首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vascular endothelial growth factor (VEGF)-C is necessary for lymphangiogenesis and holds potential for lymphangiogenic therapy in diseases lacking adequate lymphatic drainage. However, the ability of VEGF-C to enhance sustainable, functional lymphatic growth in adult tissues remains unclear. To address this, we evaluated VEGF-C overexpression in adult lymphangiogenesis in regenerating skin. We used a model of mouse tail skin regeneration incorporating a suspension of either VEGF-C overexpressing tumor cells, which provide a continuous supplement of excess VEGF-C to the natural regenerating environment for more than 25 days, or otherwise identical control-transfected tumor cells. We found that excess VEGF-C did not enhance the rate of lymphatic endothelial cell (LEC) migration, the density of lymphatic vessels, or the rate of functionality -- even though lymphatic hyperplasia was present early on. Furthermore, the hyperplasia disappeared when VEGF-C levels diminished, which occurred after 25 days, rendering the lymphatics indistinguishable from those in control groups. In vitro, we showed that whereas cell-derived VEGF-C could induce chemoattraction of LECs across a membrane (which involves amoeboid-like transmigration), it did not increase LEC chemoinvasion within a 3-dimensional fibrin matrix (which requires proteolytic migration). These results suggest that whereas excess VEGF-C may enhance early LEC proliferation and cause lymphatic vessel hyperplasia, it does not augment the physiological rate of migration or functionality, and by itself cannot sustain any lasting effects on lymphatic size, density, or organization in regenerating adult skin.  相似文献   

2.
3.
Whereas high shearing flows are known to induce endothelial cell remodeling, we show here that very low interstitial flow rates trigger endothelial cell morphogenesis in 3D cultures. Interstitial flow is a functionally critical component of the circulation, and we have recently observed that it plays a regulatory role in lymphangiogenesis; here we investigate interstitial flow as a powerful morphoregulatory stimulant. We exposed both lymphatic and blood endothelial cells (LECs and BECs) to interstitial flow in 3D collagen gels as well as simple shear flow in 2D monolayers. We found that under interstitial flow (average 10 microm/s for 6 days), both cell types underwent drastic morphologic changes from static conditions: LECs formed large vacuoles and long extensions, while BECs formed multicellular branched lumen-containing networks. Under planar shear (20 dyn/cm2 for 24 h), LECs downregulated their cell-cell adhesions compared to BECs but did not differ morphologically; both aligned with flow as expected. The significance of these findings is twofold: first, they identify an important role of interstitial flow for in vitro microvascular organization and stabilization, and second, they demonstrate for the first time notable differences between LEC and BEC response to the biophysical environment, reflecting some of their functional differences in vivo.  相似文献   

4.
Lymphedema is mainly caused by lymphatic obstruction and manifested as tissue swelling, often in the arms and legs. Lymphedema is one of the most common post-surgical complications in breast cancer patients and presents a painful and disfiguring chronic illness that has few treatment options. Here, we evaluated the therapeutic potential of interleukin (IL)-8 in lymphatic regeneration independent of its pro-inflammatory activity. We found that IL-8 promoted proliferation, tube formation, and migration of lymphatic endothelial cells (LECs) without activating the VEGF signaling. Additionally, IL-8 suppressed the major cell cycle inhibitor CDKN1C/p57KIP2 by downregulating its positive regulator PROX1, which is known as the master regulator of LEC-differentiation. Animal-based studies such as matrigel plug and cornea micropocket assays demonstrated potent efficacy of IL-8 in activating lymphangiogenesis in vivo. Moreover, we have generated a novel transgenic mouse model (K14-hIL8) that expresses human IL-8 in the skin and then crossed with lymphatic-specific fluorescent (Prox1-GFP) mouse. The resulting double transgenic mice showed that a stable expression of IL-8 could promote embryonic lymphangiogenesis. Moreover, an immunodeficient IL-8-expressing mouse line that was established by crossing K14-hIL8 mice with athymic nude mice displayed an enhanced tumor-associated lymphangiogenesis. Finally, when experimental lymphedema was introduced, K14-hIL8 mice showed an improved amelioration of lymphedema with an increased lymphatic regeneration. Together, we report that IL-8 can activate lymphangiogenesis in vitro and in vivo with a therapeutic efficacy in post-surgical lymphedema.  相似文献   

