首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Monosynaptic input from sural nerve afferents to dorsal horn neurons was mapped bilaterally using electrical stimulation in normal cats and cats with spinal cord hemisections. Animals hemisected 6 h-5 days previously did not differ significantly from normals and the sides of the cord did not differ in either group. In animals hemisected 88–182 days previously there were significantly more sites responsive to sural nerve input ipsilateral to the hemisection, than contralateral to it.  相似文献   

2.
This study presentsd mtelinated and unmyelinated axon counts from thoracic dorsal roots of rats whose spinal cords were hemisected at birth or at 1 year of age. Axonal numbers from a root on the unoperated side are compared to numbers from the root of the same segment on the operated side of the animal. Counts were made 3 segments cranially and 3 segments caudally from the hemisection. In animals hemisected at birth and sacrified at 3–8 months, there is a statistically significant increase in unmyelinated axons in roots of the operated as compared to the normal side. We interpret this as sprouting of unmyelinated axons. In animals hemisected at 1 year of age, the statistically significant change was a drop in myelinated axons in roots of the operated side. We interpret this as a loss of myelinated axon cell bodies due to axon section in the dorsal funiculus. Thus axonal sprouting occurs in young rats in our paradigm and a loss of myelinated axons occurs in older animals. We emphasize that different axonal populations respond to hemisection in different ways at different times.  相似文献   

3.
目的 观察大鼠脊髓半切后ERK1/2活性的变化及发生变化的细胞类型。方法 大鼠行脊髓半横断术后3d,用免疫组织化学法和免疫荧光双标记法观察磷酸化ERK1/2的变化及其与各种神经细胞标记物的共存状况。结果 观察到脊髓半切3d大鼠的ERK1/2磷酸化程度明显升高。阳性细胞为分布于邻近损伤区周围的具有短突起的小胞体细胞。双标记表明其中的大部分阳性细胞为小胶质细胞和寡突胶质细胞。结论 本研究提示脊髓半横断3d,ERKl/2参与了小胶质细胞和寡突胶质细胞的活化,有可能在脊髓损伤的/继发性过程中具有重要作用。  相似文献   

4.
The N‐methyl‐D ‐aspartate receptor (NMDAR) contributes to central sensitization in the spinal cord and the generation of pain hypersensitivity. NMDAR function is modulated by post‐translational modifications including phosphorylation, and this is proposed to underlie its involvement in the production of pain hypersensitivity in the spinal cord. We now show that a noxious heat stimulus applied to the rat hindpaw induces phosphorylation of the NMDAR NR1 subunit at a protein kinase C (PKC)‐dependent site, serine‐896, in superficial dorsal horn neurons. Phosphorylation of NR1 serine‐896 is essentially absent in the superficial dorsal horn laminae of naïve rats, but there is rapid (< 2 min) induction following a noxious but not innocuous heat stimulus. The number of pNR1‐immunoreactive neuronal profiles in the superficial dorsal horn peaks 30 min after noxious heat stimulation and persists for up to 1 h. pNR1serine896 induction occurs in the endoplasmic reticulum, suggesting that it contributes to trafficking of the receptor from intracellular stores to the membrane. The phosphorylation of the subunit is attenuated by intrathecal injection of the NMDAR antagonist, MK801, suggesting that the NMDAR is involved via a feed‐forward mechanism in its own phosphorylation. The pNR1serine896‐positive neurons are highly co‐localized with PKCdelta and only rarely with PKCgamma. These data provide evidence for an activity‐dependent NMDAR phosphorylation at the PKC‐dependent site, serine‐896, in spinal cord dorsal horn neurons initiated by peripheral noxious stimuli.  相似文献   

