首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Haviernik P  Schmidt M  Hu X  Wolff L 《Oncogene》2003,22(11):1600-1610
Cyclin-dependent kinase inhibitors p16(INK4a) and p15(INK4b), encoded by the CDKN2A and B loci, play an important role in negative regulation of the cell cycle. Furthermore, p19(ARF) also encoded by the CDKN2A locus, has been shown to regulate positively the p53 pathway leading to growth arrest and apoptosis. All three genes have been inactivated in human tumors. In myeloid cells, p15(INK4b) mRNA is upregulated during cytokine-induced differentiation and/or growth arrest, and hypermethylation of the p15(INK4b) gene promoter region is a common event in acute myeloid leukemia. In the present study, we examined murine monocyte/macrophage tumors with deregulated c-myc for evidence of Ink4 gene inactivation. p15(Ink4b) mRNA and protein were detected in the majority of leukemias, and p16(Ink4a) mRNA and protein were highly expressed in two of them. pRb was in a hypophosphorylated state in most of the neoplasms indicating that the Cdk inhibitors that were expressed in the cells were functional. The observed expression of p15(Ink4b) is inconsistent with their proliferation state, although it might be expected to be expressed owing to the maturity of the cells. These data suggest, therefore, that deregulated c-Myc bypasses the pRb restriction point and cell cycle arrest in these tumors. An examination of p19(Arf) exons revealed deletions of the gene in up to 94% of the tumors. Since this gene shares exon 2 with p16(Ink4a), it is often difficult to determine which gene is the relevant tumor suppressor. However, the loss of only the p19(Arf)-specific exon 1 beta was observed in a tumor that had normal p16(Ink4a) protein expression. In addition, the p19(Arf)-specific exon was deleted in another tumor that expressed a functional chimeric protein, p15Ex1-p16Ex2-3; it was demonstrated here that this fusion protein is capable of inducing G1 arrest. These data overall supports the hypothesis that the critical inactivation event in these hematopoietic neoplasms is elimination of p19(Arf), and not Ink4 function.  相似文献   

2.
The p14(ARF), p15(INK4B) and p16(INK4A) genes were localized to 9p21, where genetic alterations have been reported frequently in various human tumors. We performed a molecular analysis of the mechanism of inactivation in cell lines and 32 oral squamous cell carcinoma (OSCC), using deletion screening, PCR-SSCP, methylation-specific-PCR and cycle sequencing. We detected homozygous deletion of p14(ARF)-1Ebeta in 9 (26.5%), of p15(INK4B) in one (3.1%), and of p16(INK4A) in 22 (56.3%) tumor samples. Three mutations were detected in the p16(INK4A) genes. We detected aberrant methylation of the p14(ARF) genes in 14 (43.8%), of the p15(INK4B) gene in 9 (28.1%), and of the p16(INK4A) gene in 16 (50.0%) tumor samples. Altogether, 87.5% of the samples harbored at least one of the alterations in the p14(ARF), p15(INK4B), and p16(INK4A) genes, indicating that the frequent inactivation of these genes may be an important mechanism during OSCC development.  相似文献   

3.
Alterations of the p16(INK4) locus in human malignant mesothelial tumors   总被引:5,自引:0,他引:5  
The INK4 locus has two promoters and encodes two unique proteins that share exons in different reading frames, p16(INK4a) and p14(ARF). The p16(INK4a) protein, by inhibiting cyclin-dependent kinase, down regulates Rb-E2F and leads to cell cycle arrest in the G1 phase. The p14(ARF) protein interacts with the MDM2 protein, neutralizing MDM2-mediated degradation of p53. Since p53/Rb genes are not altered in malignant mesothelioma, additional components of these pathways, such as p16(INK4a) and p14(ARF), are candidates for inactivation. In this study, we have examined p16(INK4a) and p14(ARF) alterations (gene deletion, mutation and promoter methylation) in 45 primary malignant mesothelioma specimens. Fourteen patients (31%) had altered p16; four tumors had a methylated promoter region (8.8%), 10 tumors showed p16 to be deleted (22.2%), and one tumor had a point mutation (2%). We did not find any instances of methylation in the p14(ARF) 5'-CpG island. Patients whose tumors had p16 deletion were significantly younger than those with methylation, and, in the patients whose lungs were studied for the prevalence of asbestos fibers, those with any p16 alteration had lower fiber counts than those with no p16 alteration. Hence, p16 gene alteration is relatively common in malignant mesothelioma, while p14(ARF) is rarely, if ever, methylated. Our data suggest that deletion of p16 occurs in a relatively susceptible subset of the population.  相似文献   

