首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PurposeIn 2015, only 1.5% of female Canadian medical students pursued radiology as a specialty, versus 5.6% of men. The aim of this study was to determine what factors attract and deter Canadian medical students from pursuing a career in radiology, and why fewer women than men pursue radiology as a specialty.MethodsAn anonymous online survey was e-mailed to English-speaking Canadian medical schools, and 12 of 14 schools participated. Subgroup analyses for gender and radiology interest were performed using the Fisher exact test (P < .05).ResultsIn total, 917 students (514 women; 403 men) responded. Direct patient contact was valued by significantly more women who were not considering specialization in radiology (87%), compared with women who were (70%; P < .0001). Physics deterred more women (47%) than it did men (21%), despite similar educational backgrounds for the two gender groups in physical sciences (P < .0001). More women who were considering radiology as a specialty rated intellectual stimulation as being important to their career choice (93%), compared with women who were not (80%; P = .002). Fewer women who were not interested in radiology had done preclinical observerships in radiology (20%), compared with men who were not interested in radiology (28%; P = .04).ConclusionsA perceived lack of direct patient contact dissuades medical students from pursuing radiology as a career. Women have less preclinical radiology exposure than do men. Programs that increase preclinical exposure to radiology subspecialties that have greater patient contact should be initiated, and an effort to actively recruit women to such programs should be made.  相似文献   

2.
PurposeAn unmet need for radiology education exists even in this era of medical school curricular renewal. The authors examined the radiology clerkship requirements in Canadian and US medical schools to interpret radiology residency applicant trends.MethodsThe curricula of Canadian and US medical schools were reviewed for radiology rotation requirements. The radiology residency applicant trends for 2010 to 2019 were analyzed using linear regression. The number of radiology electives taken by matched radiology applicants was examined. Regression analysis was performed to assess the impact of radiology rotation requirements on residency application.ResultsOnly 1 of 17 Canadian medical schools required a radiology rotation despite major curricular renewal at the majority of medical schools. Approximately 20% of US medical schools required radiology rotations, without a significant change from 2011 to 2018, whereas the duration of required radiology rotations increased significantly. The numbers of total and first-choice radiology applicants showed significant decreases from 2010 to 2019 in Canada but not in the United States. Nearly all matched radiology applicants took electives in radiology, the majority of whom took three or more electives. Both the presence and duration of radiology rotation requirements showed significant, positive relationships with the number of radiology applicants.ConclusionsOnly a minority of medical schools in North America have radiology clerkship requirements, both the presence and duration of which significantly affect students’ choice of radiology as a career. Radiology clerkship requirements can be a solution to meet the expanding demand for diagnostic imaging in modern medicine.  相似文献   

3.
ObjectiveTo investigate whether general psychological motivating factors that guide career selection of a medical specialty differ over the course of medical school and to compare differences in motivating factors among students choosing “controllable” lifestyle specialties, students choosing “uncontrollable” lifestyle specialties, and a cohort of radiology residents.Materials and MethodsAn anonymous survey was distributed to first- through fourth-year medical students and radiology residents at a single institution. Participants were asked to select their top three of seven factors that most influenced their choice of medical specialty. Fourth-year students were asked to designate the specialty to which they had applied.ResultsThe survey was distributed to 259 students and 47 radiology residents with a response rate of 93.8% (243 of 259) and 95.7% (45 of 47), respectively. The top three factors indicated by medical students were finding the daily work fulfilling, work–life balance, and interest in the subject. These top three factors were common to all medical student classes and did not differ between students choosing “controllable” versus “uncontrollable” fields. The factors uncommonly selected were similar personality to others in the field, attending income, competitiveness or prestige, and job market conditions. For radiology residents, the top three motivating factors were the same as for medical students.ConclusionThree out of seven motivating factors were universally important to trainees, regardless of their stage of medical training or their selection of a controllable versus uncontrollable lifestyle specialty. These data suggest the variety of career choices made by students may not derive from differing underlying values.  相似文献   

