首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Infusions of norepinephrine (NE), the gamma-aminobutyric acid agonist, muscimol (MUS), or neuropeptide Y (NPY) into the paraventricular nucleus (PVN) of the hypothalamus all increase food intake. Such feeding may be due to direct activation of behavioral processes driving ingestion and/or to alterations in nutrient metabolism that feeding serves to normalize. To examine these possibilities, male Sprague-Dawley rats received PVN infusions of vehicle, 20 nmol NE, 1 nmol MUS or 100 pmol NPY at dark onset, then food intake was measured under three feeding conditions: (1) 1 and 2 h immediately after injections, (2) 1 h after a 1 h delay between injections and access to food, and (3) 1 h after a 1 h feeding delay, but with injections occurring just before presenting food. Measures of energy expenditure (EE) and respiratory quotients (RQs) in the absence of food were made over 2 h in parallel experiments. Results confirmed that NE, MUS and NPY all increased dark-onset feeding, but only NPY increased intake above control levels after a 1 h feeding delay. No neurochemically-induced changes in EE were observed, nor were there changes in RQs after NE or MUS. However, NPY reliably enhanced RQs from 30 to 120 min of testing. Our findings imply that NE and MUS initiate relatively immediate, short-term feeding that is not associated with changes in nutrient metabolism and does not summate with cues stimulated by delayed access to food. NPY initiates more protracted feeding temporally linked to enhanced carbohydrate metabolism. This may indicate that part of NPY's feeding stimulatory effects are secondary to physiological processes driving ingestion.  相似文献   

2.
Recent evidence suggests that neuropeptide Y (NPY) is an important signal in the neural circuitry that controls feeding behavior. Previously we observed that in rats entrained to 4 h daily scheduled feeding regimen (SFR), NPY content and release in the paraventricular nucleus (PVN) was elevated but decreased rapidly in association with food consumption. In the present study, we investigated the pattern of hypothalamic NPY gene expression in SFR rats before and after food consumption by measuring the content of preproNPY mRNA in the medial basal hypothalamus (MBH). Adult male rats were maintained on either ad libitum diet (control) or on SFR. Rats were killed before food presentation at 11.00 h and at the end of 4 h food consumption at 15.00 h. The levels of preproNPY mRNA in the MBH were determined by solution hybridization/RNase protection assay using a cRNA probe complementary to rat NPY precursor mRNA. We observed that, as compared to that in control rats on ad libitum diet, preproNPY mRNA levels in the MBH were increased two-fold in the SFR rat at 11.00 h and remained elevated even after 4 h of food consumption. These results show a simultaneous enhancement in PVN NPY release and hypothalamic gene expression in advance of scheduled feeding time, but food intake rapidly decreases PVN NPY release and content, with little impact on hypothalamic gene expression.  相似文献   

3.
Administration of neuropeptide Y (NPY) intracerebroventricularly (i.c.v.) results in the release of a number of hypothalamic and pituitary hormones and stimulation of feeding and suppression of sexual behavior. In this study, we sought to identify cellular sites of NPY action by evaluating perikaryal Fos-like immunoreactivity (FLI), a marker of cellular activation, in those hypothalamic and extrahypothalamic sites previously implicated in the control of neuroendocrine function and feeding behavior. Additionally, we compared the topography of FLI in these brain sites when food was either available ad libitum or withheld after NPY injection (1 nmol/3 μl, i.c.v.). The results showed that one hour after NPY injection a large number of cells in the parvocellular region of the paraventricular nucleus (PVN) were FLI-positive in the absence of food consumption. However, in association with food intake, a significant number of cells were intensely stained in the magnocellular region of the PVN. An analogous increase in FLI in association with feeding was apparent in the supraotic nucleus (SON), the dorsomedial nucleus and the bed nucleus of the stria terminalis in the hypothalamus. Anong the extrahypothalamic sites, feeding facilitated FLI in a large number of cells located in the lateral subdivision of the central amygdaloid nucleus and the lateral subdivision of the solitary tract. FLI was observed in a moderate number of cells in the hypothalamic arcuate nucleus (ARC) and ventromedial nucleus, and this response was not changed by feeding. Cumulatively, these results show that neurons in a number of discrete hypothalamic and extrahypothalamic sites, previously implicated in the control of neuroendocrine function and feeding behavior, are activated by NPY and further, a divergent pattern of c-fos expression emerged in some of these sites if feeding occurs after NPY injection. Stimulation of FLI in cells of the PVN, SON and ARC by NPY imply the presence of NPY target cells that play a role in the neuroendocrine control of pituitary function. The finding that NPY induced FLI in cells located in the parvocellular subdivision of the PVN even in the absence of feeding, imply that cells involved in initiation of food intake by NPY may reside in this subdivision of the PVN. On the other hand, the appearance of Fos-cells in the magnocellular subdivision of the PVN in response to feeding, suggests neural mechanisms that operate during the post-ingestion period, including those associated with termination of NPY-induced feeding, may impinge upon this subdivision of the PVN.  相似文献   