4.
The 9p21 gene cluster, harboring growth suppressive genes p14ARF, p15INK4b, and p16INK4a, is one of the major aberration hotspots in human cancers. It was shown that p14ARF and p16INK4a play active roles in the p53 and Rb tumor suppressive pathways, respectively, and p15INK4b is a mediator of the extracellular growth inhibition signals. To elucidate specific targets and aberrations affecting this subchromosomal region, we constructed a detailed alteration map of the 9p21 gene cluster by analyzing homozygous deletion, hypermethylation, and mutation of the p14ARF, p15INK4b, and p16INK4a genes individually in 40 esophageal squamous cell carcinomas (ESCCs) and compared the genetic alterations with mRNA expression in 18 of these samples. We detected aberrant promoter methylation of the p16INK4a gene in 16 (40%), of p14ARF in 6 (15%), and of p15INK4b in 5 (12.5%) tumor samples. Most p16INK4a methylations were exclusive, whereas all but one of the p14ARF/p15INK4b methylations were accompanied by concomitant p16INK4a methylation. We detected homozygous deletion of p16INK4a in 7 (17.5%), of p14ARF-E1beta in 13 (33%), and of p15INK4b in 16 (40%) tumor samples. Most deletions occurred exclusively on the E1beta-p15INK4b loci. Two samples contained p14ARF deletion but with p16INK4a and p15INK4b intact. No mutation was detected in the p14ARF and p16INK4a genes. Comparative RT-PCR showed good concordance between suppressed mRNA expression and genetic alteration for p15INK4b and p16INK4a genes in the 18 frozen samples, whereas 5 of the 13 cases with suppressed p14ARF mRNA expression contained no detectable E1beta alteration but aberrations in the p16INK4a locus. Our results show that in human ESCCs, p14ARF is a primary target of homozygous deletion along with p15INK4b, whereas p16INK4a is the hotspot of hypermethylation of the 9p21 gene cluster. The frequent inactivation of the p14ARF and p16INK4a genes may be an important mechanism for the dysfunction of both the Rb and p53 growth regulation pathways during ESCC development.  相似文献   

5.
We determined inactivation of the CDKN2A (p16(INK4a) and p14(ARF)) gene in 21 cases of oesophageal squamous cell carcinoma (OSCC). The tumours were also analysed for mutations in exons 5-8 and allelic losses in the p53 gene. In addition, we screened the CDKN2B (p15 INK4b), CDKN2C (p18 INK4c), CDK4 and p53R2 genes for mutations in the tumour tissues. Besides concomitant alterations in the CDKN2A and p53 loci in more than half of the cases, our results showed that in 18 OSCC (86%) the CDKN2A (p16(INK4a) and p14(ARF) ) gene was affected through mutations, homozygous/hemizygous deletions and promoter hypermethylation. Eight out of 10 tumours with mutations or promoter hypermethylation specific to the CDKN2A/p16 INK4a gene showed loss of the wild-type allele. One tumour with a single base deletion in the N-terminus (codon 8) of the CDKN2A/p16(INK4a) gene carried a novel germ-line mutation or a rare polymorphism (Ile51Met) in exon 2 of the CDK4 gene. Promoter hypermethylation in the CDKN2A/p14 ARF gene was detected in 11 tumours. In the p53 gene 15 mutations were detected in 14 tumours. We detected an inverse relationship between CDKN2A/p16 INK4a inactivation and frequency of loss of heterozygosity at the p53 locus (OR 0.09, 95% CI 0.01-0.98; Fisher exact test, P-value approximately 0.03). Screening of nine exons of the p53R2 [Human Genome Organisation (HUGO) official name RRM2B] gene resulted in identification of a novel polymorphism in the 5' untranslated region, which was detected in four cases. Our results suggest that the CDKN2A (p16(INK4a) and p14(ARF) ) and p53 genes involved in the two cell cycle pathways are major and independent targets of inactivation in OSCC.  相似文献   