5.
Lymphangiogenesis is the mechanism by which the lymphatic system develops and expands new vessels facilitating fluid drainage and immune cell trafficking. Models to study lymphangiogenesis are necessary for a better understanding of the underlying mechanisms and to identify or test new therapeutic agents that target lymphangiogenesis. Across the lymphatic literature, multiple models have been developed to study lymphangiogenesis in vitro and in vivo. In vitro, lymphangiogenesis can be modeled with varying complexity, from monolayers to hydrogels to explants, with common metrics for characterizing proliferation, migration, and sprouting of lymphatic endothelial cells (LECs) and vessels. In comparison, in vivo models of lymphangiogenesis often use genetically modified zebrafish and mice, with in situ mouse models in the ear, cornea, hind leg, and tail. In vivo metrics, such as activation of LECs, number of new lymphatic vessels, and sprouting, mirror those most used in vitro, with the addition of lymphatic vessel hyperplasia and drainage. The impacts of lymphangiogenesis vary by context of tissue and pathology. Therapeutic targeting of lymphangiogenesis can have paradoxical effects depending on the pathology including lymphedema, cancer, organ transplant, and inflammation. In this review, we describe and compare lymphangiogenic outcomes and metrics between in vitro and in vivo studies, specifically reviewing only those publications in which both testing formats are used. We find that in vitro studies correlate well with in vivo in wound healing and development, but not in the reproductive tract or the complex tumor microenvironment. Considerations for improving in vitro models are to increase complexity with perfusable microfluidic devices, co-cultures with tissue-specific support cells, the inclusion of fluid flow, and pairing in vitro models of differing complexities. We believe that these changes would strengthen the correlation between in vitro and in vivo outcomes, giving more insight into lymphangiogenesis in healthy and pathological states.  相似文献   

6.
Lymphatic dysfunctions are associated with several human diseases, including lymphedema and metastatic spread of cancer. Although it is well recognized that lymphatic capillaries attach directly to interstitial matrix mainly composed of fibrillar type I collagen, the interactions occurring between lymphatics and their surrounding matrix have been overlooked. In this study, we demonstrate how matrix metalloproteinase (MMP)-2 drives lymphatic morphogenesis through Mmp2-gene ablation in mice, mmp2 knockdown in zebrafish and in 3D-culture systems, and through MMP2 inhibition. In all models used in vivo (3 murine models and thoracic duct development in zebrafish) and in vitro (lymphatic ring and spheroid assays), MMP2 blockage or down-regulation leads to reduced lymphangiogenesis or altered vessel branching. Our data show that lymphatic endothelial cell (LEC) migration through collagen fibers is affected by physical matrix constraints (matrix composition, density, and cross-linking). Transmission electron microscopy and confocal reflection microscopy using DQ-collagen highlight the contribution of MMP2 to mesenchymal-like migration of LECs associated with collagen fiber remodeling. Our findings provide new mechanistic insight into how LECs negotiate an interstitial type I collagen barrier and reveal an unexpected MMP2-driven collagenolytic pathway for lymphatic vessel formation and morphogenesis.  相似文献   

7.
Influence of angiostatin and thalidomide on lymphangiogenesis   总被引:2,自引:0,他引:2  
Shao XJ  Chi XY 《Lymphology》2005,38(3):146-155
Malignant cancers commonly invade locally followed by spread through venous or lymphatic channels or both to distant sites. Hemangiogenesis and its relation to tumor growth and metastasis have been extensively studied. However, the role played by lymphangiogenesis in growth and metastasis of cancer has been largely neglected until just recently. Inhibition of lymphangiogenesis, as compared to inhibition of hemangiogenesis, may provide new insights into the mechanisms of cancer metastasis. The current study was designed to examine the in vitro effect of two commonly used inhibitors of hemangiogenesis, angiostatin and thalidomide, on the growth and proliferation of lymphatic endothelial cells isolated from pig thoracic ducts. We first isolated and characterized the lymphatic endothelial (LE) cells using specific markers for VEGFR3 and LYVE-1. The experimental results showed that treatment of the LE cells with these two drugs resulted in a decrease in the rate of cell proliferation in a dose-dependent manner as assessed by MTT assays. Cell migration rate was assessed by the speed of cell migration from the scrape-wound margin, and the results showed that migration of LE cells was also significantly inhibited in a dose-dependent fashion compared to controls. Treatment with angiostatin and thalidomide both resulted in an increase in apoptosis of LE cells as assessed by Hoechst staining and flow cytometry. We conclude that both angiostatin and thalidomide are able to inhibit LE cell growth in a dose-dependent manner and that the inhibition may be through induction of apoptosis.  相似文献   

