首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 710 毫秒
1.
This study analyzed the performance evaluation of alkali-activated composites (AAC) with an alkali-sulfate activator and determined the expected effects of applying AACs to actual sites. Results revealed that when the binder weight was increased by 100 kg/m3 at 7 days of age, the homogel strength of ordinary Portland cement (OPC) and AAC increased by 0.9 and 5.0 MPa, respectively. According to the analysis of the matrix microstructures at 7 days of age, calcium silicate hydrates (C–S–H, Ca1.5SiO3.5·H2O) and ettringite (Ca6Al2(SO4)3(OH)12·26H2O) were formed in AAC, which are similar hydration products as found in OPC. Furthermore, the acid resistance analysis showed that the mass change of AAC in HCl and H2SO4 solutions ranged from 36.1% to 88.0%, lower than that of OPC, indicating AAC’s superior acid resistance. Moreover, the OPC and AAC binder weight ranges satisfying the target geltime (20–50 s) were estimated as 180.1–471.1 kg/m3 and 261.2–469.9 kg/m3, respectively, and the global warming potential (GWP) according to binder weight range was 102.3–257.3 kg CO2 eq/m3 and 72.9–126.0 kg CO2 eq/m3. Therefore, by applying AAC to actual sites, GWP is expected to be 29.5 (28.8%)–131.3 (51.0%) kg CO2 eq/m3 less than that of OPC.  相似文献   

2.
Global silicate weathering drives long-time-scale fluctuations in atmospheric CO2. While tectonics, climate, and rock-type influence silicate weathering, it is unclear how these factors combine to drive global rates. Here, we explore whether local erosion rates, GCM-derived dust fluxes, temperature, and water balance can capture global variation in silicate weathering. Our spatially explicit approach predicts 1.9–4.6 × 1013 mols of Si weathered globally per year, within a factor of 4–10 of estimates of global silicate fluxes derived from riverine measurements. Similarly, our watershed-based estimates are within a factor of 4–18 (mean of 5.3) of the silica fluxes measured in the world's ten largest rivers. Eighty percent of total global silicate weathering product traveling as dissolved load occurs within a narrow range (0.01–0.5 mm/year) of erosion rates. Assuming each mol of Mg or Ca reacts with 1 mol of CO2, 1.5–3.3 × 108 tons/year of CO2 is consumed by silicate weathering, consistent with previously published estimates. Approximately 50% of this drawdown occurs in the world's active mountain belts, emphasizing the importance of tectonic regulation of global climate over geologic timescales.  相似文献   

3.
The advanced tendencies in building materials development are related to the design of cement composites with a reduced amount of Portland cement, contributing to reduced CO2 emissions, sustainable development of used non-renewal raw materials, and decreased energy consumption. This work deals with water cured for 28 and 120 days cement composites: Sample A—reference (white Portland cement + sand + water); Sample B—white Portland cement + marble powder + water; and Sample C white Portland cement + marble powder + polycarboxylate-based water reducer + water. By powder X-ray diffraction and FTIR spectroscopy, the redistribution of CO32−, SO42−, SiO44−, AlO45−, and OH (as O-H bond in structural OH anions and O-H bond belonging to crystal bonded water molecules) from raw minerals to newly formed minerals have been studied, and the scheme of samples hydration has been defined. By thermal analysis, the ranges of the sample’s decomposition mechanisms were distinct: dehydration, dehydroxylation, decarbonation, and desulphuration. Using mass spectroscopic analysis of evolving gases during thermal analysis, the reaction mechanism of samples thermal decomposition has been determined. These results have both practical (architecture and construction) and fundamental (study of archaeological artifacts as ancient mortars) applications.  相似文献   