6.
Cell cycle regulators have recently been implicated in oncogenic transformation of cells, including the cyclins active in the G1 phase of the cell cycle and their respective cyclin-dependent kinases (CDK) whose activities are regulated by a set of inhibitors of CDK (CDKI). Since CDKIs can inhibit cell proliferation, they may have a role as tumor suppressor genes. To determine if alterations of CDKI genes may be involved in tumorigenesis of breast cancer, we examined the mutational status of p16(INK4A), p15(INK4B), p18(INK4C), p19(INK4D) CDKI genes in 36 primary breast carcinomas and 9 breast cancer cell lines using polymerase chain reaction-single strand conformational polymorphism (PCR-SSCP), direct DNA sequencing, and Southern blot analysis. Furthermore, amplification of cyclin D1, D2, D3 genes were also examined in these samples. One mutation of p15(INK4B) gene occurred, resulting in change of aspartic acid to asparagine at codon 85. Since aspartic acid at this position is conserved between all four human and murine INK4 proteins, this missense mutation may have functional significance. The sample with a p15(INK4B) point mutation was accompanied by amplification of the cyclin D1 gene. A deletion of the p18(INK4C) gene was found in a primary tumor. Three deletions of the p16(INK4A) gene and two deletions of the p15(INK4B) gene were found in the cell lines. Also, we found amplification of the p15(INK4B) and p16(INK4A) loci in a clinical sample as well as amplification of the p19(INK4D) in another sample, and amplification of the myeloperoxidase (MPO) gene in one cell line and two primary tumors. We suspect that a critical gene for breast cancer is amplified near the MPO gene. These data indicate that CDKI mutations are moderately rare in breast cancer and are often associated with the simultaneous alteration of more than one cell-cycle regulatory gene.  相似文献   

7.
The gene hypermethylated in cancer 1 (HIC1) is epigenetically inactivated, but not mutated, in cancer. Here we show that cooperative loss of Hic1 with p53, but not INK4a, yields distinct tumor phenotypes in mice. Germline deletion of one allele of each gene on the opposite chromosome yields breast and ovarian carcinomas and metastatic osteosarcomas with epigenetic inactivation of the wild-type Hic1 allele. Germline deletion of the two genes on the same chromosome results in earlier appearance and increased prevalence and aggressiveness of osteosarcomas with genetic deletion of both wild-type genes. In human osteosarcomas, hypermethylation of HIC1 is frequent only in tumors with p53 mutations. Our results indicate the importance of genes altered only through epigenetic mechanisms in cancer progression in conjunction with genetically modified tumor suppressor genes.  相似文献   

8.
Genomic alterations leading to aberrant activation of cyclin/cyclin-dependent kinase (cdk) complexes drive the pathogenesis of many common human tumor types. In the case of glioblastoma multiforme (GBM), these alterations are most commonly due to homozygous deletion of p16(INK4a) and less commonly due to genomic amplifications of individual genes encoding cyclins or cdks. Here, we describe deletion of the p18(INK4c) cdk inhibitor as a novel genetic alteration driving the pathogenesis of GBM. Deletions of p18(INK4c) often occurred in tumors also harboring homozygous deletions of p16(INK4a). Expression of p18(INK4c) was completely absent in 43% of GBM primary tumors studied by immunohistochemistry. Lentiviral reconstitution of p18(INK4c) expression at physiologic levels in p18(INK4c)-deficient but not p18(INK4c)-proficient GBM cells led to senescence-like G(1) cell cycle arrest. These studies identify p18(INK4c) as a GBM tumor suppressor gene, revealing an additional mechanism leading to aberrant activation of cyclin/cdk complexes in this terrible malignancy.  相似文献   

