首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 833 毫秒
1.
Morphological and pharmacological data suggest that catecholaminergic neurons receive afferent axons positively labeled for the peptides, substance P and [Met5]enkephalin. In the present study, electron microscopic immunocytochemistry was used to determine whether a positive reaction for these peptides could be localized to axon terminals forming synapses with catecholaminergic neurons in the locus coeruleus and A2 regions of rat brain. Adjacent sections through these areas were incubated with antiserum to either substance P, [Met5]-enkephalin, or tyrosine hydroxylase, a specific marker for catecholaminergic neurons. The sections were subsequently processes by the peroxidase-antiperoxidase immunocytochemical technique. In both the locus coeruleus and A2 region, tyrosine hydroxylase was localized primarily to perikarya and dendrites of intrinsic neurons; whereas substance P and enkephalin-like immunoreactivity was localized to axons and axon terminals. The axon terminals showing positive reactions for substance P and [Met5]-enkephalin were morphologically similar to each other and to one type of axon terminal which formed synapses with dendrites labeled for tyrosine hydroxylase. This type of axon terminal always formed asymmetric synaptic junctions and contained 3–4 large (75–100 nm) dense vesicles (LDVs) and many small (40–60 nm) clear vesicles (SCVs). The reaction product for substance P and [Met5]-enkephalin was distributed throughout the lumen of the LDVs and formed a rim of labeling around the outer boundaries of the SCVs. These findings demonstrate that substance P and [Met5]-enkephalin-positive reactions are selectively localized to subcellular organelles in axon terminals in the locus coeruleus and A2 region of rat brain. They further suggest that the labeled axon terminals form synapses with dendrites of the catecholaminergic neurons.  相似文献   

2.
Methionine (Met5)-enkephalin has been implicated in autonomic functions involving vagal reflexes within the nucleus of the solitary tract (NTS). We examined the light and electron microscopic relationships between neurons containing methionine (Met5)-enkephalin-like immunoreactivity (MELI) and vagal afferents and motor dendrites in the rat NTS. A polyclonal antibody raised against Met5-enkephalin and showing maximal cross-reactivity with this peptide was localized by immunoautoradiography. In the same sections, vagal afferents and motor neurons were identified by histochemical detection of anterogradely and retrogradely transported horseradish peroxidase (HRP). By light microscopy, the MELI was detected in perikarya distributed principally in the dorsomedial, intermediate and parasolitary subdivisions of the NTS. These subnuclei as well as medial and commissural divisions of the NTS also showed: (1) aggregates of silver grains thought to overlie terminals containing MELI, and (2) anterogradely transported HRP in varicose processes. Electron microscopic analysis of the dorsomedial NTS at the level of the area postrema established that MELI was detectable in perikarya, dendrites, and axon terminals. Most of the MELI was associated with large dense core vesicles (dcvs). These opioid terminals formed primarily symmetric synapses on proximal and asymmetric synapses on distal dendrites. Analysis of the dendritic targets of terminals containing MELI revealed that 13/222 were in synaptic contact with dendrites also containing MELI. The remainder of the terminals containing MELI either lacked recognized junctions or formed synapses with unlabeled dendrites. In comparison to the terminals containing MELI in the same series of sections, anterogradely labeled vagal terminals extensively formed asymmetric junctions with distal dendrites and spines. Of the observed anterogradely labeled terminals 6/84 formed synapses with dendrites containing MELI and 3/84 with dendrites containing retrogradely transported HRP. The remainder of the junctions were with dendrites lacking detectable immunoautoradiographic or HRP-labeling. The majority of the recognized synapses on labeled dendrites were at more proximal sites possibly reflecting more limited detection of both MELI and retrogradely transported HRP in smaller dendrites. However, the presence of even a few junctions at proximal sites on dendrites where synaptic transmission is known to be more effective suggests a potentially strong modulation of both opioid and vagal motor neurons by visceral afferents in the NTS. In addition to forming synapses on dendrites, both vagal afferents and terminals containing MELI showed frequent synaptic associations with unlabeled terminals, but not with each other. This finding suggests that the previously demonstrated opiate binding sites on vagal afferents is most likely attributed to other endogenous opiates.  相似文献   