4.
There is a pressing need to verify air pollutant and greenhouse gas emissions from anthropogenic fossil energy sources to enforce current and future regulations. We demonstrate the feasibility of using simultaneous remote sensing observations of column abundances of CO2, CO, and NO2 to inform and verify emission inventories. We report, to our knowledge, the first ever simultaneous column enhancements in CO2 (3–10 ppm) and NO2 (1–3 Dobson Units), and evidence of δ13CO2 depletion in an urban region with two large coal-fired power plants with distinct scrubbing technologies that have resulted in ∆NOx/∆CO2 emission ratios that differ by a factor of two. Ground-based total atmospheric column trace gas abundances change synchronously and correlate well with simultaneous in situ point measurements during plume interceptions. Emission ratios of ∆NOx/∆CO2 and ∆SO2/∆CO2 derived from in situ atmospheric observations agree with those reported by in-stack monitors. Forward simulations using in-stack emissions agree with remote column CO2 and NO2 plume observations after fine scale adjustments. Both observed and simulated column ∆NO2/∆CO2 ratios indicate that a large fraction (70–75%) of the region is polluted. We demonstrate that the column emission ratios of ∆NO2/∆CO2 can resolve changes from day-to-day variation in sources with distinct emission factors (clean and dirty power plants, urban, and fires). We apportion these sources by using NO2, SO2, and CO as signatures. Our high-frequency remote sensing observations of CO2 and coemitted pollutants offer promise for the verification of power plant emission factors and abatement technologies from ground and space.Trace gas [nitrogen oxides (NOx), sulfur dioxide (SO2), and carbon monoxide (CO)] and carbon dioxide (CO2) emissions from anthropogenic fossil energy production are major contributors to air pollution and global warming. Under the Clean Air Act, in the United States these emissions are considered a threat to public health and welfare and are regulated by the Environmental Protection Agency (EPA). Although reporting requirements for air pollutants are well established, they are still under development for CO2. Reported inventories of CO2 and pollutant gases are calculated for specific activities using emission factors that depend on fuel composition, combustion efficiency, and scrubbing methods. These bottom–up inventories are subject to significant uncertainties and manipulations (1). Alternatively, atmospheric observations offer an independent top–down method to verify emissions of pollutant trace gases that have low atmospheric background levels and exhibit large and distinct increases near various combustion sources. For example, satellite observations of NO2 have been used to evaluate regional and local emissions (2), but they are only useful for trend analysis, because their large observational footprint can underestimate NO2. In contrast, background levels of CO2 are high with significant variability, making source attribution and verification by direct CO2 measurements elusive (3), limiting our ability to develop an effective global climate treaty or carbon-trading scheme (4). We postulate that measurements of coemitted trace gases and isotopic composition can be used to isolate anthropogenic CO2 emissions and identify contributions from specific sectors with distinct composition (trace gas-to-CO2 emission ratios, ERX = X/CO2, or isotopic ratio 13CO2/12CO2). We hypothesize that remote column trace gas measurements over large scales, which are less sensitive to small-scale variability from meteorology than in situ point surface measurements, can provide a more precise method for identifying trends in emissions and emission factors (5). We evaluate this method by using extensive ground-based in situ and remote observations, and forward modeling using reported in-stack emissions at a site with large power plant emissions of CO2 and pollutants.  相似文献   

5.
Bicarbonate transporters are regulated by signaling molecules/ions such as protein kinases, ATP, and Ca2+. While phospholipids such as PIP2 can stimulate Na-H exchanger activity, little is known about phospholipid regulation of bicarbonate transporters. We used the patch-clamp technique to study the function and regulation of heterologously expressed rat NBCe1-A in excised macropatches from Xenopus laevis oocytes. Exposing the cytosolic side of inside-out macropatches to a 5% CO2/33 mM HCO3 solution elicited a mean inward current of 14 pA in 74% of macropatches attached to pipettes (−Vp = −60 mV) containing a low-Na+, nominally HCO3-free solution. The current was 80–90% smaller in the absence of Na+, approximately 75% smaller in the presence of 200 μM DIDS, and absent in macropatches from H2O-injected oocytes. NBCe1-A currents exhibited time-dependent rundown that was inhibited by removing Mg2+ in the presence or absence of vanadate and F to reduce general phosphatase activity. Applying 5 or 10 μM PIP2 (diC8) in the presence of HCO3 induced an inward current in 54% of macropatches from NBC-expressing, but not H2O-injected oocytes. PIP2-induced currents were HCO3-dependent and somewhat larger following more NBCe1-A rundown, 62% smaller in the absence of Na+, and 90% smaller in the presence of 200 μM DIDS. The polycation neomycin (250–500 μM) reduced the PIP2-induced inward current by 69%; spermine (100 μM) reduced the current by 97%. Spermine, poly-D-lysine, and neomycin all reduced the baseline HCO3-induced inward currents by as much as 85%. In summary, PIP2 stimulates NBCe1-A activity, and phosphoinositides are regulators of bicarbonate transporters.  相似文献   