5.
Studies in monkeys have shown substantial neuronal reorganization and behavioral recovery during the months following a cervical dorsal root lesion (DRL; Darian‐Smith [2004] J. Comp. Neurol. 470:134–150; Darian‐Smith and Ciferri [2005] J. Comp. Neurol. 491:27–45, [2006] J. Comp. Neurol. 498:552–565). The goal of the present study was to identify ultrastructural synaptic changes post‐DRL within the dorsal horn (DH). Two monkeys received a unilateral DRL, as described previously (Darian‐Smith and Brown [2000] Nat. Neurosci. 3:476–481), which removed cutaneous and proprioceptive input from the thumb, index finger, and middle finger. Six weeks before terminating the experiment at 4 post‐DRL months, hand representation was mapped electrophysiologically within the somatosensory cortex, and anterograde tracers were injected into reactivated cortex to label corticospinal terminals. Sections were collected through the spinal lesion zone. Corticospinal terminals and inhibitory profiles were visualized by using preembedding immunohistochemistry and postembedding γ‐aminobutyric acid (GABA) immunostaining, respectively. Synaptic elements were systematically counted through the superficial DH and included synaptic profiles with round vesicles (R), pleomorphic flattened vesicles (F; presumed inhibitory synapses), similar synapses immunolabeled for GABA (F‐GABA), primary afferent synapses (C‐type), synapses with dense‐cored vesicles (D, mostly primary afferents), and presynaptic dendrites of interneurons (PSD). Synapse types were compared bilaterally via ANOVAs. As expected, we found a significant drop in C‐type profiles on the lesioned side (∼16% of contralateral), and R profiles did not differ bilaterally. More surprising was a significant increase in the number of F profiles (∼170% of contralateral) and F‐GABA profiles (∼315% of contralateral) on the side of the lesion. Our results demonstrate a striking increase in the inhibitory circuitry within the deafferented DH. J. Comp. Neurol. 518:103–117, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
Gene expression is altered following a spinal transection (STx) in both motor and sensory systems. Exercise has been shown to influence gene expression in both systems post‐STx. Gene expression alterations have also been shown in the dorsal root ganglia and nociceptive laminae of the spinal cord following either an incomplete spinal cord injury (SCI) or a contusive SCI. However, the effect of STx and exercise on gene expression in spinal cord laminae I‐III has not fully been examined. Therefore, the purpose of this study was to determine whether gene expression in laminae I‐III is altered following STx and determine whether superimposed passive exercise of the hindlimbs would influence gene expression post‐STx in laminae I‐III. Laser capture microdissection was used to selectively harvest laminae I‐III of lumbar spinal cord sections, and quantitative RT‐PCR was used to examine relative expression of 23 selected genes in samples collected from control, STx and STx plus exercise rats. We demonstrate that post‐STx, gene expression for metabotropic glutamate receptors 1, 5 and 8 were up‐regulated, whereas ionotropic glutamatergic receptor (Glur2) and glycinergic subunit GLRA1 expression was down‐regulated. Daily exercise attenuated the down‐regulation of Glur2 gene expression in laminae I‐III. Our results demonstrate that in a STx model, gene expression is altered in laminae I‐III and that although passive exercise influences gene expression in both the motor and sensory systems, it had a minimal effect on gene expression in laminae I‐III post‐STx.  相似文献   

7.
Glass microelectrodes were used to record the activity of neurones in the left dorsal horn of the L6 segment of the spinal cord of normal cats and cats in which the left sciatic and saphenous nerves had been cut 1 or 9 months previously. In the normal animals the receptive fields of L6 dorsal horn neurones excited by tactile stimulation of the leg were somatotopically organized, with neurones in the medial and central dorsal horn having receptive fields on the distal parts of the leg, particularly the toes, and neurones in the lateral dorsal horn having receptive fields on the proximal parts of the leg, buttock and lower back. This somatotopy has been shown before. One month after nerve section no cells responded to tactile stimulation of the distal leg and cells in the medial and central parts of the dorsal horn now had receptive fields on the proximal leg, buttock and back. There did not appear to be any somatotopic organization of these new receptive fields. Lateral dorsal horn neurones had normal receptive fields. Nine months after nerve section neurones in the medial and central parts of the lumbar dorsal horn had receptive fields on the distal leg but they showed several abnormal features and there was no evidence of a return of the somatotopic organization seen in normal animals. Lateral dorsal horn cells still had normal receptive fields.  相似文献   