3.
The specific labeling of opioid receptor-related polypeptides was compared in two cell lines which differ in their opioid receptor population: SK-N-SH which contains predominantly μ-type opioid receptors, and NG-108-15, which contains exclusively δ-type opioid receptors. Labeling of opioid receptors was achieved by affinity cross-linking of membranes, using 125I-labeled human ß-endorphin, followed by solubilization in sodium dodecyl sulphate (SDS), SDS-gel electrophoresis and autoradiography. Different labeling patterns were obtained from these two cell lines. In SK-N-SH cells, 3 major proteins were labeled, corresponding to molecular weights of 92, 65 and 25 kDa, while in the NG-108-15 cells, 53-kDa and 25-kDa polypeptides were the major ones labeled. The radioactivity incorporated into the 92- and 65-kDa peptide bands derived from SK-N-SH cells was displayed by the μ-selective ligand Tyr- -Ala-Gly-MePhe-Gly-ol (DAGO) but not by the δ-selective ligand [ -Pen2, -Pen5]enkephalin (DPDPE). The radioactivity incorporated into the NG-108-15-derived peptide bands was displaced by the δ-selective ligand, but not by the μ-selective ligand. This confirms our previous finding in mammalian brain which demonstrated that μ- and δ-opioid binding sites can be identified as distinct proteins which differe in molecular size.  相似文献   

4.
Locomotor activity was investigated following microinjections of receptor-selective opioid agonists into the ventral pallidum (VP) of rats. In Expt. 1, male Long-Evans rats were treated with unilateral microinjections of the μ agonist [d-Ala2-MePhe4, Gly-ol5]-enkephalin (DAGO), the σ agonist [d-Pen2,d-Pen5]-enkephalin (DPDPE) or the κ agonist U50,488H, and the rate and duration of circling behavior were measured. DAGO (0.01, 0.1, 1.0 nmol) procedure a dose-dependent increse in contralateral circling; pretreatment with 1.0 mg/kg naltrexone blocked the circling induced by the highest dose. The behavioral effect was largest when injections were targeted at the VP rather than structures dorsal to the VP. In contrast to DAGO, intrapallidal DPDPE (0.01, 0.1, 1.0, 10.0 nmol) produced a slight increase in contralateral circling only at the highest dose and U50, 488H (0.01, 0.1, 1.0, 10.0 nmol) produced no effect. In Expt. 2, the effects of bilateral injections of DAGO, DPDPE and U50,488H were tested in photocell activity ☐es. DAGO produced a dose-dependent increase in locomotor activity and this increase was decreased by 1.0 mg/kg naltrexone. A slight increase in activity was observed with the highest dose of DPDPE, and a slight decrease was observed with the highest dose of U50,488H. These findings confirm that opiate actions in the VP contribute to opiate-induced locomotion and suggest that μ and to some extent σ receptors are involved in this behavior.  相似文献   