8.
Insulin-like growth factors 1 and 2 induce lymphangiogenesis in vivo   总被引:15,自引:0,他引:15       下载免费PDF全文
Lymphangiogenesis is an important process that contributes to the spread of cancer. Here we show that insulin-like growth factors 1 (IGF-1) and 2 (IGF-2) induce lymphangiogenesis in vivo. In a mouse cornea assay, IGF-1 and IGF-2 induce lymphangiogenesis as detected with LYVE-1, a specific marker for lymphatic endothelium. Interestingly, IGF-1-induced lymphangiogenesis could not be blocked by a soluble vascular endothelial growth factor receptor 3, suggesting that the vascular endothelial growth factor receptor 3-signaling pathway is not required for IGF-induced lymphangiogenesis. In vitro, IGF-1 and IGF-2 significantly stimulated proliferation and migration of primary lymphatic endothelial cells. IGF-1 and IGF-2 induced phosphorylation of intracellular signaling components, such as Akt, Src, and extracellular signal-regulated kinase in lymphatic endothelial cells. Immunohistochemistry, RT-PCR, and Affymetrix GeneChip microarray analysis showed that the receptors for IGFs are present in lymphatic endothelium. Together, our findings suggest that IGFs might act as direct lymphangiogenic factors, although any indirect roles in the induction of lymphangiogenesis cannot be excluded. Because members of the IGF ligand and receptor families are widely expressed in various types of solid tumors, our findings suggest that these factors are likely to contribute to lymphatic metastasis.  相似文献   

9.
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, debilitating respiratory disease whose pathogenesis is poorly understood. In IPF, the lung parenchyma undergoes extensive remodeling. We hypothesized that lymphangiogenesis is part of lung remodeling and sought to characterize pathways leading to lymphangiogenesis in IPF. We found that the diameter of lymphatic vessels in alveolar spaces in IPF lung tissue correlated with disease severity, suggesting that the alveolar microenvironment plays a role in the lymphangiogenic process. In bronchoalveolar lavage fluid (BALF) from subjects with IPF, we found short-fragment hyaluronic acid, which induced migration and proliferation of lymphatic endothelial cells (LECs), processes required for lymphatic vessel formation. To determine the origin of LECs in IPF, we isolated macrophages from the alveolar spaces; CD11b+ macrophages from subjects with IPF, but not those from healthy volunteers, formed lymphatic-like vessels in vitro. Our findings demonstrate that in the alveolar microenvironment of IPF, soluble factors such as short-fragment hyaluronic acid and cells such as CD11b+ macrophages contribute to lymphangiogenesis. These results improve our understanding of lymphangiogenesis and tissue remodeling in IPF and perhaps other fibrotic diseases as well.  相似文献   

10.
AIMS: Vascular endothelial growth factor-C (VEGF-C) has been shown to stimulate both angiogenesis and lymphangiogenesis in some but not all models where VEGF-C is over-expressed. Our aim was to investigate the interaction between lymphangiogenesis and angiogenesis in adult tissues regulated by VEGF-C and identify evidence of polarized growth of lymphatics driven by specialized cells at the tip of the growing sprout. METHODS AND RESULTS: We used an adult model of lymphangiogenesis in the rat mesentery. The angiogenic effect of VEGF-C was markedly attenuated in the presence of a growing lymphatic network. Furthermore, we show that this growth of lymphatic vessels can occur both by recruitment of isolated lymphatic islands to a connected network and by filopodial sprouting. The latter is independent of polarized tip cell differentiation that can be generated all along lymphatic capillaries, independently of the proliferation status of the lymphatic endothelial cells. CONCLUSION: These results both demonstrate a dependence of VEGF-C-mediated angiogenesis on lymphatic vascular networks and indicate that the mechanism of VEGF-C-mediated lymphangiogenesis is different from that of classical angiogenic mechanisms.  相似文献   