4.
Medical student exposure to interventional radiology (IR) through dedicated rotations represents a vital component for students to consider IR as a career and to ensure a successful match into the integrated residency pathway. Students from osteopathic medical schools have historically been underrepresented in integrated IR positions. During the 2022 match, 84.1% of successfully matched applicants overall were from U.S. allopathic medical schools, whereas 15.9% were from osteopathic medical schools. This brief report aims to categorize the landscape of IR rotation exposure at osteopathic medical schools and proposes a framework to increase student access to IR.  相似文献   

5.
PurposeTo determine medical students' and radiologists’ attitude toward radiology electives at a distributed medical school and identify specific areas for improvement.MethodsDuring a single academic year, both students and faculty preceptors were surveyed anonymously following a senior radiology elective. The survey was based on an established theoretical framework for studying the educational environment which takes into account domains: (1) goal orientation, (2) organization/regulation, and (3) relationships. Mann-Whitney tests were performed to determine if there was any difference between the overall satisfaction of students and preceptors, responses from the different elective sites and students’ ratings of the domains. Statistical significance was set at P < .05. Thematic analysis was performed on the narrative comments to identify specific challenges.ResultsThe response rate was 82.0% for students (95/116) and 19.5% (31/159) for radiologists. There was no difference in responses based on elective site. Overall, the elective was viewed positively by both groups however students rated their experience as significantly better than their preceptors (P = .0012). Students viewed the relationships domain more positively than both the other two (goal orientation, P = .0001; organization/regulation, P = .0038). Thematic analysis identified that the student challenges were lack of autonomy, structured teaching, and preceptor continuity and the preceptor challenges were ambiguous learning objectives/expectations and insufficient resources.ConclusionsThe radiology elective challenges identified in this study provide educators with specific areas to target when updating radiology electives. A better elective experience may improve students' radiology knowledge and attitude towards the specialty as well as radiologists’ interest in teaching.  相似文献   

6.
PurposeIn recent years, there has been increased recognition of the benefits of teaching by active learning. However, there is a paucity of experimental studies utilizing active learning in undergraduate radiology rotations, which is traditionally a passive learning experience. We designed a new radiology rotation that integrated teaching by active learning. We prospectively examined the efficacy of this new rotation compared to our standard rotation in terms of students' radiological competency and attitudes toward radiology, as well as impact on departmental efficiency.MethodsThis was a prospective cohort study involving fourth year medical students completing a 1-week radiology rotation at our department between January and April 2018. One cohort completed a rotational model which incorporated active learning sessions (integrated cohort) while the remainder were taught using traditional passive learning methods (standard cohort). All participants completed a radiology examination before and after the rotation and were surveyed on their attitudes toward radiology.ResultsA total of 105 students enrolled in the study. The mean postrotation competency score obtained by the integrated cohort was significantly higher than that obtained by the standard cohort (82% vs 62%; P < 0.001). The integrated rotation freed up 7 hours of radiologists’ time per week. While the students completing the integrated rotation had a more positive perception of radiology, they were no more likely to express a desire to pursue a career in radiology.ConclusionsThe integration of active learning sessions into an undergraduate radiology rotation results in an improvement in students' postrotation radiological competency and attitudes toward radiology.  相似文献   

7.
Women now comprise half of medical students in Canada yet continue to be underrepresented in general radiology and its subspecialties. The underrepresentation of women in interventional radiology is even more profound. The literature has suggested various factors that might contribute to this gender disparity, including a lack of role models and mentors, exposure during early medical training, and decisions regarding work-life balance. This article explores the gender disparity among Canadian interventional radiologists, highlights the attrition of women through their radiology training, and discusses recruitment strategies to increase diversity in this rewarding field.  相似文献   