6.
Introducing CO2 electrochemical conversion technology to the iron-making blast furnace not only reduces CO2 emissions, but also produces H2 as a byproduct that can be used as an auxiliary reductant to further decrease carbon consumption and emissions. With adequate H2 supply to the blast furnace, the injection of H2 is limited because of the disadvantageous thermodynamic characteristics of the H2 reduction reaction in the blast furnace. This paper presents thermodynamic analysis of H2 behaviour at different stages with the thermal requirement consideration of an iron-making blast furnace. The effect of injecting CO2 lean top gas and CO2 conversion products H2–CO gas through the raceway and/or shaft tuyeres are investigated under different operating conditions. H2 utilisation efficiency and corresponding injection volume are studied by considering different reduction stages. The relationship between H2 injection and coke rate is established. Injecting 7.9–10.9 m3/tHM of H2 saved 1 kg/tHM coke rate, depending on injection position. Compared with the traditional blast furnace, injecting 80 m3/tHM of H2 with a medium oxygen enrichment rate (9%) and integrating CO2 capture and conversion reduces CO2 emissions from 534 to 278 m3/tHM. However, increasing the hydrogen injection amount causes this iron-making process to consume more energy than a traditional blast furnace does.  相似文献   

7.
In order to realize high-value utilization of calcium silicon slag (CSS) and silica fume (SF), the dynamic hydrothermal synthesis experiments of CSS and SF were carried out under different hydrothermal synthesis temperatures. In addition, phase category, microstructure, and micropore parameters of the synthesis product were analyzed through testing methods of XRD, SEM, EDS and micropore analysis. The results show that the main mechanism of synthesis reaction is that firstly β-Dicalcium silicate, the main mineral in CSS, hydrates to produce amorphous C–S–H and Ca(OH)2, and the environment of system is induced to strong alkaline. Therefore, the highly polymerized Si-O bond of SF is broken under the polarization of OH to form (SiO4) of Q0. Next, amorphous C–S–H, Ca(OH)2 and (SiO4) of Q0 react each other to gradually produce various of calcium silicate minerals. With an increase of synthesis temperature, the crystal evolution order for calcium silicate minerals is cocoon-like C–S–H, mesh-like C–S–H, large flake-like gyrolite, small flake-like gyrolite, petal-like gyrolite, square flake-like calcium silicate hydroxide hydrate, and strip-like tobermorite. In addition, petal-like calcium silicate with high average pore volume (APV), specific surface area (SSA) and low average pore diameter (APD) can be prepared under the 230 °C synthesis condition.  相似文献   

