. EVs may play important roles in vasculitis through their potential pathogenic involvements in inflammation, autoimmune responses, procoagulation, endothelial dysfunction/damage, angiogenesis, and intimal hyperplasia. EVs have also been used as specific biomarkers for diagnostic use or disease severity monitoring. In this review, we have focused on the aspects of EV biology most relevant to the pathogenesis of vasculitis, discussed their perspective insights, and summarized the exist literature on EV relevant studies in vasculitis, therefore provides an integration of current knowledge regarding the novel role of EVs in systemic vasculitis.  相似文献   

12.
The study of free light chains (FLCs) has grown as area of enormous interest for many clinicians with the aim of disclosing the exact biological role and potential use of FLCs in the clinical routine. Moreover, the attention given to immunological functions of FLCs has sparked a new light into their pathogenic contribution in different chronic autoimmune-based inflammatory diseases. The release of intracellular antigens following cell death or ineffective clearance of apoptotic debris, modification of self-antigens, and molecular mimicry may trigger the production of immunoglobulins after activation and polyclonal expansion of B cells, by which FLCs are released. The discovery of polyclonal FLCs as potential biomarkers started with the observation of their increased concentrations in a variety of biological fluids related to patients with autoimmune diseases. This review deals with the use of polyclonal FLCs for identifying severity and monitoring outcome after treatment in some autoimmune diseases, namely systemic lupus erythematosus, myasthenia gravis, systemic sclerosis, rheumatoid arthritis and Sjögren's syndrome, as supported by the fact that levels of FLCs correlate with both B cell activation markers and other specific markers of disease activity. In a near future, following the evidence shown, FLCs might probably work as early prognostic markers of severity and also as indicators of response to treatment or early assessment of relapse in selected autoimmune diseases.  相似文献   

13.
Hu  Jinhui  Xie  Qiuhua  Wang  JingYi  Xu  Fengxia  Liu  Peng  Wang  Zhicheng 《Immunologic research》2022,70(4):518-529

Increasing evidences show that circRNAs are associated with some autoimmunity diseases either as a biomarker or therapeutic target. Exosomes containing nucleic acids and proteins are found in sera of series diseases and could serve as either diagnostic or therapeutic target. ANA serves as first common diagnostic test for autoimmunity disease, different ANA staining reflecting different types of autoimmunity disease. Till now, whether different ANA sera exosomes express different circRNAs and relevant ceRNA networks are still shortage of investigation. This study analyzed circRNAs, miRNAs, and their interaction networks in different ANA sera exosomes by high-throughput sequencing. It found no significant difference of total circRNAs and miRNAs amount across different ANA sera exosomes. However, significant differences were found of circRNAs, miRNA constituents, function analysis by KEGG and GO, and their ceRNA networks including miRNA-circRNA and miRNA-mRNA among different ANA sera exosomes, suggesting sera exosome circRNAs as either biomarker or mechanism of autoimmunity diseases.

  相似文献   

14.
Cancer cells, both in vivo and in vitro, have been demonstrated to release membranous structures, defined as microvesicles or exosomes, consisting of an array of macromolecules derived from the originating cells, including proteins, lipids, and nucleic acids. While only recently have the roles of these vesicular components in intercellular communication become elucidated, significant evidence has demonstrated that tumor exosomes can exert a broad array of detrimental effects on the immune system—ranging from apoptosis of activated cytotoxic T cells to impairment of monocyte differentiation into dendritic cells, to induction of myeloid-suppressive cells and T regulatory cells. Immunosuppressive exosomes of tumor origin can be found within neoplastic lesions and in biologic fluids from cancer patients, implying a potential role of these pathways in in vivo tumor progression and systemic paraneoplastic syndromes. Through the expression of molecules involved in angiogenesis promotion, stromal remodeling, signaling pathway activation through growth factor/receptor transfer, chemoresistance, and genetic intercellular exchange, tumor exosomes could represent a central mediator of the tumor microenvironment. By understanding the nature of these tumor-derived exosomes/microvesicles and their roles in mediating cancer progression and modulating the host immune response will significantly impact therapeutic approaches targeting exosomes.  相似文献   