9.
Inactivation of p16(INK4a) in the Rb pathway is among the most common somatic alterations observed in nonsmall cell lung cancers (NSCLCs). While epigenetic inactivation of the p16(INK4a) gene promoter has been shown to be associated with increased tobacco carcinogen exposure, little investigation of any similar association of homozygous deletion or mutation of p16(INK4a) and tobacco use has been completed. In 177 consecutive NSCLCs, we examined the determinants of p16(INK4a) homozygous deletion and mutation, including the pattern of tobacco smoking and asbestos exposure. We observed that p16(INK4a) homozygous deletion occurred at a higher frequency in never smokers as compared to former and current smokers (p = 0.01). This observation suggested that tumors from these patients might be more prone to DNA deletion events; consistent with this, epigenetic silencing of the DNA double-strand break repair genes FancF and BRCA1 was also associated with homozygous deletion of p16(INK4a)(p = 0.002 and p = 0.06, respectively). Finally, mutation of p16(INK4a) was rare and only occurred in patients who were smokers. Hence, the character of somatic alteration in the Rb pathway (deletion, mutation or methylation silencing) in NSCLC is associated with the pattern of tobacco exposure, suggesting that susceptibility to lung cancer is, at least in part, mediated by the biological mechanism that selects for the character of the induced somatic lesion.  相似文献   

10.
BACKGROUND: Gastrointestinal stromal tumors (GISTs) are noncomplex sarcomas that often are due to c-kit-activating and platelet-derived growth factor receptor alpha gene (PDGFRalpha)-activating mutations and perturbations of their related signaling pathways. Molecular and cytogenetic findings have indicated correlations between tumor progression and high-risk GISTs with c-kit mutations, the overexpression of genes such as ezrin, and losses at 9p. In particular, it was reported recently that malignant GISTs showed alterations in the p16INK4a gene located at the 9p21 locus. METHODS: To assess the involvement of p14ARF and p15INK4b in addition to p16INK4a in GISTs, the authors undertook a molecular and cytogenetic study of the 9p21 locus. A series of 22 pre-Gleevec era, cryopreserved, high-risk GISTs that were characterized well in terms of KIT and PDGFRalpha receptors were investigated for mRNA expression, homozygous deletions, mutations, and promoter methylation of locus 9p21, in some instances complemented by fluorescent in situ hybridization studies. RESULTS: The results indicated the loss of p16INK4a mRNA expression in 41% of the GISTs, mainly due to the homozygous deletion of both the p16INK4a gene and the p14ARF gene (24%). No mutations were found, and promoter methylation (detected by means of methylation-specific polymerase chain reaction analysis in 27% of tumors) was restricted mainly to the p15INK4b gene (20%). It is noteworthy that, in all of the methylated GISTs, the epigenetic promoter alteration was coupled with mRNA expression. CONCLUSIONS: Alterations in the 9p21 locus were found cumulatively in 54% of the tumors in the current series and were represented mainly by the loss of tumor suppressor gene expression. The p16INK4a deletion, which always was coupled with p14ARF gene loss, seemed to be the most common 9p21 inactivation mechanism.  相似文献   