5.
The endogenous opioids and their receptors are known to play a major role in neoplasia. In the present study, naltrexone (NTX), a potent opioid antagonist, was utilized to explore the interactions of opioids and opioid receptors in mice with transplanted neuroblastoma (S20Y). Tumors from mice subjected to either intermittent (4–6h/day; 0.1 mg/kg NTX) or complete (24 h/day; 10 mg/kg NTX) opioid receptor blockade exhibited an up-regulation of DADLE and Met-enkephalin binding sites, as well as tissue levels of β-endorphin and Met-enkephalin. Binding affinity to [ -Ala2, -Leu5]enkephalin (DADLE) or ethylketocyclazocine (EKC), the levels of plasma β-endorphin, and the anatomical location and quantity of Met- and Leu-enkephalin and cytoskeletal components (i.e. tubulin, actin, brain spectrin(240/235)) were similar in NTX and control tumor-bearing animals. Tissue viability of the 0.1 NTX group was increased compared to controls. Both mitotic and labeling indexes were increased during the period of opioid receptor blockade, but decreased in the period subsequent to receptor blockade. NTX treatment produced a 2-fold increase in sensitivity to opioids. Met-enkephalin (10 mg/kg) produced a depression in both mitotic and labeling indexes in tumor-bearing mice that could be reversed by naloxone (10 mg/kg) administration. Thus, the endogenous opioids are trophic agents that inhibit growth by suppressing cell proliferation. The duration of receptor blockade by opioid antagonists modulates these actions, affecting both tumor incidence and survival time. Complete opioid receptor block prevents the interaction of increased levels of putative growth-related peptides with a greater number of opioid receptors, thereby increasing cell proliferation and accelerating tumor growth. With intermittent blockade, an enhanced opioid-receptor interaction occurs during the interval when the opioid antagonist is no longer present, producing an exaggerated inhibitory action on cell proliferation and the repression of tumorigenic events.  相似文献   

6.
Endogenous opioids and opioid receptors (i.e. endogenous opioid systems) are expressed during neural ontogeny, and play a role in the development of the nervous system. Using [3H][Met5]-enkephalin, a potent ligand involved in neural growth, particularly cell proliferation, specific and saturable binding was detected in homogenates of 6-day-old rat cerebellum; the data were consistent with a single binding site. Scatchard analysis yielded a binding affinity (Kd) of 2.2 nM and a binding capacity (Bmax) of 22.3 fmol/mg protein. Binding was linear with protein concentration, dependent on time, temperature, and pH, and was sensitive to Na+, Mg2+, and guanyl nucleotides. Optimal binding required protease inhibitors, and pretreatment of the homogenates with trypsin markedly reduced binding, suggesting that the binding site was proteinaceous in character. The [Met5]-enkephalin binding site was an integral membrane protein located in the nuclear fraction. Competition experiments indicated that [Met5] enkephalin was the most potent displacer of [3H][Met5]-enkephalin, and that binding was stereospecific. In the adult rat cerebellum, non-opioid receptor binding of [3H][Met5]-enkephalin was recorded, mu and kappa receptors were also found in the developing rat cerebellum, while mu, delta, and kappa receptors were recorded in adult cerebellar tissue. The function, pharmacological and biochemical characteristics, subcellular distribution, and temporal expression of the [Met5]-enkephalin binding site suggest the presence of a unique opioid receptor, termed zeta (zeta), in the developing nervous system.  相似文献   

7.
In the present work we have studied the postnatal development of functional dopamine, opioid and tachykinin receptors, which regulate cholinergic activity in the neostriatum. The release of endogenous acetylcholine from rat striatal slices was measured using a chemiluminescent method. We have observed that the inhibition mediated by dopamine through D2 receptors was not detectable until postnatal day 10, whereas the inhibition mediated by opioid receptors was detectable at postnatal day 15 for δ-receptors ([D-Pen2, D-Pen5]-enkephalin) and at postnatal day 21 for μ-receptors ([D-Ala2, Gly(ol)5]-enkephalin). Excitatory effect mediated by tachykinins through NK1 ([Sar9, Met(O2)11]-Substance P), NK2 ([Nle10]-Neurokinin A4–10), or NK3 (senktide) receptors was already detectable at postnatal day 5.

In order to examine the influence of dopamine in the development of tachykinin and opioid systems in the neostriatum, we induced dopamine deficiency by intraventricular injection of 6-hydroxydopamine at postnatal day 3. We observed an increase in senktide-evoked acetylcholine release at postnatal day 30. The effect produced by [Sar9, Met(O211]-Substance P and [Nle10]-Neurokinin A4–10 was not modified. Furthermore, at postnatal day 35, we could observed that the two opioid receptor agonists have no effect.