8.
The diffusion of sulfate (SO42−) and chloride (Cl) ions from rivers, salt lakes and saline soil into reinforced concrete is one of the main factors that contributes to the corrosion of steel reinforcing bars, thus reducing their mechanical properties. This work experimentally investigated the corrosion process involving various concentrations of NaCl-Na2SO4 leading to the coupled erosion of concrete. The appearance, weight, and mechanical properties of the concrete were measured throughout the erosion process, and the Cl and SO42− contents in concrete were determined using Cl rapid testing and spectrophotometry, respectively. Scanning electron microscopy, energy spectrometry, X-ray diffractometry, and mercury porosimetry were also employed to analyze microstructural changes and complex mineral combinations in these samples. The results showed that with higher Na2SO4 concentration and longer exposure time, the mass, compressive strength, and relative dynamic elastic modulus gradually increased and large pores gradually transitioned to medium and small pores. When the Na2SO4 mass fraction in the salt solution was ≥10 wt%, there was a downward trend in the mechanical properties after exposure for a certain period of time. The Cl diffusion rate was thus related to Na2SO4 concentration. When the Na2SO4 mass fraction in solution was ≤5 wt% and exposure time short, SO42− and cement hydration/corrosion products hindered Cl migration. In a concentrated Na2SO4 environment (≥10 wt%), the Cl diffusion rate was accelerated in the later stages of exposure. These experiments further revealed that the Cl migration rate was higher than that of SO42−.  相似文献   

9.
Energy-storing artificial-photosynthetic systems for CO2 reduction must derive the reducing equivalents from a renewable source rather than from sacrificial donors. To this end, a homogeneous, integrated chromophore/two-catalyst system is described that is thermodynamically capable of photochemically driving the energy-storing reverse water–gas shift reaction (CO2 + H2 → CO + H2O), where the reducing equivalents are provided by renewable H2. The system consists of the chromophore zinc tetraphenylporphyrin (ZnTPP), H2 oxidation catalysts of the form [CpRCr(CO)3], and CO2 reduction catalysts of the type Re(bpy-4,4′-R2)(CO)3Cl. Using time-resolved spectroscopic methods, a comprehensive mechanistic and kinetic picture of the photoinitiated reactions of mixtures of these compounds has been developed. It has been found that absorption of a single photon by broadly absorbing ZnTPP sensitizes intercatalyst electron transfer to produce the substrate-active forms of each. The initial photochemical step is the heretofore unobserved reductive quenching of the low-energy T1 state of ZnTPP. Under the experimental conditions, the catalytically competent state decays with a second-order half-life of ∼15 μs, which is of the right magnitude for substrate trapping of sensitized catalyst intermediates.The inexorable growth of global energy consumption and concern over its attendant environmental consequences has spurred considerable research into developing means to store solar energy in the form of renewable chemical fuels (1, 2). Among the potential feedstocks for these solar fuels, CO2 is a desirable target because it is the end product of the combustion of fossil fuels. Thus, developing solar-driven mechanisms for chemically reducing CO2 to energy-rich products holds the potential to recycle conventional fuels and mitigate their carbon impact (37).Numerous studies over the past 30 y have investigated homogeneous artificial-photosynthetic systems for CO2 reduction, in which a photoexcited chromophore accomplishes the transfer of electrons from a source of reducing equivalents to a CO2 reduction catalyst (814). With very rare exceptions (15), the reducing equivalents consumed in these photochemical CO2 reduction reactions have been supplied by sacrificial electron donors. These reagents are used because their prompt decomposition following photoinitiated oxidation suppresses unproductive back-electron-transfer pathways, which are generally fast compared with substrate transformation, and because their decomposition products can provide additional reducing equivalents needed for some CO2 reduction reactions, thus circumventing the one-photon/one-electron limit of molecular photosensitizers. Offsetting these practical advantages, however, is the fact that the stoichiometric consumption of conventional sacrificial donors in these reactions negates their energy-storing potential. In order for homogeneous systems to drive CO2 reduction reactions that store energy, these sacrificial reagents must be replaced by a second catalytic cycle that extracts the reducing equivalents from a renewable source (16).Neumann and coworkers recently reported a photochemical system for the reduction of CO2 to CO in which the reducing equivalents are derived from the oxidation of H2 by colloidal platinum (15). This system, which contains a [ReI(phen)(CO)3L]+ (phen is 1,10-phenanthroline) CO2 reduction catalyst linked with a polyoxometalate cluster, drives the reverse water–gas-shift reaction (RWGS) (CO2 + H2 → CO + H2O), using light as the energy source, via the reactions shown in Eqs. 13. Unlike photochemical reactions that consume sacrificial donors, this energy-storing system [ΔHf = 41.2 kJ⋅mol–1 (17)] catalytically extracts renewable reducing equivalents that can be sourced to water.H2→2e? + 2H+[1]CO2 + 2e? + 2H+→CO + H2O[2]CO2 + H2→CO + H2O[3]The mechanistic, thermodynamic, and kinetic integration of two catalytic cycles with a chromophore is a general challenge that cuts across homogeneous molecular approaches to forming solar fuels from CO2 and H2O. A photochemical system for the RWGS reaction that used a homogeneous H2 oxidation catalyst would both provide insights into the fundamental factors that govern this integration and opportunities to exert greater control over them than is possible with heterogeneous catalysts. Motivated by these possibilities, we report here the photochemistry of a homogeneous system composed of a photosensitizer, CO2-reduction catalyst, and H2-oxidation catalyst that, upon excitation with long-wavelength light (λ > 590 nm), yields a product state thermodynamically capable of accomplishing the RWGS reaction. The system operates via reductive quenching of the low-energy T1 excited state of the common chromophore zinc tetraphenylporphyrin (ZnTPP) by a compound of the form CpRCr(CO)3 (1; CpR = η5-cyclopentadienyl), followed by thermal electron transfer from the product ZnTPP radical to a complex of the type Re(bpy-4,4′-R2)(CO)3Cl (2; bpy is 2,2′-bipyridyl). The electron-transfer-sensitized radical products of these reactions—CpRCr(CO)3 (1•) and [Re(bpy-4,4′-R2)(CO)3Cl] (2)—can initiate the oxidation of H2 and reduction of CO2, respectively. The ligand substituents within each of these classes of compounds allow control over the driving forces and, thus, the rates of the productive (and unproductive) electron-transfer reactions available to the components. A comprehensive picture of the mechanism and kinetics of this system has been elucidated using time-resolved spectroscopic methods.  相似文献   