8.
The morphology of the central collateral arborizations of 24 A-beta hair follicle afferents (HFAs) innervating different regions of the skin of the hindlimb were studied by the intra-axonal injection of horseradish peroxidase (HRP) in adult rats. A total of 236 collaterals were recovered. These fell into three classes--complex, simple, and blind-ending--based on numbers of boutons and terminal branch patterns. The morphology of the HFA central arbors innervating the lateral and medial leg and dorsum of the foot was flame-shaped. Afferents with receptive fields on the glabrous-hairy skin border consistently had extra terminal branches running ventromedially into laminae IV/V. Differences in the width of terminal arbors were found. HFA terminals innervating the lateral leg formed narrower sheets than those innervating the dorsum of the foot and toes. The somatotopic organization of the collaterals and terminal arborizations of individual afferents were analyzed both by considering all the collaterals along an axon's rostrocaudal extent and by only examining arbors with boutons (the complex and simple arbors). Thirty-seven percent of blind-ending and 18% of simple collaterals were found to overlap in the rostrocaudal direction with the complex arborizations of afferents whose receptive fields were in a different cutaneous nerve territory. There was no overlap between complex arborizations of afferents from different nerve territories. However, the complex arbors of afferents with receptive fields within a particular nerve territory showed considerable terminal overlap even if they had nonadjacent peripheral receptive fields. The topographical organization of the central terminals of HFAs, forms a coarse somatotopic map of overlapping terminals whereby a particular region of dorsal horn has a maximal, but not exclusive, input from a particular area of skin.  相似文献   

9.
Following successful establishment of a rat model of spinal cord hemisection injury by resecting right spinal cord tissues, bone marrow stem cells were transplanted into the spinal cord lesions via the caudal vein while maintaining rectal temperature at 34 ± 0.5°C for 6 hours (mild hypothermia). Hematoxylin-eosin staining showed that astrocytes gathered around the injury site and formed scars at 4 weeks post-transplantation. Compared with rats transplanted with bone marrow stem cells under normal temperature, rats transplanted with bone marrow stem cells under hypothermia showed increased numbers of proliferating cells (bromodeoxyuridine-positive cells), better recovery of somatosensory-evoked and motor-evoked potentials, greater Basso, Beattie, and Bresnahan locomotor rating scores, and an increased degree of angle in the incline plate test. These findings suggested that hypothermia combined with bone marrow mesenchymal stem cells transplantation effectively promoted electrical conduction and nerve functional repair in a rat model of spinal cord hemisection injury.  相似文献   

10.
Slow negative potentials, evoked by stimulation of the lumbar dorsal roots, have been demonstrated in the dorsal horn of an isolated, hemisected spinal cord preparation from golden hamsters. Paired stimuli revealed a period of partial suppression of this slow potential persisting for up to 2 s following the conditioning stimulus, but with high stimulation frequencies this effect was masked and above 20 Hz a tetanic train of stimuli produced a smoothly rising potential. The response evoked by tetanic stimulation was shown to consist of two components, a manganese-sensitive, synaptically generated component, and a manganese-resistant, frequency-dependent element. Treatment with 10−4 M 4-aminopyridine blocked the manganese-resistant tetanic response but did not reduce the manganese-sensitive component. Bicuculline, picrotoxin and tubocurare had little effect upon the tetanic response, but 10−3 M procaine blocked it completely. The possibility that the manganese-resistant response was due to the release of potassium ions is considered.  相似文献   