4.
The effect of lateral cerebroventricular injection of the appetite-stimulating neuropeptide, orexin and neuropeptide Y (NPY), on the behavior of rats was investigated. An immediate increase in face washing activity was observed after injection of orexin A or orexin B, but not NPY. Orexin A had a more potent effect on face washing behavior than orexin B. Grooming and burrowing activities also increased significantly after injection of orexin A, whereas, orexin B significantly increased burrowing and searching behavior. Feeding behavior and food consumption increased dramatically within 10 min of injection of NPY. Although the significant increase in feeding behavior was also observed after injection of orexin A, total food intake did not change significantly. These results suggest that orexin may be involved in the regulation of several other behavioral activities in rats, besides feeding.  相似文献   

5.
Microinjection of colchicine (COL), a neurotoxin that blocks axoplasmic flow in the neurons, bilaterally into the ventromedial nucleus (VMN) evokes transient hyperphagia and body weight gain. These shifts in energy balance occurred in conjunction with development of increased sensitivity to neuropeptide Y (NPY), the endogenous orexigenic signal. In order to trace the aetiology of NPY supersensitivity, we have evaluated (1) NPY Y1 and Y5 receptor (R) gene expression in the hypothalamus and (2) the possibility of alterations in the inhibitory action of leptin, a hormone produced by lipocytes. Adult male rats were rendered hyperphagic with bilateral microinjections of COL (4 μg/side) into the VMN. We observed that hypothalamic NPY Y1 mRNA levels, as measured by RNAase protection assay, were significantly increased on day 2 and returned to the control level on day 4 in COL-injected rats. The effects on NPY Y5R mRNA were not as clear cut. Interestingly, serum leptin levels increased in association with the hyperphagia and body weight gain, thereby raising the likelihood of development of resistance to the suppressive effect of endogenous leptin on food intake. Indeed, intracerebroventricular injection of 7 μg human recombinant leptin, a dose that attenuated daily food intake in normal and fasted rats, was completely ineffective in attenuating hyperphagia in COL-treated rats. These results show that transient hyperphagia induced by interruption of signalling in the VMN may be caused by increased sensitivity to NPY, which may be caused, in part, by increased expression of NPY Y1R in hypothalamic sites involved in regulation of ingestive behaviour. Additionally, the observation of increased leptin release and concurrent development of leptin resistance suggest that a normally functioning VMN may be necessary for the central inhibitory effects of leptin on food intake.  相似文献   

6.
It is well accepted that neuropeptide Y (NPY) plays a pivotal role in the regulation of food intake and energy homeostasis in the rodent, with NPY neurons in the arcuate nucleus (ARH) being thought of as the major contributor to the complex central feeding circuitry. Recent data from our group also indicate that NPY is important in the regulation of energy homeostasis in the nonhuman primate (NHP); exogenous NPY administration into the 3rd ventricle is a potent stimulator of food intake in the male rhesus macaque. The purpose of this study was to determine if NPY neurons in the rhesus macaque respond to a metabolic challenge, induced by 48 h of fasting, in a manner similar to that seen in the rodent. NPY mRNA was detected in hypothalamic sections from 48-h fasted or fed rhesus monkeys by in situ hybridization, using a [35S]UTP-labeled riboprobe specific for human NPY. Not surprisingly, NPY mRNA was abundant in the ARH of the NHP; however, of great interest was the expression of NPY mRNA in neurons within the paraventricular nucleus of the hypothalamus (PVH) and the supraoptic nucleus (SON). This raised the question as to whether all of these populations of NPY neurons are sensitive to changes in energy availability. Indeed, NPY expression in the ARH and PVH was significantly elevated in response to fasting; however, no significant change was detected in the SON. These data indicate that the NPY neurocircuitry involved in the regulation of food intake is more complex in the NHP than in rodents.  相似文献   