Our results show that dopamine, tachykinins and opioids are already able to mediate the modulation of acetylcholine release in early stages of development with a different pattern of postnatal development. Furthermore, the integrity of a dopaminergic system plays an important role in the functional development of the neostriatal cholinergic neurons which are differentially modulated by opioids or tachykinins.  相似文献   


8.
Kim HS  Choi HS  Lee SY  Oh S 《Brain research》2000,880(1-2):28-37
In the present study, we have investigated the effects of prolonged inhibition of NMDA receptor by infusion of subtoxic dose of MK-801 to examine the modulation of GABAA receptor binding and GABAA receptor subunit mRNA level in rat brain. It has been reported that NMDA-selective glutamate receptor stimulation alters GABAA receptor pharmacology in cerebellar granule neurons in vitro by altering the levels of selective subunit. However, we have investigated the effect of NMDA antagonist, MK-801, on GABAA receptor binding characteristics in discrete brain regions by using autoradiographic and in situ hybridization techniques. The GABAA receptor bindings were analyzed by quantitative autoradiography using [3H]muscimol, [3H]flunitrazepam, and [35S]TBPS in rat brain slices. Rats were infused with MK-801 (1 pmol/10 μl per h, i.c.v.) for 7 days, through pre-implanted cannula by osmotic minipumps (Alzet, model 2ML). The levels of [3H]muscimol binding were highly elevated in almost all of brain regions including cortex, caudate putamen, thalamus, hippocampus, and cerebellum. However, the [3H]flunitrazepam binding and [35S]TBPS binding were increased only in specific regions; the former level was increased in parts of the cortex, thalamus, and hippocampus, while the latter binding sites were only slightly elevated in parts of thalamus. The levels of β2-subunit were elevated in the frontal cortex, thalamus, hippocampus, brainstem, and cerebellar granule layers while the levels of β3-subunit were significantly decreased in the cortex, hippocampus, and cerebellar granule layers in MK-801-infused rats. The levels of 6- and δ-subunits, which are highly localized in the cerebellum, were increased in the cerebellar granule layer after MK-801 treatment. These results show that the prolonged suppression of NMDA receptor function by MK-801-infusion strongly elevates [3H]muscimol binding throughout the brain, increases regional [3H]flunitrazepam and [35S]TBPS binding, and alters GABAA receptor subunit mRNA levels in different directions. The chronic MK-801 treatment has differential effect on various GABAA receptor subunits, which suggests involvement of differential regulatory mechanisms in interaction of NMDA receptor with the GABA receptors.  相似文献   

9.
The opioid μ-agonist morphine, the δ-agonist [ -Ala2, -Leu5]enkephalin (DADL) and the κ-agonist bremazocine locally applied to the surface of turtle visual cortex inhibited the orthodromic evoked potential (EP; fast negative component N1). After application of the σ-agonist SKF 10.047 the inhibition was followed by facilitation of EP. The lack of cross-desensitization to the inhibitory action of opioids upon EP indicates that the drugs exert their effects via different opioid receptors. Bremazocine and morphine predominantly inhibited the left cortical EP, whereas DADL was a potent inhibitor of the right cortical EP. Thus, the opioid receptors which modulate evoked electrical activity of the left visual cortex (LVC) apparently belong mostly to the κ- and μ-type, while σ-receptors were predominantly responsible for the modulation of electrical activity in the right visual cortex (RVC). Besides, we have studied in vivo binding of the κ-agonist [3H]ethylketocyclazocine ([3H]EKC) and the σ-agonist [3H]DADL to LVC and RVC. The binding was specific and could be accounted for by the interaction with membrane opioid receptors and/or specific uptake of these drugs by cortex cells. [3H]EKC and [3H]DADL exhibited a more effective binding to LVC and RVC membranes, respectively. The results obtained in vitro apparently indicate that LVC and RVC differ in the number of κ- and σ-binding sites. Thus, turtle brain may have a side-specific mechanism for selective neurochemical regulation of neuron activity in LVC and RVC realized predominantly via κ- and σ-receptor, respectively.  相似文献   