8.
PurposeThe aim of this study was to survey fourth-year medical students, both those choosing and those not choosing diagnostic radiology as their specialty, regarding factors influencing their choice of specialty and their perceptions of radiology.MethodsA voluntary anonymous online survey hyperlink was sent to 141 US medical schools for distribution to fourth-year students. Topics included demographics, radiology education, specialty choice and influencing factors, and opinions of radiology.ResultsA representative sampling (7%) of 2015 fourth-year medical students (n = 1,219; 51% men, 49% women) participated: 7% were applying in radiology and 93% were not. For respondents applying in radiology, the most important factor was intellectual challenge. For respondents applying in nonradiology specialties, degree of patient contact was the most important factor in the decision not to choose radiology; job market was not listed as a top-three factor. Women were less likely than men to apply in radiology (P < .001), with radiology selected by 11.8% of men (56 of 476) and only 2.8% of women (13 of 459). Respondents self-identifying as Asian had a significantly higher (P = .015) likelihood of selecting radiology (19 of 156 [12.2%]) than all other races combined (44 of 723 [6.1%]). Respondents at medical schools with required dedicated medical imaging rotations were more likely to choose radiology as a specialty, but most schools still do not require the clerkship (82%).ConclusionsThe reasons fourth-year medical students choose, or do not choose, diagnostic radiology as a specialty are multifactorial, but noncontrollable factors, such as the job market, proved less compelling than controllable factors, such as taking a radiology rotation.  相似文献   

9.
PurposeTo determine if there was a difference in the level of knowledge about interventional radiology (IR) between medical students in preclinical years of training compared with medical students in clinical years of training at two medical schools and to compare awareness of IR based on the curriculum at each school: one with required radiology education and one without such a requirement.Materials and MethodsAn anonymous survey was distributed to students at two medical schools; the survey assessed knowledge of IR, knowledge of training pathways, and preferred methods to increase exposure. Responses of the preclinical and clinical groups were compared, and responses from the clinical groups at each school were compared.Results“Poor” or “fair” knowledge of IR was reported by 84% (n = 217 of 259) of preclinical students compared with 62% of clinical students (n = 110 of 177; P < .001). IR was being considered as a career by 11% of all students (15%, n = 40 of 259 preclinical; 5%, n = 9 of 177 clinical). The main reason respondents were not considering IR was “lack of knowledge” (65%, n = 136 of 210 preclinical; 20%, n = 32 of 162 clinical). Students in the clinical group at the institution with a required radiology rotation reported significantly better knowledge of IR than clinical students from the institution without a required clerkship (P = .017).ConclusionsThere are significant differences in knowledge of IR between preclinical and clinical students. Required radiology education in the clinical years does increase awareness of IR.  相似文献   

10.
Rationale and objectivesThere exists many single sample perspectives on artificial intelligence (AI). The aim of this review was to collate the current data on attitudes/knowledge towards AI in three unique populations: medical students, clinicians and patients.Materials and methodsA literature search was performed on PubMed, Scopus and Web of Science pertaining to survey data on AI in radiology. Quality assessment was performed by an adapted version of the assessment tool from the National Heart, Lung and Blood Institute for Observational Studies.ResultsFourteen studies were found on attitudes/knowledge towards AI in radiology. Four studies examined medical students, seven on clinicians and three on patient populations. Deficiencies in the literature mainly related to sampling bias. Students had anxiety relating to future job prospects. Clinicians were optimistic and viewed AI as an aid to the diagnosis and wanted to further their knowledge. Patients were concerned about the lack of human interaction and accountability during error.ConclusionAttitudes and knowledge regarding AI in radiology remains a topic that needs to be researched further and education given pertaining to its use in a clinical setting.  相似文献   