11.
The importance of the lymphangiogenic factor VEGF-D and its receptor VEGFR-3 in early lymphatic development remains largely unresolved. We therefore investigated their role in Xenopus laevis tadpoles, a small animal model allowing chemicogenetic dissection of developmental lymphangiogenesis. Single morpholino antisense oligo knockdown of xVEGF-D did not affect lymphatic commitment, but transiently impaired lymphatic endothelial cell (LEC) migration. Notably, combined knockdown of xVEGF-D with xVEGF-C at suboptimal morpholino concentrations resulted in more severe migration defects and lymphedema formation than the corresponding single knockdowns. Knockdown of VEGFR-3 or treatment with the VEGFR-3 inhibitor MAZ51 similarly impaired lymph vessel formation and function and caused pronounced edema. VEGFR-3 silencing by morpholino knockdown, MAZ51 treatment, or xVEGF-C/D double knockdown also resulted in dilation and dysfunction of the lymph heart. These findings document a critical role of VEGFR-3 in embryonic lymphatic development and function, and reveal a previously unrecognized modifier role of VEGF-D in the regulation of embryonic lymphangiogenesis in frog embryos.  相似文献   

12.
The lymphatic system is involved in various biological processes, including fluid transport from the interstitium into the venous circulation, lipid absorption, and immune cell trafficking. Despite its critical role in homeostasis, lymphangiogenesis (lymphatic vessel formation) is less widely studied than its counterpart, angiogenesis (blood vessel formation). Although the incorporation of lymphatic vasculature in engineered tissues or organoids would enable more precise mimicry of native tissue, few studies have focused on creating engineered tissues containing lymphatic vessels. Here, we populated thick collagen sheets with human lymphatic endothelial cells, combined with supporting cells and blood endothelial cells, and examined lymphangiogenesis within the resulting constructs. Our model required just a few days to develop a functional lymphatic vessel network, in contrast to other reported models requiring several weeks. Coculture of lymphatic endothelial cells with the appropriate supporting cells and intact PDGFR-β signaling proved essential for the lymphangiogenesis process. Additionally, subjecting the constructs to cyclic stretch enabled the creation of complex muscle tissue aligned with the lymphatic and blood vessel networks, more precisely biomimicking native tissue. Interestingly, the response of developing lymphatic vessels to tensile forces was different from that of blood vessels; while blood vessels oriented perpendicularly to the stretch direction, lymphatic vessels mostly oriented in parallel to the stretch direction. Implantation of the engineered lymphatic constructs into a mouse abdominal wall muscle resulted in anastomosis between host and implant lymphatic vasculatures, demonstrating the engineered construct''s potential functionality in vivo. Overall, this model provides a potential platform for investigating lymphangiogenesis and lymphatic disease mechanisms.