10.
The role of endogenous opioids and opioid receptors (endogenous opioid systems) in modulating cell proliferation in the developing mammalian retina was examined in 1-day-old rats. In contrast to a labeling index (LI) of 35.8% in control animals, administration of the opioid peptide [Met5]-enkephalin (100 micrograms/kg) significantly reduced (10.6%) the proportion of cells incorporating [3H]thymidine; concomitant injection of 1 mg/kg naloxone blocked the inhibitory effects of [Met5]-enkephalin on cell division. Naloxone (1 mg/kg) alone did not alter the LI. The interruption of endogenous opioid-opioid receptor interaction by naltrexone (50 mg/kg), a potent opioid antagonist, was accompanied by a significant increase (6.4%) in the LI relative to control levels. Immunocytochemical experiments revealed the presence of enkephalin-like immunoreactivity, with staining of the cortical cytoplasm of proliferating and differentiating retinal cells recorded; no immunoreactivity was noted in the adult retina. In vitro autoradiography using 125I-[Met5]-enkephalin indicated that [Met5]-enkephalin binding sites were localized to the developing retina; no binding of the radiolabeled ligand was recorded in the adult retina. These results demonstrate the presence of growth-related endogenous opioids and opioid receptors in the developing mammalian retina, but not in adult retina, and suggest that endogenous opioids serve as natural inhibitory trophic factors that tonically regulate cell proliferation.  相似文献   

11.
The accumulation of tritium during incubation with [3H]choline and the subsequent efflux of tritium were studied in striatal slices from non-operated rats, in striatal slices from animals which had received a contralateral striatal ibotenic acid lesion, and in slices from striato-striatal suspension grafts, 16–31 weeks after implantation into previously lesioned striata. In graft slices, the accumulation of tritium as well as the overflow of tritium evoked by electrical stimulation (360 pulses, 3 Hz) was much smaller than in slices from non-operated controls. The muscarine receptor agonist oxotremorine (0.1–1 μmol/l) inhibited the stimulation-evoked overflow, and this effect was blocked by the muscarine receptor antagonists atropine (0.1 μmol/l) and pirenzepine (1 μmol/l) in all experimental groups to the same extent. The δ-receptor selective opioid peptide [d-Pen2, d-Pen5]enkephalin (0.3 μmol/l) inhibited [3H]acetylcholine release in all groups, although its effect was smaller in grafts than in normal tissue. The preferential μ-receptor agonist [d-Ala2, N-methyl-Phe4,Gly-ol5]enkephalin also reduced [3H]acetylcholine release in all groups, but only at the high concentration of 10 μmol/l. The effect of both drugs was antagonized by naloxone (1 μmol/l). The preferential к-receptor agonist ethylketocyclazocine enhanced the stimulation-evoked overflow in non-operated animals, an effect abolished by naloxone and also by sulpiride. In grafts, ethylketocyclazocine caused no change. It is concluded that acetylcholine release in striato-striatal grafts can be modulated by muscarine autoreceptors and by opioid δ receptors. The enhancement by к-receptor activation of [3H]acetylcholine release in non-operated striata depends on a dopaminergic input to the cholinergic cells which does not exist in grafts.  相似文献   