15.
文题释义:外泌体:是直径在30-120 nm的封闭脂质囊泡,属于多泡体分泌的细胞外囊泡。多种细胞在生理或病理情况下都能分泌外泌体。外泌体作为细胞间重要信息交流工具,在新型组织修复、疾病治疗与诊断领域有重要的前景。 间充质干细胞:是中胚层的一种多能干细胞,具有自我更新、向多种间充质系列细胞(如成骨、成软骨及成脂肪细胞等)或非间充质系列细胞分化、分泌细胞因子和细胞外囊泡、免疫调节、来源广泛等特点,被广泛用于组织修复研究。 背景:由于血脑屏障的存在,大分子药物无法通过血脑屏障进入脑部组织发挥药效,导致很多神经系统疾病、神经退行性疾病无法得到有效的治疗。近年来研究发现间充质干细胞外泌体以其体积微小、可装载脂质、蛋白、核酸等信号物质的特点,对脑血管病、阿尔茨海默症、癫痫、脊髓损伤等疾病具有组织修复的功效,逐渐成为治疗神经系统疾病的重要工具。 目的:从宏观与微观角度对间充质干细胞外泌体在神经系统疾病修复过程中的作用进行分析总结,并提出在外泌体基础研究和临床试验中存在的问题和注意事项。 方法:以“exosomes,extracellular vesicles,MSCs,mesenchymal stem cells,neurodegenerative diseases”为英文检索词,通过计算机检索PubMed数据库,纳入描述间充质干细胞来源外泌体的特性及修复作用的文章,排除重复与不相关文章,最终整理出35篇文献进行综述。 结果与结论:间充质干细胞外泌体具有易穿过血脑屏障、携带丰富的信号物质等生物学特点,在动物疾病模型中发挥重要作用,如抗炎、促进神经元生长、维持神经元数量、促进神经突重塑等;经过修饰后的外泌体可发挥比天然外泌体更有效的组织修复功能,可作为分子药物载体应用于特定的神经系统疾病治疗中。 ORCID: 0000-0002-1791-666X(高振橙) 中国组织工程研究杂志出版内容重点:干细胞;骨髓干细胞;造血干细胞;脂肪干细胞;肿瘤干细胞;胚胎干细胞;脐带脐血干细胞;干细胞诱导;干细胞分化;组织工程  相似文献   

16.
Exosomes are a subtype of membrane vesicle released from the endocytic compartment of live cells. They play an important role in endogenous cell-to-cell communication. Previously shown to be capable of traversing biological barriers and to naturally transport functional nucleic acids between cells, they potentially represent a novel and exciting drug delivery vehicle for the field of gene therapy. Existing delivery vehicles are limited by concerns regarding their safety, toxicity and efficacy. In contrast, exosomes, as a natural cell-derived nanocarrier, are immunologically inert if purified from a compatible cell source and possess an intrinsic ability to cross biological barriers. Already utilised in a number of clinical trials, exosomes appear to be well-tolerated, even following repeat administration. Recent studies have shown that exosomes may be used to encapsulate and protect exogenous oligonucleotides for delivery to target cells. They therefore may be valuable for the delivery of RNA interference and microRNA regulatory molecules in addition to other singlestranded oligonucleotides. Prior to clinical translation, this nanotechnology requires further development by refinement of isolation, purification, loading, delivery and targeting protocols. Thus, exosome-mediated nanodelivery is highly promising and may fill the void left by current delivery methods for systemic gene therapy.  相似文献   

17.
NLRP3, a member of nucleotide-binding domain-(NOD) like receptor family, can be found in large varieties of immune and non-immune cells. Upon activation, the NLRP3, apoptosis-associated speck-like protein (ASC) and pro-caspase-1 would assemble into a multimeric protein, called the NLRP3 inflammasome. Then the inflammasome promotes inflammation (through specific cleavage and production of bioactive IL-1β and IL-18) and pyroptotic cell death. Previous studies have indicated the importance of NLRP3 in regulating innate immunity. Recently, numerous studies have revealed their significance in autoimmune diseases, such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), systemic sclerosis (SSc) and inflammatory bowel disease (IBD). In this review, we will briefly discuss the biological features of NLRP3 and summarize the recent progression of the involvement of NLRP3 in the development and pathogenesis of autoimmune diseases, as well as its clinical implications and therapeutic potential.  相似文献   