11.
Breast cancer is the second most prevalent cancer affecting Indian women. Genetic alterations of oncogenes and tumor suppressor genes were attributed to the development of breast carcinomas. In the present study, human breast tumor DNAs from untreated, non-familial, Indian patients were analysed for the presence of mutations in p53, fhit, p16INK4a/p19ARF and H-ras genes. Polymerase chain reaction-single strand conformation polymorphism and sequencing analysis were used to detect point mutations. Exons 5-8 of p53, exons 1-2 of p16INK4a, exon 2 of p19ARF, exons 5-9 of fhit gene and exons 1-2 of H-ras genes were amplified and analysed individually using exon-flanking primers. Only 12% of the tumors had mutation in p53, 8% had mutation in fhit gene and none of the tumors showed evidence for mutation in p16INK4a/p19ARF and H-ras genes. Tumor B18 exhibited two novel mutations in the p53 gene, ATGright curved arrow GTG (Metright curved arrow Val) at codon 237 and AATright curved arrow GAT (Asnright curved arrow Asp) at codon 263. Both of these mutations are hitherto unreported in breast carcinomas. Tumor B20 had a non-sense mutation CGAright curved arrow TGA (Argright curved arrow Stop) at codon 306 of p53 gene. In fhit gene, tumor B1 exhibited TTCTright curved arrow TACT mutation at intron 8 and tumor B15 had a silent mutation GAGright curved arrow GAA (Gluright curved arrow Glu) at codon 123. Our results indicate that, among the genes analysed, the p53 gene was more frequently mutated than fhit, p16INK4a/p19ARF and H-ras genes in Indian mammary tumors. Transcribable point mutations of fhit gene were found to be extremely uncommon in these tumors. Mutations in the above genes are mutually exclusive and are infrequent in fhit, p16INK4a/p19ARF and H-ras genes suggesting that these genes may not play a major role in Indian breast carcinomas. However, the significant frequency of mutations in the p53 gene suggest that p53 could be one of the genes involved in the genesis of sporadic breast carcinomas in Indian women.  相似文献   

12.
The p14ARF and p16INK4a genes are localized to 9p21, where genetic alterations have been reported to be frequent in various human neoplasms. To elucidate their status in salivary gland tumorigenesis, we analyzed a series of 36 salivary gland carcinomas (SGCs) using methylation-specific PCR, differential PCR and immunohistochemistry. Homozygous deletion (3 cases) or methylation (7 cases) of p14ARF was detected in 10 (28%) SGCs, one and three showing co-deletion and co-methylation of both p14ARF and p16INK4a genes, respectively. A total of 5 (14%) SGCs demonstrated homozygous deletion (1 case) or methylation (4 cases) of p16INK4a, all but one being adenoid cystic carcinomas. Immunohistochemical study revealed loss of p14ARF and p16INK4a expression in 11 samples (31%), correlating with the gene status. These results indicate that inactivation of p14ARF and p16INK4a genes by either homozygous deletion or promoter hypermethylation may be important for the molecular pathogenesis of salivary malignant tumors, and provide clear evidence that epigenetic changes like methylation are related to salivary gland carcinogenesis.  相似文献   

13.
T Uchida  T Kinoshita  T Ohno  H Ohashi  H Nagai  H Saito 《Leukemia》2001,15(1):157-165
Recent studies have indicated a close relationship between inactivation of tumor suppressor genes (TSGs) and disease progression. The genes encoding the cyclin-dependent kinase inhibitors p16INK4A and p15INK4B are potent TSGs, and correlations between their inactivation and disease progression have also been reported in various malignancies. In this study, we analyzed the methylation status of p16INK4A and p15INK4B gene promoters in plasma cell dyscrasias (PCDs) by methylation-specific PCR (MSP). In analyses using DNAs extracted from bone marrow mononuclear cells (BM-MNCs), patients with multiple myeloma (MM) showed frequent hypermethylation of the p16INK4A gene (15/37, 41%), whereas p15INK4B gene methylation was not so frequent (5/37, 14%). Many patients whose BM-MNC showed dense methylation of the p16INK4A gene had extramedullary plasmacytoma (extra-PC), and all available extra-PC samples showed alterations of the p16INK4A gene (4; dense methylation, 1; homozygous deletion). In contrast to MM, hypermethylation of the p16INK4A gene was significantly infrequent in indolent PCDs (2/22, 9%, P= 0.0055). The infrequency in indolent PCDs was also confirmed by analyses using DNAs extracted from BM smears (1/29, 3%). It is possible that hypermethylation of the p16INK4A gene promoter contributes to progression to aggressive MM from indolent PCD, especially to extra-PC development.  相似文献   