7.
Recent evidence suggests that a variety of hypothalamic neuropeptides may mediate interneuronal communication to coordinate diverse neuroendocrine and behavioral functions. In this work, we describe the effects of neuropeptide Y (NPY) on feeding and sexual behaviors. We observed that central administration of bolus NPY stimulated a robust, dose-related feeding response in satiated male and female rats. Continuous NPY receptor activation also evoked dose-related, intermittent feeding in a manner normally observed during nocturnal feeding. It appears that the paraventricular nucleus in the hypothalamus may be the primary site of NPY action because the anticipated reciprocal changes in NPY concentrations, in response to food deprivation followed by ad libitum food intake, occurred only in this site. Additional findings revealed that NPY-induced feeding may follow either substantial reduction or complete restraint of an inhibitory influence on feeding mediated by alpha 2-adrenoreceptor systems in satiated rats. Further, NPY was found to suppress male and female sexual behaviors. The suppressive effects on sexual behavior were apparent prior to or at the time of the onset of feeding after NPY administration. These observations may provide a neurochemical basis for clinical and animal studies on disorders of feeding associated with diminished reproductive functions.  相似文献   

8.
9.
The potent orexigenic peptide neuropeptide Y (NPY) has been considered as a possible endogenous ligand for a subpopulation of sigma receptors (SigR). However, their mutual interaction with reference to feeding behavior remains poorly understood. In the present study, we explored the possible interaction between sigma1 receptors (Sig1R) agonist, pentazocine, and NPY on food intake in satiated rats. While pentazocine dose-dependently reduced the food intake, NPY significantly increased it at 2, 4 and 6 h post injection time points. In combination studies, pretreatment with NPY (0.1 nmol/rat, intra-PVN) normalized the inhibitory effect of pentazocine (60 μg/rat, intra-PVN) on food intake. Similarly, pre-treatment with pentazocine (30 μg/rat, intra-PVN) significantly antagonized the orexigenic effect of NPY (0.5 and 1.0 nmol/rat, intra-PVN). Moreover, pentazocine treatment decreased NPY immunoreactivity in arcuate (ARC), paraventricular (PVN), dorsomedial (DMH) and ventromedial (VMH) nuclei of hypothalamus. However, no change was observed in lateral hypothalamus (LH). Study implicates the reduced NPY immunoreactivity for the anorectic effect observed following pentazocine injections. Therefore, the concomitant activation of the NPYergic system along with the Sig1R agonist treatment may serve a useful purpose in the management of the unwanted side effects related to energy homeostasis.  相似文献   

10.
Orexin-induced food intake involves neuropeptide Y pathway   总被引:6,自引:0,他引:6  
Orexins (orexin-A and -B) are recently identified neuropeptides, which are thought to be implicated in the regulation of feeding behavior. We used a NPY-Y1 receptor specific antagonist, BIBO3304, to examine whether NPY is involved in orexin-induced feeding behavior. Intracerebroventricular administration of orexin-A (10 nmol) induced food intake in rats (food intake for 3 h; vehicle 0.3+/-0.2 g vs. orexin-A 10 nmol, 4.0+/-0.5 g, n=4). Orexin-induced feeding behavior was partially inhibited by prior administration of BIBO3304 (3 h food intake: orexin-A 10 nmol, 4.0+/-0.5 g vs. BIBO3304 (60 microgram) + orexin-A 10 nmol, 2.2+/-0.2 g, n=4). A low dose of BIBO3304 (30 microgram) did not show a significant inhibitory effect. BIBO3457, an inactive enantiomer, used as a negative control, did not show any inhibitory effect on orexin-A-induced feeding behavior. Fos expression was observed in NPY-containing neurons in the arcuate nucleus 1 h after orexin-A (10 nmol) was administered intracerebroventricularly (control 0.3+/-0.08%, orexin-A 10.2+/-0.8%, n=5 rats/group). These observations suggest that NPY is involved in orexin-induced feeding behavior. However, BIBO3304 did not completely abolish the effect of orexin-A. These results suggest that orexin-A elicits feeding behavior partially via the NPY pathway. The NPY system could be the one of downstream pathways by which orexin-A induces feeding behavior. Another pathway may also be involved in orexin-A-induced feeding behavior, because BIBO3304 did not completely abolish orexin-A-induced feeding behavior.  相似文献   