10.
Molecular beam scattering experiments are used to investigate reactions of SO2 at the surface of a molten alkali carbonate eutectic at 683 K. We find that two-thirds of the SO2 molecules that thermalize at the surface of the melt are converted to gaseous CO2 via the reaction . The CO2 product is formed from SO2 in less than 10-6 s, implying that the reaction takes place in a shallow liquid region less than 100 Å deep. The reaction probability does not vary between 683 and 883 K, further implying a compensation between decreasing SO2 residence time in the near-interfacial region and increasing reactivity at higher temperatures. These results demonstrate the remarkable efficiency of SO2 → CO2 conversion by molten carbonates, which appear to be much more reactive than dry calcium carbonate or wet slurries commonly used for flue gas desulfurization in coal-burning power plants.  相似文献   

11.
This research focused on the modification effects on recycled concrete (RC) prepared with nano-SiO2 and CO2 cured recycled coarse aggregates (RCA) subjected to an aggressive ions environment. For this purpose, RCA was first simply crushed and modified by nano-SiO2 and CO2, respectively, and the compressive strength, ions permeability as well as the macro properties and features of the interface transition zone (ITZ) of RC were investigated after soaking in 3.5% NaCl solution and 5% Na2SO4 solution for 30 days, respectively. The results show that nano-SiO2 modified RC displays higher compressive strength and ions penetration resistance than that treated by carbonation. Besides, we find that ions attack has a significant influence on the microcracks width and micro-hardness of the ITZ between old aggregate and old mortar. The surface topography, elemental distribution and micro-hardness demonstrate that nano-SiO2 curing can significantly decrease the microcracks width as well as Cl and SO42− penetration in ITZ, thus increasing the micro-hardness, compared with CO2 treatment.  相似文献   