The lymphatic and blood vascular systems are two distinct vessel network systems that work in synchrony to maintain tissue homeostasis. Blood vessels transport oxygen and nutrients around the body, while lymphatic vessels collect leaked fluid and macromolecules from the interstitial space and return them to the blood circulation, maintaining interstitial fluid homeostasis (1). Furthermore, the lymphatic system plays a central role in immune responses, inflammation regulation, and lipid absorption (2). While many in vitro models have been created to study angiogenesis, fewer attempts have been made to engineer an in vitro platform to study lymphangiogenesis. Such engineered models are critical for both fundamental research and the development of clinically implantable tissue to treat various diseases involving the lymphatic system. One such disease is lymphedema, a chronic condition that affects 200 million people worldwide (3). Lymphedema is characterized by tissue swelling resulting from a compromised lymphatic system. The condition is mainly caused by complications during cancer treatment but may also develop due to genetic disorders. The condition is progressive and incurable, with a high risk of infection. Implantation of engineered lymphatic tissue can serve as a treatment for such disease (4).Lymph flow is primarily driven by pressures generated by lymphatic contractions of the smooth muscle cells surrounding the vessels (5). Impaired contractility thus reduces lymph flow and may cause lymphedema. Previous computational studies have investigated the correlation between lymphatic vessel contractility and mechanical stimulation, such as mechanical loading, pressure gradients, and shear stress amplitudes (6, 7). Furthermore, studies have investigated lymphatic vessel capacity to distend under mechanical loading conditions. In addition, the microenvironment composition has been shown to play an important role in enabling lymphatic vessel functionality (4).Thus far, several groups have been able to engineer lymphatic tissues. Marino et al. created dermo-epidermal skin grafts with lymphatic and blood vessels embedded in a fibrin-collagen gel (8). Others created a lymphatic vessel network within multilayered fibroblast sheets (9, 10). Another study demonstrated that different hydrogel compositions are required for the optimal growth and development of blood and lymphatic endothelial cells (BECs and LECs, respectively) (11). However, no studies have investigated the influence of the supporting cells, the secreted extracellular matrix (ECM), and the mechanical environment on the forming lymphatic vessels. Since lymphatic pathologies are known to correlate with mechanically impaired lymphatic vessels (4), it is important to create lymphatic models with a biomimetic microenvironment.In this study, lymphatic vessel networks were engineered to investigate fundamental questions concerning lymphangiogenesis, including the influence of different supporting cells on the formation of lymphatic vessels and the role of PDGFR-β, an important receptor associated with support cells recruitment, in vessel formation. In addition, a complex tissue designed to better mimic native tissue was generated and lymphatic and blood vessel development along with muscle formation were monitored. In addition, the impact of the application of cyclic stretch on the organization and alignment of lymphatic-blood-vessel-muscle tissue was assessed. Finally, the penetration and anastomosis of the engineered lymphatic vessels were monitored following their implantation into mice.  相似文献   

13.
Religa P  Cao R  Bjorndahl M  Zhou Z  Zhu Z  Cao Y 《Blood》2005,106(13):4184-4190
Bone marrow (BM)-derived circulating endothelial precursor cells (CEPCs) have been reported to incorporate into newly formed blood vessels under physiologic and pathologic conditions. However, it is unknown if CEPCs contribute to lymphangiogenesis. Here we show that in a corneal lymphangiogenesis model of irradiated mice reconstituted with enhanced green fluorescent protein (EGFP)-positive donor bone marrow cells, CEPCs are present in the newly formed lymphatic vessels. Depletion of bone marrow cells by irradiation remarkably suppressed lymphangiogenesis in corneas implanted with fibroblast growth factor-2 (FGF-2). Further, transplantation of isolated EGFP-positive/vascular endothelial growth factor receptor-3-positive (EGFP+/VEGFR-3+) or EGFP+/VEGFR-2+ cell populations resulted in incorporation of EGFP+ cells into the newly formed lymphatic vessels. EGFP+/CEPCs were also present in peritumoral lymphatic vessels of a fibrosarcoma. These data suggest that BM-derived CEPCs may play a role in "lymphvasculogenesis."  相似文献   

14.
Accumulating literature implicates pathological angiogenesis and lymphangiogenesis as playing key roles in tumor progression. Autocrine human growth hormone (hGH) is a wild-type orthotopically expressed oncogene for the human mammary epithelial cell. Herein we demonstrate that autocrine hGH expression in the human mammary carcinoma cell line MCF-7 stimulated the survival, proliferation, migration, and invasion of a human microvascular endothelial cell line (HMEC-1). Autocrine/paracrine hGH secreted from mammary carcinoma cells also promoted HMEC-1 in vitro tube formation as a consequence of increased vascular endothelial growth factor-A (VEGF-A) expression. Semiquantitative RT-PCR analysis demonstrated that HMEC-1 cells express both hGH and the hGH receptor (hGHR). Functional antagonism of HMEC-1-derived hGH reduced HMEC-1 survival, proliferation, migration/invasion, and tube formation in vitro. Autocrine/paracrine hGH secreted by mammary carcinoma cells increased tumor blood and lymphatic microvessel density in a xenograft model of human mammary carcinoma. Autocrine hGH is therefore a potential master regulator of tumor neovascularization, coordinating two critical processes in mammary neoplastic progression, angiogenesis and lymphangiogenesis. Consideration of hGH antagonism to inhibit angiogenic processes in mammary carcinoma is therefore warranted.  相似文献   