11.
The cytokine erythropoietin (EPO) has been shown to be neuroprotective in a variety of models of central and peripheral nervous system injury. Derivatives of EPO that lack its erythropoietic effects have recently been developed, and the initial reports suggest that they have a neuroprotective potential comparable to that of EPO. One such derivative is carbamylated EPO (CEPO). In the current study we compared the effects of treatment with EPO and CEPO on some of the early neurodegenerative events that occur following spinal cord injury (SCI) induced by hemisection. Adult male Wistar rats received a unilateral hemisection of the spinal cord. Thirty minutes and 24 h following injury, animals received an intraperitoneal injection of saline, EPO (40 microg/kg) or CEPO (40 microg/kg). Results indicated that 3 days post-injury, both CEPO and EPO decreased to a similar extent the size of the lesion compared with control animals. Both compounds also decreased the number of terminal transferase-mediated dUTP nick-end labelling (TUNEL)-labelled apopotic nuclei around the lesion site, as well as the number of axons expressing the injury marker beta-amyloid precursor protein. EPO and CEPO also increased Schwann cell infiltration into the lesion site, although neither compound had any effect on macrophage infiltration either within the lesion site itself or in the surrounding intact tissue. In addition, immunohistochemistry showed an increased expression of both the EPO receptor and the beta common receptor subunit, the components of the receptor complex proposed to mediate the neuroprotective effects of EPO and CEPO in neurons near the site of the injury. The results show that not only does CEPO have an efficacy comparable to that of EPO in its neuroprotective potential following injury, but also that changes in the receptors for these compounds following SCI may underlie their neuroprotective efficacy.  相似文献   

12.
Xu M  Ng YK  Leong SK 《Experimental neurology》2000,161(2):472-480
Nitric oxide (NO) may subserve different functions in different central neurons subjected to axotomy. The difference may depend on whether the neurons basally express neuronal nitric oxide synthase (nNOS), a biosynthetic enzyme of NO. This is supported by our previous finding that suggests the differential role of NO in neurons of nucleus dorsalis (ND) and red nucleus (RN) which have different basal expression of nNOS. This study aimed to establish firmly the functions of NO, as revealed by nNOS immunoreactivity and nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d) histochemistry, by the administration of endogenous NO donor, l-arginine (l-arg), and NOS inhibitor, l-N(G)-nitroarginine methyl ester (l-NAME). To relate the role of NO to glutamate receptors (GluR), the distributions of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) and N-methyl-d-aspartate receptor (NMDAR) in the two nuclei were revealed by immunohistochemical techniques. nNOS immunoreactivity was void in ND neurons, but expressed weakly in the RN normally. It was induced in ipsilateral ND neurons and upregulated on both sides of RN after spinal cord hemisection. Neuronal loss in the ipsilateral ND was augmented by l-arg, but reduced by l-NAME. In the contralateral RN, l-arg attenuated neuronal loss. NMDAR1 was present in most neurons in ND. After axotomy, some NMDAR1 immunoreactive neurons of the ipsilateral ND were induced to express NOS, whereas RN neurons showed strong staining for NMDAR1 and all the AMPA subunits. Most of the NOS-positive neurons in the RN were coexistent with GluR2 in normal rats and those subjected to axotomy. The present data demonstrated that NO exerted neurodestructive function in the non-NOS-containing ND neurons characterized by NMDAR as the predominant glutamate receptor. NO might be beneficial to the NOS-containing RN neurons. This could be attributed to the presence of GluR2. Possible diverse synthesizing pathways of NO in two different central nuclei were suggested from the observation that NOS was colocalized with NADPH-d in ND neurons, but not in RN neurons.  相似文献   

13.
Although numerous studies have examined the effects of neurotrophin treatment following spinal cord injury, few have examined the changes that occur in the neurotrophin receptors following either such damage or neurotrophin treatment. To determine what changes occur in neurotrophin receptor expression following spinal cord damage, adult rats received a midthoracic spinal cord hemisection alone or in combination with intrathecal application of brain-derived neurotrophic factor (BDNF) or neurotrophin-3 (NT-3). Using immunohistochemical and in situ hybridization techniques, p75, trkA, trkB, and trkC receptor expression was examined throughout the spinal cord. Results showed that trkA, full-length trkB, and trkC receptors were not present in the lesion site but had a normal expression pattern in uninjured parts of the spinal cord. In contrast, p75 receptor expression occurred on Schwann cells throughout the lesion site. BDNF and NT-3 (but not saline) applied to the lesion site increased this expression. In addition, the truncated trkB receptor was expressed in the border between the lesion and intact spinal cord. Truncated trkB receptor expression was also increased throughout the white matter ipsilateral to the lesion and BDNF (but not NT-3 or saline) prevented this increase. The study is the first to show changes in truncated trkB receptor expression that extend beyond the site of a spinal cord lesion and is one of the first to show that BDNF and NT-3 affect Schwann cells and/or p75 expression following spinal cord damage. These results indicate that changes in neurotrophin receptor expression following spinal cord injury could influence the availability of neurotrophins at the lesion site. In addition, neurotrophins may affect their own availability to damaged neurons by altering the expression of the p75 and truncated trkB receptor.  相似文献   