11.
Food intake during the rest phase promotes circadian desynchrony, which has been associated with metabolic diseases. However, the link between circadian rhythm and metabolic alterations is not well understood. To investigate this issue, we explored the circadian rhythm of c‐Fos immunoreactivity (IR) in rats fed during the day, during the night or with free access to food for 3 weeks. The analysis was focused on the hypothalamic nuclei, which are interconnected and involved in the control of energy homeostasis and/or arousal: lateral hypothalamus (LH), perifornical area, arcuate, ventrolateral pre‐optic (VLPO) and tuberomammillary nuclei. The results show that food intake during the rest phase flattened the circadian c‐Fos expression in the LH and perifornical area, and induced a phase shift in the VLPO area. In addition, c‐Fos expression was analyzed in the orexin and melanin‐concentrating hormone (MCH) neurons of the LH, which are involved in the control of food intake and arousal, and in α‐melanin‐stimulating hormone and neuropeptide Y (NPY) cells in the arcuate nucleus, all of which are involved in feeding–fasting cycles, energy homeostasis and sending projections to the LH. The results indicate that feeding during the rest phase decreased orexin neuron activation in the light in comparison with the other groups. Feeding during this phase also flattened the activity rhythm of MCH and α‐melanin‐stimulating hormone neurons and increased NPY IR when the light was turned on. This evidence indicates that mealtime differentially affected the hypothalamic nuclei under investigation leading to a circadian conflict that might account for metabolic impairment.  相似文献   

12.
We have developed a rapid and simple method for quantitative Northern blot analysis of rare messenger RNA species from single mouse hypothalami and adrenals. This technique has allowed us to study the effects of food deprivation on neuropeptide gene expression in the mouse hypothalamus and adrenal gland. The potential modulatory effects of sex and age were also investigated. Food deprivation induced a two-fold increase in the amount of hypothalamic neuropeptide Y (NPY) mRNA, but did not increase NPY mRNA in the brainstem. Age had a significant effect on levels of NPY messenger RNA levels in the hypothalamus. However, there were no gender-associated effects. Sexually immature females (6 weeks old) had higher levels of NPY expression than mature females (9 weeks old). In contrast, in the adrenal gland, increasing maturity was associated with higher levels of NPY mRNA. As in the hypothalamus, fasting caused approximately two-fold increases in NPY mRNA over levels in the ad libitum fed state for both mature and immature mice. Thus, hypothalamic NPY neurons are responsive to nutritional deprivation and developmental status, suggesting that NPY neurons may be important in energy homeostasis.  相似文献   

13.
14.
Corticotropin releasing hormone (CRH) acts on the central nervous system to alter energy balance and influence both food intake and sympathetically-mediated thermogenesis. CRH is also reported to inhibit food intake in several models of hyperphagia including neuropeptide Y (NPY)-induced eating. The recently identified CRH-related peptide, urocortin (UCN), also binds with high affinity to CRH receptor subtypes and decreases food intake in food-deprived and non-deprived rats. The present experiment characterized further the feeding and metabolic effects of UCN by examining its impact after direct injections into the paraventricular nucleus (PVN) of the hypothalamus. In feeding tests (n=8), UCN (50-200 pmol) was injected into the PVN at the onset of the dark cycle and food intake was measured 1, 2 and 4 h postinjection. In separate rats (n=8), the metabolic effects of UCN were monitored using an open circuit calorimeter which measured oxygen consumption (V(O2)) and carbon dioxide production (V(CO2)). Respiratory quotient (RQ) was calculated as V(CO2)/V(O2). UCN suppressed feeding at all times studied and reliably decreased RQ within 30 min of infusion. Additional work examined the effect of UCN (50-100 pmol) pretreatment on the feeding and metabolic effects of NPY. NPY, injected at the start of the dark period, reliably increased 2 h food intake. This effect was blocked by PVN UCN administration. Similarly, UCN blocked the increase in RQ elicited by NPY alone. These results suggest that UCN-sensitive mechanisms within the PVN may modulate food intake and energy substrate utilization, possibly through an interaction with hypothalamic NPY.  相似文献   