18.
《Autoimmunity reviews》2013,12(1):22-30
As soon as autoinflammatory diseases (AIDs) emerged as new entities, they have been linked to the well known world of autoimmunity. In fact, AIDs and systemic autoimmune diseases (ADs), share some characteristics: they start with the prefix “auto” to define a pathological process directed against self; they are systemic diseases, frequently involving musculoskeletal system; both include monogenic and polygenic diseases. From the pathogenetic point of view, they are characterized by a chronic activation of immune system, which eventually leads to tissue inflammation in genetically predisposed individuals. Nevertheless, the specific effectors of the damage are different in the two groups of diseases: in AIDs the innate immune system directly causes tissue inflammation, whereas in ADs the innate immune system activates the adaptive immune system which, in turn, is responsible for the inflammatory process.Mutations in inflammasome-related proteins, particularly in NOD-like receptor (NLR) genes, have been strongly associated to the occurrence of AIDs, whereas the link between inflammasome and ADs is less clear. However, a role for this multiprotein-complex in some ADs can be postulated, since a wide spectrum of endogenous danger signals can activate NLRs and inflammasome products, including IL-1ß, can activate adaptive immunity. An association between single nucleotide polymorphisms (SNPs) localized in the inflammasome gene NLRP1 and systemic lupus erythematosus has recently been reported.AIDs and ADs are currently subdivided into two different groups, but looking at their similarities they might be considered as a single group of diseases with a large immune pathological and clinical spectrum which includes at one end pure ADs and at the other end pure AIDs.  相似文献   

19.
The importance of extracellular vesicles (EVs) in cell-cell communication has long been recognized due to their ability to transfer important cellular cargoes such as DNA, mRNA, miRNAs, and proteins to target cells. Compelling evidence supports the role of EVs in the horizontal transfer of cellular material which has the potential to influence normal cellular physiology and promote various disease states. Of the different types of EVs, exosomes have garnered much attention in the past decade due to their abundance in various biological fluids and ability to affect multiple organ systems. The main focus of this review will be on cancer and how cancer-derived exosomes are important mediators of metastasis, angiogenesis, immune modulation, and the tumor macro-/microenvironment. We will also discuss exosomes as potential biomarkers for cancers due to their abundance in biological fluids, ease of uptake, and cellular content. Exosome use in diagnosis, prognosis, and in establishing treatment regimens has enormous potential to revolutionize patient care.  相似文献   

20.
Exosomes, 60–90-nm-sized vesicles, are produced by a large number of cell types, including tumor cells, neurons, astrocytes, hemocytes, intestinal epithelial cells, and so on. Dendritic cell (DC), the most potent professional antigen-presenting cell in the immune system, produces exosomes in the course of maturation. Mature DCs produce exosomes with the ability to elicit potent immunoactivation, resulting in tumor eradication and bacterial or virus elimination. Given the notion that exosomes are stable and easy to be modified artificially, autologous mature DC-derived exosomes have been vaccinated into patients with malignant diseases. In clinical trials utilizing exosomes as therapeutic approaches, researchers observed considerable curative effect with little side effect. However, immature or suppressive DC-derived exosomes harbor anti-inflammatory properties distinct from mature DC-derived exosomes. In murine models of autoimmune disease and transplantation, immature DC-derived exosomes reduced T cell-dependent immunoactivation, relieved clinical manifestation of autoimmune disease, and prolonged survival time of transplantation. Although the exact mechanism of how immature DC-derived exosomes function in vivo is still unclear, and there are no clinical trials regarding application of exosome vaccine into patients with autoimmune disease, we will analyze the promise of immature DC-derived exosomes as a subcellular vaccine in autoimmunity in this review.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号