15.
The roles of angiogenesis in development, health, and disease have been studied extensively; however, the studies related to lymphatic system are limited due to the difficulty in observing colorless lymphatic vessels. But recently, with the improved technique, the relative importance of the lymphatic system is just being revealed. We bred transgenic mice in which lymphatic endothelial cells express GFP (Prox1-GFP) with mice in which vascular endothelial cells express DsRed (Flt1-DsRed) to generate Prox1-GFP/Flt1-DsRed (PGFD) mice. The inherent fluorescence of blood and lymphatic vessels allows for direct visualization of blood and lymphatic vessels in various organs via confocal and two-photon microscopy and the formation, branching, and regression of both vessel types in the same live mouse cornea throughout an experimental time course. PGFD mice were bred with CDh5CreERT2 and VEGFR2lox knockout mice to examine specific knockouts. These studies showed a novel role for vascular endothelial cell VEGFR2 in regulating VEGFC-induced corneal lymphangiogenesis. Conditional deletion of vascular endothelial VEGFR2 abolished VEGFA- and VEGFC-induced corneal lymphangiogenesis. These results demonstrate the potential use of the PGFD mouse as a powerful animal model for studying angiogenesis and lymphangiogenesis.  相似文献   

16.
Inhibition of endogenous TGF-beta signaling enhances lymphangiogenesis   总被引:2,自引:0,他引:2  
Oka M  Iwata C  Suzuki HI  Kiyono K  Morishita Y  Watabe T  Komuro A  Kano MR  Miyazono K 《Blood》2008,111(9):4571-4579
Lymphangiogenesis is induced by various growth factors, including VEGF-C. Although TGF-β plays crucial roles in angiogenesis, the roles of TGF-β signaling in lymphangiogenesis are unknown. We show here that TGF-β transduced signals in human dermal lymphatic microvascular endothelial cells (HDLECs) and inhibited the proliferation, cord formation, and migration toward VEGF-C of HDLECs. Expression of lymphatic endothelial cell (LEC) markers, including LYVE-1 and Prox1 in HDLECs, as well as early lymph vessel development in mouse embryonic stem cells in the presence of VEGF-A and C, were repressed by TGF-β but were induced by TGF-β type I receptor (TβR-I) inhibitor. Moreover, inhibition of endogenous TGF-β signaling by TβR-I inhibitor accelerated lymphangiogenesis in a mouse model of chronic peritonitis. Lymphangiogenesis was also induced by TβR-I inhibitor in the presence of VEGF-C in pancreatic adenocarcinoma xenograft models inoculated in nude mice. These findings suggest that TGF-β transduces signals in LECs and plays an important role in the regulation of lymphangiogenesis in vivo.  相似文献   

17.
When a lymph node is excised, lymphangiogenesis occurs to maintain flow in the affected area. However, a complex network of small vessels replaces the node and these newly formed vessels might increase resistance to lymph transport. To test this in sheep, the popliteal lymph node from one hind limb was removed surgically. The contralateral node was left intact. After 4 to 6 weeks (a period that allowed regenerated vessels to restore flow), a prenodal lymphatic vessel in each limb was cannulated with a polyethylene catheter to permit saline infusion into the node or lymphatic regeneration site. Infusion pressures were monitored from t-pieces inserted between the infusion pump and the point of entry of the catheters in the prenodal ducts. We observed that the flow rate versus perfusion pressure relationships were significantly different in the 2 experimental preparations (node intact limbs, n = 13; node excised limbs, n = 10). In the limbs undergoing lymphangiogenesis, much higher infusion pressures were required to generate a given flow rate. Additionally, the regenerated lymphatic network provided a significantly increased resistance to flow. The data suggested that lymphangiogenesis restored fluid continuity to some extent in the area occupied originally by the popliteal lymph node. However, the transport properties exhibited by the newly formed lymphatics were insufficient to restore flow parameters to their original state.  相似文献   