12.
Carbon dioxide (CO2) is generally unavoidable during the production of fuel gases such as hydrogen (H2) from steam reformation and syngas composed of carbon monoxide (CO) and hydrogen (H2). Efficient separation of CO2 from these gases is highly important to improve the energetic utilization efficiency and prevent poisoning during specific applications. Metal–organic frameworks (MOFs), featuring ordered porous frameworks, high surface areas and tunable pore structures, are emerging porous materials utilized as solid adsorbents for efficient CO2 capture and separation. Furthermore, the construction of hierarchical MOFs with micropores and mesopores could further promote the dynamic separation processes, accelerating the diffusion of gas flow and exposing more adsorptive pore surface. Herein, we report a simple, efficient, one-pot template-mediated strategy to fabricate a hierarchically porous CuBTC (CuBTC-Water, BTC = 1,3,5-benzenetricarboxylate) for CO2 separation, which demonstrates abundant mesopores and the superb dynamic separation ability of CO2/N2. Therefore, CuBTC-Water demonstrated a CO2 uptake of 180.529 cm3 g−1 at 273 K and 1 bar, and 94.147 cm3 g−1 at 298 K and 1 bar, with selectivity for CO2/N2 mixtures as high as 56.547 at 273 K, much higher than microporous CuBTC. This work opens up a novel avenue to facilely fabricate hierarchically porous MOFs through one-pot synthesis for efficient dynamic CO2 separation.  相似文献   

13.
The hexagonal perovskite Ba5In2Al2ZrO13 and In3+-doped phase Ba5In2.1Al2Zr0.9O12.95 were prepared by the solid-state synthesis method. The introduction of indium in the Zr-sublattice was accompanied by an increase in the unit cell parameters: a = 5.967 Å, c = 24.006 Å vs. a = 5.970 Å, c = 24.011 Å for doped phase (space group of P63/mmc). Both phases were capable of incorporating water from the gas phase. The ability of water incorporation was due to the presence of oxygen deficient blocks in the structure, and due to the introduction of oxygen vacancies during doping. According to thermogravimetric (TG) measurements the compositions of the hydrated samples corresponded to Ba5In2Al2ZrO12.7(OH)0.6 and Ba5In2.1Al2Zr0.9O12.54(OH)0.82. The presence of different types of OH-groups in the structure, which participate in different hydrogen bonds, was confirmed by infrared (IR) investigations. The measurements of bulk conductivity by the impedance spectroscopy method showed that In3+-doping led to an increase in conductivity by 0.5 order of magnitude in wet air (pH2O = 1.92·10−2 atm); in this case, the activation energies decreased from 0.27 to 0.19 eV. The conductivity−pO2 measurements showed that both the phases were dominant proton conductors at T < 500 °C in wet conditions. The composition Ba5In2.1Al2Zr0.9O12.95 exhibited a proton conductivity ~10−4 S·cm−1 at 500 °C. The analysis of partial (O2−, H+, h) conductivities of the investigated phases has been carried out. Both phases in dry air (pH2O = 3.5·10−5 atm) showed a mixed (oxygen-ion and hole) type of conductivity. The obtained results indicated that the investigated phases of Ba5In2Al2ZrO13 and Ba5In2.1Al2Zr0.9O12.95 might be promising proton-conducting oxides in the future applications in electrochemical devices, such as solid oxide fuel cells. Further modification of the composition and search for the optimal dopant concentrations can improve the H+-conductivity.  相似文献   