14.
A large body of evidence shows that spinal circuits are significantly affected by training,and that intrinsic circuits that drive locomotor tasks are located in lumbosacral spinal segments in rats with complete spinal cord transection.However,after incomplete lesions,the effect of treadmill training has been debated,which is likely because of the difficulty of separating spontaneous stepping from specific training-induced effects.In this study,rats with moderate spinal cord contusion were subjected to either step training on a treadmill or used in the model(control) group.The treadmill training began at day 7 post-injury and lasted 20 ± 10 minutes per day,5 days per week for 10 weeks.The speed of the treadmill was set to 3 m/min and was increased on a daily basis according to the tolerance of each rat.After 3 weeks of step training,the step training group exhibited a significantly greater improvement in the Basso,Beattie and Bresnahan score than the model group.The expression of growth-associated protein-43 in the spinal cord lesion site and the number of tyrosine hydroxylase-positive ventral neurons in the second lumbar spinal segment were greater in the step training group than in the model group at 11 weeks post-injury,while the levels of brain-derived neurotrophic factor protein in the spinal cord lesion site showed no difference between the two groups.These results suggest that treadmill training significantly improves functional recovery and neural plasticity after incomplete spinal cord injury.  相似文献   

15.
C2 spinal cord hemisection results in synaptic and astroglial changes in the phrenic nucleus which have been associated with the recovery of the ipsilateral hemidiaphragm during expression of the crossed phrenic phenomenon. As part of our ongoing analysis of the neurotransmitters involved, the present study investigated the effects of systemic administration of para-chlorophenylalanine (p-CPA), a serotonin (5-HT) synthesis inhibitor, on plasticity in the rat phrenic nucleus 4 h following C2 hemisection. Hemisected control rats demonstrated typical morphological changes in the ipsilateral phrenic nucleus including: (1) an increased number and length of synaptic active zones and (2) an increased number and length of dendrodendritic membrane appositions. p-CPA treatment 3 days prior to hemisection reduced 5-HT levels and resulted in an attenuation of these changes in the ipsilateral phrenic nucleus 4 h following hemisection compared to hemisected controls. In addition, p-CPA treatment attenuated injury-induced alterations in immunohistochemical staining of glial fibrillary acidic protein (GFAP), although Western blot analysis demonstrated that overall levels of GFAP did not differ significantly between groups. The results suggest that inhibition of 5-HT synthesis by p-CPA attenuates hemisection-induced plasticity in the phrenic nucleus 4 h following an ipsilateral C2 hemisection.  相似文献   

16.
Macro-sieve electrodes were implanted in the sciatic nerve of five adult male Lewis rats following spinal cord injury to assess the ability of the macro-sieve electrode to interface regenerated peripheral nerve fibers post-spinal cord injury. Each spinal cord injury was performed via right lateral hemisection of the cord at the T_(9–10) site. Five months post-implantation, the ability of the macro-sieve electrode to interface the regenerated nerve was assessed by stimulating through the macro-sieve electrode and recording both electromyography signals and evoked muscle force from distal musculature. Electromyography measurements were recorded from the tibialis anterior and gastrocnemius muscles, while evoked muscle force measurements were recorded from the tibialis anterior, extensor digitorum longus, and gastrocnemius muscles. The macro-sieve electrode and regenerated sciatic nerve were then explanted for histological evaluation. Successful sciatic nerve regeneration across the macro-sieve electrode interface following spinal cord injury was seen in all five animals. Recorded electromyography signals and muscle force recordings obtained through macro-sieve electrode stimulation confirm the ability of the macro-sieve electrode to successfully recruit distal musculature in this injury model. Taken together, these results demonstrate the macro-sieve electrode as a viable interface for peripheral nerve stimulation in the context of spinal cord injury.  相似文献   