18.
《Microvascular research》2008,75(2-3):145-158
Physiologically, the lymphatic system regulates fluid volume in the interstitium and provides a conduit for immune cells to travel to lymph nodes, but pathologically, the lymphatic system serves as a primary escape route for cancer cells. Lymphatic capillaries have a thin discontinuous basement membrane, lack pericyte coverage and often contain endothelial cell gaps that can be invaded by immune cells (or tumor cells). In addition, tumor cells and stromal cells in the tumor microenvironment secrete factors that stimulate lymphangiogenesis, the growth of lymphatic endothelial cells and the sprouting of lymphatic capillaries. As a result, many tumors are surrounded by large, hyperplastic, peri-tumoral lymphatic vessels and less frequently are invaded by intra-tumoral lymphatic vessels. Carcinoma cells commonly metastasize through these lymphatic vessels to regional lymph nodes. The presence of metastatic cells in the sentinel lymph node is a prognostic indicator for many types of cancer, and the degree of dissemination determines the therapeutic course of action. Lymphangiogenesis is currently at the frontier of metastasis research. Recent strides in this field have uncovered numerous signaling pathways specific for lymphatic endothelial cells and vascular endothelial cells. This review will provide an overview of tumor lymphangiogenesis and current strategies aimed at inhibiting lymphatic metastasis. Novel therapeutic approaches that target the tumor cells as well as the vascular and lymphatic endothelial compartments are discussed.  相似文献   

19.
淋巴管生成的分子机制与恶性肿瘤的转移   总被引:1,自引:0,他引:1  
长期以来一直认为淋巴管是恶性肿瘤转移的有效途径;但是,关于淋巴管内皮细胞的特异性标记物缺乏一致的资料,而且,恶性肿瘤内是否存在新生淋巴管也一直有争议。直到最近,发现了新的淋巴管内皮细胞标记物,在肿瘤的动物模型以及人类肿瘤中均发现了新生淋巴管,对于VEGF-C、D/VEGFR-3信号途径的深入了解,因此淋巴管生成在肿瘤转移中的相关研究得以深入进行。越来越多的研究资料表明,淋巴管生成同肿瘤的转移播散、肿瘤患者的预后等直接相关。现将淋巴管生成的分子机制以及其与肿瘤转移的相关研究进展综述。  相似文献   

20.
Potential therapeutic strategies for lymphatic metastasis   总被引:2,自引:0,他引:2  
Physiologically, the lymphatic system regulates fluid volume in the interstitium and provides a conduit for immune cells to travel to lymph nodes, but pathologically, the lymphatic system serves as a primary escape route for cancer cells. Lymphatic capillaries have a thin discontinuous basement membrane, lack pericyte coverage and often contain endothelial cell gaps that can be invaded by immune cells (or tumor cells). In addition, tumor cells and stromal cells in the tumor microenvironment secrete factors that stimulate lymphangiogenesis, the growth of lymphatic endothelial cells and the sprouting of lymphatic capillaries. As a result, many tumors are surrounded by large, hyperplastic, peri-tumoral lymphatic vessels and less frequently are invaded by intra-tumoral lymphatic vessels. Carcinoma cells commonly metastasize through these lymphatic vessels to regional lymph nodes. The presence of metastatic cells in the sentinel lymph node is a prognostic indicator for many types of cancer, and the degree of dissemination determines the therapeutic course of action. Lymphangiogenesis is currently at the frontier of metastasis research. Recent strides in this field have uncovered numerous signaling pathways specific for lymphatic endothelial cells and vascular endothelial cells. This review will provide an overview of tumor lymphangiogenesis and current strategies aimed at inhibiting lymphatic metastasis. Novel therapeutic approaches that target the tumor cells as well as the vascular and lymphatic endothelial compartments are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号