14.
Ab initio molecular dynamics and quantum chemistry techniques are used to calculate the structure, vibrational frequencies, and carbon-isotope fractionation factors of the carbon dioxide component [CO2(m)] of soil (oxy)hydroxide minerals goethite, diaspore, and gibbsite. We have identified two possible pathways of incorporation of CO2(m) into (oxy)hydroxide crystal structures: one in which the C4+ substitutes for four H+ [CO2(m)A] and another in which C4+ substitutes for (Al3+,Fe3+) + H+ [CO2(m)B]. Calculations of isotope fractionation factors give large differences between the two structures, with the CO2(m)A being isotopically lighter than CO2(m)B by ≈10 per mil in the case of gibbsite and nearly 20 per mil in the case of goethite. The reduced partition function ratio of CO2(m)B structure in goethite differs from CO2(g) by <1 per mil. The predicted fractionation for gibbsite is >10 per mil higher, close to those measured for calcite and aragonite. The surprisingly large difference in the carbon-isotope fractionation factor between the CO2(m)A and CO2(m)B structures within a given mineral suggests that the isotopic signatures of soil (oxy)hydroxide could be heterogeneous.  相似文献   

15.
Recovery of zinc and manganese from scrapped alkaline batteries were carried out in the following way: leaching in H2SO4 and selective precipitation of zinc and manganese by alkalization/neutralization. As a result of non-selective leaching, 95.6–99.7% Zn was leached and 83.7–99.3% Mn was leached. A critical technological parameter is the liquid/solid treatment (l/s) ratio, which should be at least 20 mL∙g−1. Selective leaching, which allows the leaching of zinc only, takes place with a leaching yield of 84.8–98.5% Zn, with minimal manganese co-leaching, 0.7–12.3%. The optimal H2SO4 concentration is 0.25 mol∙L−1. Precipitation of zinc and manganese from the solution after non-selective leaching, with the use of NaOH at pH = 13, and then with H2SO4 to pH = 9, turned out to be ineffective: the manganese concentrate contained 19.9 wt.% Zn and zinc concentrate, and 21.46 wt.% Mn. Better selectivity results were obtained if zinc was precipitated from the solution after selective leaching: at pH = 6.5, 90% of Zn precipitated, and only 2% manganese. Moreover, the obtained concentrate contained over 90% of ZnO. The precipitation of zinc with sodium phosphate and sodium carbonate is non-selective, despite its relatively high efficiency: up to 93.70% of Zn and 4.48–93.18% of Mn and up to 95.22% of Zn and 19.55–99.71% Mn, respectively for Na3PO4 and Na2CO3. Recovered zinc and manganese compounds could have commercial values with suitable refining processes.  相似文献   

16.
We have studied the hydrophobic water/octadecyltrichlorosilane (OTS) interface by using the phase-sensitive sum-frequency vibrational spectroscopy (PS-SFVS), and we obtained detailed structural information of the interface at the molecular level. Excess ions emerging at the interface were detected by changes of the surface vibrational spectrum induced by the surface field created by the excess ions. Both hydronium (H3O+) and hydroxide (OH) ions were found to adsorb at the interface, and so did other negative ions such as Cl. By varying the ion concentrations in the bulk water, their adsorption isotherms were measured. It was seen that among the three, OH has the highest adsorption energy, and H3O+ has the lowest; OH also has the highest saturation coverage, and Cl has the lowest. The result shows that even the neat water/OTS interface is not neutral, but charged with OH ions. The result also explains the surprising observation that the isoelectric point appeared at ∼3.0 when HCl was used to decrease the pH starting from neat water.  相似文献   

17.
An anode dissolution of binary metallic lead–bismuth alloys with different concentrations of components has been studied in the KCl–PbCl2 molten eutectic. The dissolution of lead is found to be a basic process for the alloys of Pb–Bi (59.3–40.7), Pb–Bi (32.5–67.5), Pb–Bi (7.0–93.0) compositions in the whole interval of studied anode current densities. A limiting diffusion current of lead dissolution was observed at 2 A/cm2 and 0.1 A/cm2 for the alloys of Pb–Bi (5.0–95.0) and Pb–Bi (3.0–97.0) compositions, respectively. The dissolution of bismuth takes place at the anode current densities exceeding the mentioned values. The number of electrons participating in the electrode reactions is detected for each mechanism. Based on the theoretical analysis, the experimental electrolysis of bismuth was performed in the laboratory-scale electrolytic cell with a porous ceramic diaphragm. The final product contained pure bismuth with a lead concentration of 3.5 wt.%.  相似文献   