11.
ObjectiveGlobal Radiology aims to enhance access to medical imaging services and education, worldwide. To date, few reports have evaluated Global Radiology Training (GRT) in radiology residency programs. Here, we examined how radiology residency programs perceive and incorporate GRT into their curriculum, and how this information is promoted online.MethodsTwo methods were used to examine the current state of GRT. First, radiology residency program directors (identified via the Association of Program Directors in Radiology) were surveyed on topics including: Electives, institutional partnerships, resident and faculty involvement, inquiry by prospective residents, and barriers to implementation. Second, radiology residency program websites (n = 193) were examined for existing GRT on the programs’ publicly available webpages.ResultsThere were 62 survey responses (response rate of 19%). Thirty-eight percent (24/62) of residency programs offered a Global Radiology elective to their residents within the past academic year and 27% (17/62) of programs have active affiliations with medical institutions outside of the United States. Eighty-four percent of program directors (52/62) received questions from residency applicants regarding opportunities to participate in Global Radiology. Furthermore, only 13% (26/193) of all radiology residency programs listed at least one GRT elective on their webpage.DiscussionGRT in radiology residency is more widely available than previously reported and has been underrepresented on residency program websites. In the present survey, the majority of radiology residency program directors reported that radiology is an important component of Global Health, one-third of whom have already incorporated the subject into their curriculum. However, most common barriers to GRT include, perceived lack of time in the curriculum and lack of faculty interest. The high prevalence of inquiry from residency program applicants about GRT suggests that it may be a notable factor for applicants during the ranking process. Programs build up GRT may choose to share related information seeking to may choose to emphasize work in Global Radiology on their program webpages.  相似文献   

12.
PurposeThe aim of this study was to develop, implement, and evaluate the effectiveness of an online multidisciplinary approach for teaching diagnostic radiology to medical students.MethodsAn online 10-session case-based learning course was designed and taught by a multidisciplinary team of radiologists, surgeons, and internists. Session topics included common clinical case scenarios for different systems and were hosted on a videoconferencing platform. Students from six medical schools across Texas enrolled in the course. The effectiveness of each session was evaluated using a pretest-posttest design. Students completed a final survey after the course to evaluate their experience.ResultsAn average of 108 attended the live sessions, with attendance peaking at 220. On average, 75 students completed both the pretest and posttest of each session. Posttest scores were an average of 46% higher than pretest scores. A total of 109 students completed the final survey; more than 90% of participants agreed that the program was relevant, that its multidisciplinary approach was valuable, and that it increased their knowledge of imaging as a diagnostic tool. Seventy-four percent said that the program increased their interest in radiology. Almost all participants said that the topics presented were thought to be “excellent and clinically important to learn” by most of the students (70%). Participants reported increased confidence in basic radiology skills after completion of the program.ConclusionsAn online multidisciplinary approach can be feasibly implemented to address the radiology education needs of a large number of medical students across a group of medical schools.  相似文献   

13.
Rationale and ObjectivesDiagnostic radiology training programs are less diverse than graduating US medical school classes and the patient populations they serve. Inclusion of physicians who are underrepresented minorities in medicine (URMM) can strengthen the profession and help to meet the needs of an increasingly diverse population. Our Department of Radiology developed and implemented a plan to increase the number of URMMs in our residency applicant pool and residency training program.Materials and MethodsWe designed a recruitment strategy to diversify the radiology residency applicant pool. This included website development, advertising, early exposure opportunities, travel to predominantly minority institutions and national meetings, and mentoring URMM medical students. We implemented parallel activities to increase the number of URMMs in our residency program. These included holistic screening tools for residency application review, a diverse residency recruitment committee, a welcome environment for visiting candidates, and “Second Look Weekend” visits for talented candidates. Primary outcomes measured include change in percentages of URMM applicants in our applicant pool and URMM residents in our residency program.ResultsThe percentage of URMM radiology residency applicants increased from 7.5% (42 of 556) of the total applicant pool in the 2012 to 2013 recruitment year to 12.6% (98 of 777) in the 2017 to 2018 recruitment year (P = .001). URMM radiology residency representation increased from 0% (0 of 32) in the 2013 to 2014 academic year to 20% (6 of 30) in the 2018 to 2019 academic year (P = .01).ConclusionAn intentional, strategic diversity program can diversify an institution’s residency applicant pool and increase representation of URMMs in a diagnostic radiology residency program.  相似文献   