14.
p73 is a candidate tumor suppressor and imprinted gene that shares significant homology with the p53 gene. It is located on 1p36, a region frequently deleted in neuroblastoma and other tumors. To investigate the pattern of inactivation of this gene in human lymphomas, we studied 59 tumors to identify abnormal methylation in exon 1 and loss of heterozygosity (LOH) at this locus. p73 was methylated in 13/50 (26%) B cell lymphomas. There was no evidence of p73 methylation in the 9 T cell lymphomas analyzed. Burkitt's lymphomas showed the highest proportion of methylated cases (36%), although this alteration also affected other aggressive lymphomas such as diffuse large cell and some marginal zone lymphomas. LOH at the p73 locus was detected in 4/34 (11%) B and 1/9 (11%) T cell lymphomas. The p73 expression analysis showed absence or low level of p73 product in methylated lymphomas, whereas p73 was always detected in unmethylated tumors. We found monoallelic expression in normal peripheral blood samples, consistent with imprinting. None of the tumors showed LOH and methylation of the remaining allele simultaneously, suggesting that alteration of the expressed allele could lead to the total inactivation of the gene. Our results show that deletion or methylation of the p73 gene could be important mechanisms in suppressing p73 expression in B cell non-Hodgkin's lymphomas.  相似文献   

15.
Glomus tumors are significantly rare tumors of carotid body. The great majority of these tumors are benign in character. Here we present two brothers with hereditary glomus jugulare tumor who had consanguineous parents. Radiotherapy was applied approximately 8 and 10 years ago for treatment in both cases. Eight years later, one of these cases came to our notice due to relapse. The mutation pattern of p53, p57KIP2, p16INK4A and p15NK4B genes which have roles in the cell cycle, was analyzed in tumor samples obtained from the two affected cases in the initial phase and from one of these cases at relapse. The DNA sample obtained from the case in initial diagnosis phase revealed no p53, p57KIP2, p16INK4A or p15INK4B mutation. He is still in remission phase. Despite the lack of p53, p57KIP2, p16INK4A and p15INK4B mutation at initial diagnosis the tumor DNA of the other case in relapse revealed p53 codon 243 (ATG-->ATC; met-->ile) and p16 codon 97 (GAC-->AAC; asp-->asn) missense point mutations. No loss of heterozygosity in p53 and p16INK4A was observed by microsatellite analysis of tumoral tissues in these cases. P53 and p16INK4A mutations observed in relapse phase were in conserved regions of both genes. No previous reports have been published with these mutations in glomus tumor during progression. The mutation observed in this case may due to radiotherapy. In spite of this possibility, the missense point mutations in conserved region of p53 and p16INK4A genes may indicate the role of p53 and p16INK4A in tumor progression of glomus tumors.  相似文献   

16.
The role of Ink4a/Arf in ErbB2 mammary gland tumorigenesis   总被引:5,自引:0,他引:5  
Most human tumors display inactivation of the p53 and the p16(INK4)/pRb pathway. The Ink4a/alternative reading frame (ARF) locus encodes the p16(INK4a) and p14(ARF) (murine p19(ARF)) proteins. p16(INK4a) is deleted in 40-60% of breast cancer cell lines, and p16(INK4a) inactivation by DNA methylation occurs in < or =30% of human breast cancers. In mice genetically heterozygous for p16(INK4a) or Ink4a/Arf, predisposition to specific tumor types is enhanced. Ink4a/Arf(+/-) mice have increased E micro -Myc-induced lymphomagenesis and epidermal growth factor receptor-induced gliomagenesis. ErbB2 (epidermal growth factor receptor-related protein B2) is frequently overexpressed in human breast cancer and is sufficient for mammary tumorigenesis in vivo. We determined the role of heterozygosity at the Ink4a/Arf locus in ErbB2-induced mammary tumorigenesis. Compared with mouse mammary tumor virus-ErbB2 Ink4a/Arf(+/-) mice, mouse mammary tumor virus-ErbB2 Ink4a/Arf(wt) mammary tumors showed increased p16(INK4a), reduced Ki-67 expression, and reduced cyclin D1 protein but increased mammary tumor apoptosis with no significant change in the risk of developing mammary tumors. These studies demonstrate the contribution of Ink4a/Arf heterozygosity to tumor progression is tissue specific in vivo. In view of the important role of Ink4a/Arf in response to chemotherapy, these transgenic mice may provide a useful model for testing breast tumor therapies.  相似文献   