17.
One characteristic of plasticity after peripheral tissue or nerve damage is receptive field reorganization, and enlargement of receptive field size has been suggested to occur in certain models of neuropathic pain. The aim of the present study was to explore whether enlargement of neuronal receptive fields could contribute to the mechanical allodynia found on the ipsilateral paw in the spinal nerve ligation model of neuropathy. After ligation of L(5)-L(6) spinal nerves, all rats developed behavioral signs of mechanical allodynia, while the sham-operated control group displayed no such changes. The characteristics of the evoked responses of the neurones recorded in the dorsal horn of the rats were similar between the spinal nerve ligation, the sham operated control group, and the nonoperated control group, except for spontaneous activity, which was significantly increased in the spinal nerve ligation group. The mean size of the receptive field on the ipsilateral hindpaw, mapped using low-intensity stimulation with 9-g von Frey hair, was significantly increased in the spinal nerve ligation group, as compared to the sham-operated group. No significant difference was seen with 15- or 75-g von Frey hairs. The distribution of the receptive fields over the plantar surface of the paw was similar between the study groups. The enlargement of receptive field for non-noxious touch could be an indication of central sensitization in this model.  相似文献   

18.
Plasticity changes of uninjured nerves can result in a novel neural circuit after spinal cord injury, which can restore sensory and motor functions to different degrees. Although processes of neural plasticity have been studied, the mechanism and treatment to effectively improve neural plasticity changes remain controversial. The present study reviewed studies regarding plasticity of the central nervous system and methods for promoting plasticity to improve repair of injured central nerves. The results showed that synaptic reorganization, axonal sprouting, and neurogenesis are critical factors for neural circuit reconstruction. Directed functional exercise, neurotrophic factor and transplantation of nerve-derived and non-nerve-derived tissues and cells can effectively ameliorate functional disturbances caused by spinal cord injury and improve quality of life for patients.  相似文献   

19.
Transganglionic labelling of the saphenous nerve in rats with WGA-HRP revealed the central distribution of its terminals in the lumbar dorsal horn. The terminal field was clearly defined and consistent in rats aged between day 6 and day 90. If, however, the sciatic nerve was sectioned on day 1 of postnatal life, the saphenous terminal field expanded to occupy twice the normal area (measured between the L2 and L4 boundaries). The spread was caudal, medial, and lateral into areas normally occupied by sciatic nerve terminals. This sprouting was very weak if the sciatic nerve was sectioned later in postnatal life, on day 5, and nonexistent if sectioning took place on day 10. Crushing the sciatic nerve on day 1 also triggered the effect but the spread of the terminal field was less than that produced by section of the sciatic nerve. There was no evidence of sprouting from the contralateral intact sciatic nerve. The results demonstrate the necessity of intact afferent input during a critical period of neonatal life in order to maintain the precise somatotopic termination pattern of dorsal root afferents.  相似文献   

20.
实验建立正常对照组、假手术组、高低频电针组和中药薏苡仁干预组,横断T10左半侧的脊髓损伤模型大鼠,4h后使用5,100Hz电针刺激环跳(GB30)、足三里(ST 36)、至阳(DU9)及悬枢(DU5)或腹腔注射0.4μL中药薏苡仁粗提液(与生药比例为1:1),连续8周,观察发现低高频电针刺激及薏苡仁治疗能改善脊髓组织损伤区域形态,促进运动诱发电位的恢复,抑制损伤区胶质纤维酸性蛋白表达,改善半横断性脊髓损伤大鼠运动功能,以100Hz电针刺激和薏苡仁干预效果明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号