14.
PurposeThere is a lack of evidence for developing radiology mobile apps for medical students. This study identifies the characteristics which students perceive as most valuable to teaching radiology with mobile apps (m-learning).MethodsAn online anonymous survey was administered to second- to fourth-year medical students at a single institution. The survey, which was based on established theoretical framework, collected students' preferred content organization, content presentation, and delivery strategies. The Copeland method was used to rank student preferences and a 2-tailed t test was used to determine if student responses were related to their clinical experience, with statistical significance at P < .05.ResultsThe response rate was 25.6% (163/635). For content organization, image interpretation (66.9%), imaging anatomy (61.3%), and common pathological conditions (50.3%) were selected as the most important. For content presentation, quizzes (49.1%) and case presentations (46.0%) were selected as the most useful. Students with clinical experience rated algorithms as more important (P < .01) and quizzes as less important (P = .03). For delivery strategies, ease of use (92.6%), navigation (90.8%), and gestural design (74.8%) were deemed the most applicable.ConclusionThis study documents medical students' preferences for m-learning in radiology. Although learner preferences are not the only feature to consider in the development of educational technology, these provide the initial framework for radiologists wishing to develop and incorporate mobile apps into their teaching.  相似文献   

15.
PurposeMany US medical students lack access to radiation oncology (RO). The authors’ hypothesis was that a virtual, cross-institutional presentation introducing students to a career in RO would be valuable in exposing students to RO who are less likely to access it otherwise and would increase students’ interest in a career in RO regardless of their gender, race, or ethnicity.MethodsA 1-hour, live, virtual, extracurricular presentation was offered to deans of US medical schools lacking affiliated RO departments and/or having high enrollments of students underrepresented in medicine (UIM) and also student groups composed primarily of UIM students. Presentations were given individually to each school by a single radiation oncologist. An electronic survey captured data from participating students.ResultsOne hundred ninety-seven students from 13 institutions attended presentations; 114 students responded to the survey (response rate, 58%). Ninety-two students (81%) were aware of the specialty of RO before the presentation; however, UIM students were significantly less likely to be aware of RO than all others (69% versus 87%, P = .05). Only 19 students (17%) reported previously hearing presentations from radiation oncologist (29% among second- to fourth-year students versus 9% among first-year students, P = .01). Ninety-eight students (86%) expressed more interest in pursuing a career in RO after the presentation. There was no significant difference in interest in RO for any demographic subgroups.ConclusionsVirtual RO exposure was feasible to deliver to students less likely to be exposed otherwise and successfully stimulated interest in the specialty regardless of students’ gender, race, or ethnicity.  相似文献   

16.
PurposeAdvances in artificial intelligence applied to diagnostic radiology are predicted to have a major impact on this medical specialty. With the goal of establishing a baseline upon which to build educational activities on this topic, a survey was conducted among trainees and attending radiologists at a single residency program.MethodsAn anonymous questionnaire was distributed. Comparisons of categorical data between groups (trainees and attending radiologists) were made using Pearson χ2 analysis or an exact analysis when required. Comparisons were made using the Wilcoxon rank sum test when the data were not normally distributed. An α level of 0.05 was used.ResultsThe overall response rate was 66% (69 of 104). Thirty-six percent of participants (n = 25) reported not having read a scientific medical article on the topic of artificial intelligence during the past 12 months. Twenty-nine percent of respondents (n = 12) reported using artificial intelligence tools during their daily work. Trainees were more likely to express doubts on whether they would have pursued diagnostic radiology as a career had they known of the potential impact artificial intelligence is predicted to have on the specialty (P = .0254) and were also more likely to plan to learn about the topic (P = .0401).ConclusionsRadiologists lack exposure to current scientific medical articles on artificial intelligence. Trainees are concerned by the implications artificial intelligence may have on their jobs and desire to learn about the topic. There is a need to develop educational resources to help radiologists assume an active role in guiding and facilitating the development and implementation of artificial intelligence tools in diagnostic radiology.  相似文献   

17.

Purpose

To gain insight into the professional characteristics of radiologists in Switzerland and to determine how to enhance the attractiveness of radiology to medical graduates as a specialty.

Materials and methods

Data from 262 members of the Swiss Society of Radiology (m:f = 76:24%) obtained in a questionnaire survey were analysed regarding socio-demographic variables, working status, specialty, main fields of interest, career success, mentoring and reasons for the shortage of radiologists.