18.
Recently, the use of ionic liquids (ILs) for carbon capture and separation processes has gained great interest by many researchers due to the high solubility of CO2 in ILs. In the present work, solubility measurements of CO2 in the novel IL 1-n-butyl-3-methylimidazolium nonafluorobutylsulfonate [C4mim][CF3CF2CF2CF2SO3] were performed with a high-pressure view-cell technique in the temperature range from 293.15 to 343.15 K and pressures up to about 4.2 MPa. For comparison, solubilities of H2, N2, and O2 in the IL were also measured at 323.15 K via the same procedure. The Krichevsky-Kasarnovsky equation was employed to correlate the measured solubility data. Henry’s law constants, enthalpies, and entropies of absorption for CO2 in the IL were also determined and presented. The CO2 solubility in this IL was compared with other ILs sharing the same cation. It was shown that the solubility of CO2 in these ILs follows the sequence: [C4mim][CF3CF2CF2CF2SO3] ≈ [C4mim][Tf2N] > [C4mim][CF3CF2CF2COO] > [C4mim][BF4], and the solubility selectivity of CO2 relative to O2, N2, and H2 in [C4mim][CF3CF2CF2CF2SO3] was 8, 16, and 22, respectively. Furthermore, this IL is regenerable and exhibits good stability. Therefore, the IL reported here would be a promising sorbent for CO2.  相似文献   

19.
The paper presents studies on the early stages of biological corrosion of ordinary Portland cements (OPC) subjected to the reactive media from the agricultural industry. For ten months, cement pastes of CEM I type with various chemical compositions were exposed to pig slurry, and water was used as a reference. The phase composition and structure of hydrating cement pastes were characterized by X-ray diffraction (XRD), thermal analysis (DTA/TG/DTG/EGA), and infrared spectroscopy (FT-IR). The mechanical strength of the cement pastes was examined. A 10 to 16% decrease in the mechanical strength of the samples subjected to pig slurry was observed. The results indicated the presence of thaumasite (C3S·CO2·SO3·15H2O) as a biological corrosion product, likely formed by the reaction of cement components with living matter resulting from the presence of bacteria in pig slurry. Apart from thaumasite, portlandite (Ca(OH)2)—the product of hydration—as well as ettringite (C3A·3CaSO4·32H2O) were also observed. The study showed the increase in the calcium carbonate (CaCO3) phase. The occurrence of unreacted phases of cement clinker, i.e., dicalcium silicate (C2S) and tricalcium aluminate (C3A), in the samples was confirmed. The presence of thaumasite phase and the exposure condition-dependent disappearance of CSH phase (calcium silicate hydrate), resulting from the hydration of the cements, were demonstrated.  相似文献   

20.
The advent of hyperpolarized 13C magnetic resonance (MR) has provided new potential for the real-time visualization of in vivo metabolic processes. The aim of this work was to use hyperpolarized [1-13C]pyruvate as a metabolic tracer to assess noninvasively the flux through the mitochondrial enzyme complex pyruvate dehydrogenase (PDH) in the rat heart, by measuring the production of bicarbonate (H13CO3), a byproduct of the PDH-catalyzed conversion of [1-13C]pyruvate to acetyl-CoA. By noninvasively observing a 74% decrease in H13CO3 production in fasted rats compared with fed controls, we have demonstrated that hyperpolarized 13C MR is sensitive to physiological perturbations in PDH flux. Further, we evaluated the ability of the hyperpolarized 13C MR technique to monitor disease progression by examining PDH flux before and 5 days after streptozotocin induction of type 1 diabetes. We detected decreased H13CO3 production with the onset of diabetes that correlated with disease severity. These observations were supported by in vitro investigations of PDH activity as reported in the literature and provided evidence that flux through the PDH enzyme complex can be monitored noninvasively, in vivo, by using hyperpolarized 13C MR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号