15.
16.
Central administration of neuropeptide Y (NPY) potently induces feeding and its abundance in the hypothalamus increases when energy stores fall. Consequently, NPY is considered to be a physiological effector of feeding behavior. Surprisingly, NPY-deficient (NPY-/-) mice feed and grow normally with ad libitum access to food and manifest a normal hyperphagic response after fasting, suggesting that other feeding effectors may compensate for the lack of NPY. Agouti-related protein (AgRP), a melanocortin receptor antagonist, can also stimulate feeding behavior when administered centrally and is coexpressed in a majority of hypothalmamic NPY-ergic neurons, making AgRP a candidate compensatory factor. To test this possibility, we evaluated AgRP mRNA and protein expression, as well as responsiveness to centrally administered AgRP in NPY-/- mice. These studies demonstrate that hypothalamic AgRP mRNA and immunoreactivity are upregulated with fasting and that these increases are not affected by NPY deficiency. Interestingly, NPY-/- mice are hypersensitive to central administration of AgRP(83-132), yet exhibit a normal response to centrally administered MTII, a melanocortin receptor agonist. These data suggest that if AgRP compensates for the lack of NPY in NPY-/- mice, it is not at the level of AgRP synthesis and may instead involve alterations in the postsynaptic signaling efficacy of AgRP. Moreover, the effects of AgRP are not limited to its actions at the melanocortin-4 receptor (MC4R), because MC4R-deficient (MC4R-/-) mice manifest a significant response to centrally administered AgRP. These data imply that AgRP has additional targets in the hypothalamus.  相似文献   

17.
Neuropeptide Y (NPY) is the most potent endogenous orexigenic signal. Several lines of evidence indicate that the site of NPY action in transducing feeding signal may reside in the paraventricular nucleus (PVN) and neighboring sites in the hypothalamus. To test the hypothesis that an increase in NPY activity in the ARC-PVN pathway precedes the onset of diabetic hyperphagia, we evaluated NPY levels in seven hypothalamic nuclei and NPY gene expression in the hypothalamus at 48, 72 or 96 h after streptozotocin (STZ) treatment in rat. In STZ-treated diabetic rats, NPY gene expression in the hypothalamus and NPY levels only in the PVN significantly elevated at 48 h, while hyperphagia occurred sometimes after 48 h post-injection. These results show that augmentation in NPY neuronal activity in the ARC-PVN axis precedes the onset of increased food intake produced by STZ-induced insulinopenia. These findings affirm the hypothesis that increased NPY neurosecretion in the PVN may underlie the diabetes-induced hyperphagia.  相似文献   

18.
The anorexia (anx) mutation causes reduced food intake in preweanling mice, resulting in death from starvation within 3–4 weeks. In wild-type rodents, starvation induces increased neuropeptide Y (NPY) mRNA levels in the arcuate nucleus that promotes compensatory hyperphagia. Despite severely decreased body weight and food intake at 3-weeks age, anx/anx mice do not show elevated NPY mRNA levels in the hypothalamic arcuate nucleus compared to wild-type/heterozygous littermates. The NPY mRNA levels can be upregulated in normal mice at this chronological age, because 24-h food deprivation increased arcuate NPY mRNA in wild-type littermates. The unresponsiveness of NPY expression in the arcuate of anx/anx mice was paralleled by serotonergic hyperinnervation of the arcuate nucleus, comparable to the serotonergic hyperinnervation previously reported in the rest of the anx/anx brain. This result is consistent with the hypothesis that wasting disorders are accompanied by disregulation of NPY mRNA expression in the arcuate nucleus, and suggests that reduced food intake, the primary behavioral phenotype of the anx/anx mouse, may be the result of altered hypothalamic mechanisms that normally regulate feeding.  相似文献   

19.
Recent studies show that bilateral neural transections (NT) at the level of dorsal tegmentum in the mesencephalon significantly increase food intake and decrease latency to onset of feeding behavior in response to neuropeptide Y (NPY). The increased responsiveness to NPY may be due to denervation-induced hypersensitivity to NPY in hypothalamic sites that mediate feeding behavior in rats. To test this hypothesis we have studied the effect of NT on NPY concentrations in 7 neural sites of male rats. Two weeks after NT, NPY levels in 3 hypothalamic nuclei—suprachiasmatic nucleus, arcuate nucleus and ventromedial hypothalamus—were not altered by NT thereby suggesting that NPY innervations in these nuclei may be derived mainly from NPY perikarya in the ARC and elsewhere in the diencephalon. On the other hand, NPY concentrations were markedly decreased (50–60%) in the medial preoptic area, paraventricular nucleus, median eminence and dorsomedial nucleus indicating that a substantial number of neurons in the brainstem, which show coexistence of NPY and adrenergic transmitters, project into these 4 diencephalic nuclei. These findings indicate that NPY-containing neurons in the brainstem may project into selected hypothalamic sites and the reduction in the NT rats of NPY levels, especially in the paraventricular nucleus, may be responsible for the reported increase in sensitivity of the NPY-induced feeding response.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号