12.
Active opioid receptors have been solubilized from bovine striatal synaptosomal membranes and purified approximately 4000-fold using a combination of affinity and hydroxyapatite chromatography. The affinity column was constructed by attaching hybromet, a newly synthesized opioid ligand with high affinity for the μ receptor, to a solid support matrix. A polyclonal antibody was generated to opioid receptors by injection of the purified receptor preparation into female New Zealand rabbits. The specificity of the antiserum was demonstrated by receptor competition and immunoprecipitation studies. Immunological titration of opioid binding activity from rat brain showed that the antibody was able to displace specific binding of [3H]etorphine (universal opioid) and [3H]dihydromorphine (μ opioid) from rat membranes, but was ineffective against the binding of [3H]ethylketocyclazocine (κ opioid), [3H]d-Ala2,d-Leu5-enkephalin (δ opioid) or [3H]phencyclidine (phencyclidine/σ receptor ligand). The antibody was able to precipitate the Mr 94 000 component of the 125I-labeled affinity-purified receptor, a finding which suggests that this subunit may be an opioid recognition component. By indirect immunofluorescence, the antibody was shown to bind specifically to the plasma membranes of the neurotumor cell line NCB-20 (neuroblastoma × Chinese hamster brain hybrid cells), which has high affinity opioid receptors. The observed fluorescence in the neuroblastoma cells was prevented by pre-adsorption of the antibody with purified receptor from rat brain. These results indicate that the antibody is specific for opioid receptors and may prove useful in the precise localization of opioid receptors in the central and peripheral nervous systems by immunohistochemical procedures.  相似文献   

13.
Essex DW  Li M 《Thrombosis research》1999,96(6):1345-450
Monoclonal mouse antiplatelet antibodies against a variety of platelet surface components can activate platelets, causing platelet aggregation and secretion. The mechanism involves binding of the Fab domain to a platelet surface antigen, and the activation occurs through an interaction of the Fc domain with the platelet FcγRII receptor. There is almost no information on FcγRII receptor-dependent activation of platelets by polyclonal rabbit antibodies. We presently report that a polyclonal rabbit antibody to a platelet surface antigen, protein disulfide isomerase, induces platelet aggregation and secretion. These effects are seen with concentrations of the antiprotein disulfide isomerase antibody as low as 25 to 40 μg/mL. Fab and F(ab′)2 preparations of the rabbit antiprotein disulfide isomerase antibody do not cause aggregation. Fab made from the rabbit antiprotein disulfide isomerase antibody as well as a monoclonal antibody to the FcγRII (IV.3) receptor block the aggregation and secretion responses. Aggregation and secretion are inhibited by an antiglycoprotein IIbIIIa antibody, which blocks fibrinogen binding and wortmannin, an inhibitor of phosphoinositide 3-kinase. Aspirin, prostaglandin E1, and Ethylenediaminetetraacetic acid (EDTA) also block the platelet responses. These data suggest that activation of platelets by polyclonal antibodies occurs by mechanisms similar to those found with activating monoclonal antibodies.  相似文献   

14.
To localize and quantify the state-dependent changes in various opioid receptor subtypes in the limbic system of non-hibernating and hibernating Columbian ground squirrels, quantitative receptor-binding autoradiography was used. Compared to the non-hibernating animals, the binding density of [3H]-[d-Pen2,5]-enkephalin (DPDPE) to the δ receptor in the lateral septum, CA3, and the hippocampal fissure of the hippocampal formation was significantly decreased in the hibernating ground squirrels. A significant reduction in the binding density of [3H]-[d-Ala2,N-Me-Phe4,Gly-ol5]-enkephalin (DAGO) to μ receptor was also observed in the medial septum and the CA3 region of the hippocampus of the hibernating animals. In contrast, a decrease in [3H]ethylketocyclazocine (EKC) binding to the κ receptor was only observed in the claustrum and CA3 of the hippocampus during hibernation. The differential changes in binding to various opioid receptors suggest that different opioid subtypes may exert different physiological roles in regulating the specific states (entrance, maintenance and arousal) of a hibernation bout.  相似文献   