17.
Mounting genetic evidence suggests that each product of the Ink4a/Arf locus, p16(INK4a) and p19(ARF), possesses tumor-suppressor activity (Kamijo et al., 1997; Krimpenfort et al., 2001; Sharpless et al., 2001a). We report the generation and characterization of a p19(ARF)-specific knockout allele (p19(ARF)-/-) and direct comparison with mice and derivative cells deficient for p16(INK4a), both p16(INK4a) and p19(ARF), and p53. Like Ink4a/Arf-/- murine embryo fibroblasts (MEFs), p19(ARF)-/- MEFs were highly susceptible to oncogenic transformation, exhibited enhanced subcloning efficiency at low density, and resisted both RAS- and culture-induced growth arrest. In contrast, the biological profile of p16(INK4a)-/- MEFs in these assays more closely resembled that of wild-type cells. In vivo, however, both p19(ARF)-/- and p16(INK4a)-/- animals were significantly more tumor prone than wild-type animals, but each less so than p53-/- or Ink4a/Arf-/- animals, and with differing tumor spectra. These data confirm the predominant role of p19(ARF) over p16(INK4a) in cell culture-based assays of MEFs, yet also underscore the importance of the analysis of tumor suppressors across many cell types within the organism. The cancer-prone conditions of mice singly deficient for either p16(INK4a) or p19(ARF) agree with data derived from human cancer genetics, and reinforce the view that both gene products play significant and nonredundant roles in suppressing malignant transformation in vivo.  相似文献   

18.
19.
20.
Recently, we reported that p16 protein expression was nondetectable in 49.5% of 107 resected nonsmall cell lung cancers (NSCLCs), suggesting that the p16(INK4a) gene is frequently inactivated in primary NSCLC. To identify the molecular basis for this p16 immunohistochemical negativity further, we performed a genetic and epigenetic study of p16(INK4a) status in a series of 115 NSCLC samples parallel to the clinicopathologic and prognostic analyses. Microdissected tumor DNA samples were screened for homozygous deletion using comparative multiplex-polymerase chain reaction (PCR), for intragenic mutation using direct sequencing and for loss of heterozygosity (LOH) using an intragenic microsatellite marker, D9S942. Of these samples, 67 were further analyzed by SmaI-based PCR methylation assay to evaluate aberrant methylation at the gene. To examine the correlation of aberrant methylation in tumor and sputum samples, sputum samples from 12 matched patients were assessed for this change. We found that methylation of the p16(INK4a) gene was present in 38 of the 67 (56.7%) tumors and was significantly associated with negative p16 protein expression (p = 0.029). A 92% (11/12) concordance of sputum samples with matched resected tumors was found. The survival rates among adenocarcinoma patients with p16(INK4a) methylation were lower, but at a level of borderline significance compared with those patients without methylation (p = 0.071). In addition, 29.4% of the informative cases were found to harbor LOH at D9S942. None of the 115 microdissected tumors exhibited homozygous deletion in the p16(INK4a) gene. Only 1 patient exhibited a complex mutation at the fourth ankyrin repeat consensus sequence and concordantly demonstrated p16 immunohistochemical negativity. Overall, 69% (79/115) of NSCLC tumors had at least 1 type of p16(INK4a) alteration. Our data provide compelling evidence that p16(INK4a) alterations are involved in NSCLC tumorigenesis and that promoter methylation is the predominant mechanism in p16(INK4a) deregulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号