Results

35 (56.4%) female and 85 (45.5%) male radiologists were aged ≤45 years. 228 (87%) were board-certified; 44 (17.9%) had completed a sub-specialisation. Men worked part-time mostly just before retirement, while women worked part-time at a younger age. As reasons for specialty choice, the wide range of clinical work and the combination of technology and medicine were ranked highest. Women reported significantly less career success and support. To improve the attractiveness of radiology to graduates, radiology should be visible on medical school curricula.

Conclusion

In Switzerland, more female radiologists work part-time than male ones, and there is less career success and support for women. In order to make radiology more attractive to medical graduates as a specialty, structured residency programmes and reliable gender-respecting career support are needed.  相似文献   

18.
While the number of women entering medical schools is approaching 50% nationally, women continue to be underrepresented in a number of specialties including diagnostic radiology. While diagnostic radiology has many characteristics that might be desirable to women, such as reasonable call hours, flexible scheduling, and high salaries, women still do not choose diagnostic radiology as a career. This article examines the literature to discern possible reasons for why women are entering diagnostic radiology at a lower rate. We address trends among women in academic medicine, which resemble trends among women in diagnostic radiology, and examine the effects of gender and socialization in medical school on specialty choices among women. The current literature suggests a constellation of factors may be responsible for the gender differences in diagnostic radiology. We suggest that further research is needed to elucidate why women do not seem to be choosing diagnostic radiology as frequently as one might predict based on the lifestyle of diagnostic radiologists and the numbers of women currently entering medical school. Once these reasons are made clear, it will be possible for residency program directors and medical schools to ensure that women are making informed specialty choices, whatever those choices may be.  相似文献   

19.
BackgroundGender disparity exists in nearly every medical specialty, particularly in leadership roles and academia. Radiology is not exempt from this phenomenon, with women making up less than a third of radiology residents in the United States (US). This can have long-lasting effects on the career progression of female radiologists. Our search did not reveal any study on gender composition in academic abdominal radiology.PurposeTo evaluate the academic productivity and career advancement of female academic abdominal radiology faculty in the United States and Canada.Materials and methodsParameters of academic achievement were measured, including the number of citations and publications, years of research, as well as H-index. Information regarding academic and leadership ranking among academic abdominal radiologists in the United States and Canada was also analyzed.ResultsIn academic abdominal radiology, there were fewer females than males (34.9% vs 65.1%; p-value 0.256). Among the female radiologists, the greatest proportion held the rank of assistant professor (40%). Female representation decreased with increasing rank. Females had a lower H-index than males (P-value = 0.0066) and significantly fewer years of research than males (P-value = 0.0243).ConclusionMale predominance in academic abdominal radiology is similar to many other medical specialties, and encompasses senior faculty rank, leadership roles and research productivity.  相似文献   

20.
Rationale and objectivesTo promote opportunities for medical students to gain early exposure to radiology and research, our institution has initiated programs which fund summer radiology research projects for rising second-year medical students. This study assesses the impact of these faculty-mentored summer research experiences on medical student perceptions of radiology and research, in terms of both knowledge and interest.Materials and methodsA voluntary, anonymous survey was administered to students both before and after the summer research period. Both the pre-program survey and post-program survey included 7-point Likert-scale questions (1 = strongly disagree; 7 = strongly agree) to evaluate students’ perceptions about research and students’ perceptions about radiology as a specialty. Faculty mentors were sent an analogous post-program survey that included an evaluation of their student's research skills.ResultsThe surveys were completed by 9 of 11 students and 10 of 11 mentors. Students’ perceived knowledge of radiology as a specialty improved (P = 0.02) between the pre-program survey and post-program survey. Similarly, there was an increase in students’ perceived knowledge of research skills (P = 0.02) between the pre-program survey and post-program survey, with student ratings of research skills consistent with those of mentors. High student interest in both radiology and research was maintained over the course of the program.ConclusionOur pilot study suggests that summer research experiences can improve knowledge of radiology and research among medical students. Continued evaluation of this annual program will allow us to enhance the benefit to medical students and thereby bolster interest in academic radiology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号