15.
The effect of opioids on synaptic potentials of dorsal horn (DH) neurons has been investigated in a rat spinal cord DH slice-dorsal root ganglion (DRG) in vitro preparation. Conventional intracellular recording from DH and DRG neurons using 3 M potassium acetate-filled electrodes was employed. Dorsal roots were electrically isolated from the spinal cord slice and stimulated with pulses of different intensity and duration to evoke afferent action potentials monitored intracellularly from DRG neurons. Low-intensity single-shock stimulation of the dorsal roots (8–20 V pulses of 0.02–0.05 ms duration) activated large primary afferents and elicited excitatory postsynaptic potentials (EPSP) in all of the neurons tested. High-intensity stimulation of the dorsal roots (over 35 V pulses of 0.5 ms duration), sufficient to excite small myelinated and unmyelinated primary afferents resulted in a large and prolonged depolarization of DH neurons associated with firing of action potentials. Bath application (d-Ala2, N-Me-Phe4,Gly5-ol)-enkephalin (DAGO), (d-Ala2, d-Leu5)-enkephalinamide (DADLEA), or (d-Ala2, d-Met5)-enkephalinamide (DADMEA) produced dose-dependent, reversible hyperpolarization in about 75% of the neurons tested. The hyperpolarization was associated with a fall in neuronal input resistance. In addition, opioids depressed the synaptic transmission in all of the neurons examined. This depressant effect of opioids was independent from their effects on resting membrane potential. Delta specific receptor opioid agonists (d-Pen2.5)-enkephalin (DPDPE) and (d-Pen2, l-Pen5)-enkephalin (DPLPE), were completely ineffective in producing an effect on neuronal membrane or synaptic transmission. All opioid effects were antagonized by naloxone.  相似文献   

16.
Digitonin is widely used for extracting active neurotransmitter receptors from membranes. However, its low critical micellar concentration has made its removal from samples problematic. Here we report that digitonin can be efficiently removed (> 90%) from solution using Extracti-GelTM D, a detergent-absorbing matrix. Active Kl opioid receptors solubilized from brain survive Extracti-GelTM D chromatography with a recovery of 50–55% and 25% dilution by added volume. The loss of receptor and the dilution, however, are compensated for to a large extent by the disinhibition of binding that results from the removal of digitonin. Extracti-GelTM D chromatography had little or no effect on the apparent equilibrium dissociation constant for [3H]U-69,593 binding to the Kl receptor. We conclude that Extracti-GelTM D column chromatography is a simple, highly efficient and practical method for markedly reducing the concentration of digitonin in biological samples. Application of the procedure should allow characterization of digitonin-solubilized receptors with minimal complications from bound digitonin and extend the usefulness of digitonin to studies going beyond the initial stages of receptor purification.  相似文献   

17.
The native opioid peptide, [Met5]-enkephalin (termed opioid growth factor (OGF)), is a tonically active negative growth factor targeted to cell proliferation in the developing nervous system. OGF action is mediated by the OGF receptor (OGFr). The present study investigates gene expression of OGFr in the developing and adult brain and cerebellum of the rat using Northern blot analysis and normalization to GAPDH. OGFr was detected in whole brain at embryonic day 20 and birth, and was at least twofold greater than neonatal levels during the first week of life. From postnatal day 15 onwards to adulthood, levels of OGFr mRNA in the whole brain were detectable but less than those at birth. OGFr mRNA in cerebellum was found on embryonic day 20, and remained relatively constant until postnatal day 12 when a sharp increase was recorded. In the third week of life and continuing into adulthood, cerebellar OGFr mRNA was detected at levels comparable to those in postnatal week 1. These results show that message for OGFr is developmentally regulated prior to and after birth, is ubiquitously expressed during development, and is present in the adult brain and cerebellum even though OGF receptor binding is not recorded.  相似文献   

18.
Opioid peptides act as growth factors in neural and non-neural cells and tissues, in addition to serving for neurotransmission/neuromodulation in the nervous system. The native opioid growth factor (OGF), [Met5]-enkephalin, is a tonic inhibitory peptide that plays a role in cell proliferation and tissue organization during development, cancer, cellular renewal, wound healing, and angiogenesis. OGF action is mediated by a receptor mechanism. Assays with radiolabeled OGF have detected specific and saturable binding, with a one-site model of kinetics. Subcellular fractionation studies show that the receptor for OGF (OGFr) is an integral membrane protein associated with the nucleus. Using antibodies generated to a binding fragment of OGFr, this receptor has been cloned and sequenced in human, rat, and mouse. OGFr is distinguished by containing a series of imperfect repeats. The molecular and protein structure of OGFr have no resemblance to that of classical opioid receptors, and have no significant homologies to known domains or functional motifs with the exception of a bipartite nuclear localization signal. Immunoelectron microscopy and immunocytochemistry investigations, including co-localization studies, have detected OGFr on the outer nuclear envelope where it interfaces with OGF. The peptide–receptor complex associates with karyopherin, translocates through the nuclear pore, and can be observed in the inner nuclear matrix and at the periphery of heterochromatin of the nucleus. Signal transduction for modulation of DNA activity is dependent on the presence of an appropriate confirmation of peptide and receptor. This report reviews the history of OGF–OGFr, examines emerging insights into the mechanisms of action of opioid peptide–receptor interfacing, and discusses the clinical significance of these observations.  相似文献   

19.
The endogenous opioid peptide enkephalin (EK) is known to be degraded mainly by two enzymes, the depeptidyl car☐ypeptidase ‘enkephalinase’ and aminopeptidase. Microinjection of the enkephalinase inhibitor thiorphan or the aminopeptidase inhibitor bestatin into the nucleus accumbens of the rabbit produced a dose-dependent analgesic effect. This analgesic effect was totally reversed by the narcotic antagonist naloxone or by antibodies against [Met5]enkephalin (MEK) administered to the same site. Antibodies against [Leu5]enkephalin were not effective. Moreover, microinjection of thiorphan or bestatin into the nucleus accumbens resulted in a marked potentiation of the aftereffect of electroacupuncture (EA) produced analgesia, as well as the analgesia induced by a small dose of morphine. It is concluded that the analgesic effect elicited by EA and morphine is mediated, at least in part, by MEK-like immunoreactive substance(s) in the nucleus accumbens.  相似文献   

20.
Ventricular microinjection studies found that whereas μ (β-funaltrexamine, B-FNA), μ1 (naloxonazine) and κ (nor-binaltorphamine, Nor-BNI) opioid receptor antagonists, but not δ antagonists, reduce deprivation-induced intake, κ and μ, but not μ1 or δ antagonists reduce both 2-deoxy- d-glucose (2DG) hyperphagia and sucrose intake. Since opioid agonists stimulate spontaneous food intake in the accumbens, the present study examined whether administration of either naltrexone, B-FNA or Nor-BNI in the accumbens altered intake under deprivation (24 h), glucoprivic (2DG: 500 mg/kg, i.p.) or palatable sucrose (10%) conditions. Naloxonazine's effects in the accumbens were also evaluated for deprivation-induced intake. Deprivation-induced intake was significantly decreased over 4 h by naltrexone (5–20 μg, 44%), B-FNA (1–4 μg, 55%) and Nor-BNI (4 μg, 31%), but not naloxonazine (10 μg) in the accumbens. 2DG hyperphagia was significantly decreased by naltrexone (10–20 μg, 79%), B-FNA (1–4 μg, 100%) and Nor-BNI (1–4 μg, 75%) in the accumbens. Sucrose intake was significantly decreased by naltrexone (50 μg, 27%) and B-FNA (1–4 μg, 37%), but not Nor-BNI in the accumbens. These data suggest that μ receptors, and particularly the μ2 binding site in the accumbens are responsile for the opioid modulation of these forms of intake in this nucleus, and that this control may be acting upon the amount of intake per se.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号