首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The use of solid dispersions for oral dosage forms can increase the dissolution rate of poorly soluble drugs. Spray drying is one process that can be used to prepare solid dispersions. Spray dried solid dispersions of griseofulvin, poly[N-(2-hydroxypropyl)methacrylate] (PHPMA) and polyvinylpyrrolidone (PVP) were prepared from acetone and water. When methanol was substituted for water, the morphology, stability and dissolution properties of the solid dispersion changed dramatically. The glass transition temperature for the ternary solid dispersion (GF, PHPMA, and PVP) shifted from 83°C (acetone/water) to 103°C for the acetone/methanol system. These differences in the dispersions are thought to derive from conformational variations of the polymers in solution prior to spray drying. Both PHPMA and PVP formed globules in solution of a size range between 16 and 33 nm. The effect of drug and polymer concentration in solution (before spray drying) on the properties of the solid dispersion was studied. It was found that solid dispersions that were prepared using lower concentrations of drug and polymers in solutions resulted in the formation of particles that display a lower relaxation rate. This result supports the hypothesis that the polymer conformation may significantly change the properties of the solid dispersion. © 2009 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 98:4724–4737, 2009  相似文献   

2.
The inhibition of crystallization of amorphous acetaminophen (ACTA) by polyvinylpyrrolidone (PVP) and polyacrylic acid (PAA) was studied using amorphous solid dispersions prepared by melt quenching. Co-melting with PVP and PAA decreased the average molecular mobility, as indicated by increases in glass transition temperature and enthalpy relaxation time. The ACTA/PAA dispersion exhibited much slower crystallization than the ACTA/PVP dispersion with a similar glass transition temperature value, indicating that interaction between ACTA and polymers also contributed to the stabilizing effect of these polymers. The carboxyl group of PAA may interact with the hydroxyl group of ACTA more intensely than the carbonyl group of PVP does, resulting in the stronger stabilizing effect of PAA. Dielectric relaxation spectroscopy showed that the number of water molecules tightly binding to PVP per monomer unit was larger than that to PAA. Furthermore, a small amount of absorbed water decreased the stabilizing effect of PVP, but not that of PAA. These findings suggest that the stronger stabilizing effect of PAA is due to the stronger interaction with ACTA. The ability of PAA to decrease the molecular mobility of solid dispersion was also larger than that of PVP, as indicated by the longer enthalpy relaxation time.  相似文献   

3.
Aim of the present study was to improve the solubility and dissolution rate of poorly water soluble, BCS class-II drug Ketoprofen (KETO) by solid-dispersion approach. Solid dispersions were prepared by using polyvinylpyrrolidone K30 (PVP K30) and d-mannitol in different drugs to carrier ratios. Dispersions with PVP K30 were prepared by kneading and solvent evaporation techniques, whereas solid dispersions containing d-mannitol were prepared by kneading and melting techniques. These formulations were characterized in the liquid state by phase-solubility studies and in the solid state by Differential Scanning Calorimetry (DSC), Fourier Transform Infrared (FTIR) spectroscopy, X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). The aqueous solubility of KETO was favored by the presence of both carriers. The negative values of Gibbs free energy illustrate the spontaneous transfer from pure water to the aqueous polymer environment. Solid state characterization indicated KETO was present as fine particles in d-mannitol solid dispersions and entrapped in carrier matrix of PVP K30 solid dispersions. In contrast to the very slow dissolution rate of pure KETO, dispersions of drug in carriers considerably improved the dissolution rate. This can be attributed to increased wettability and dispersibility, as well as decreased crystallinity and increase in amorphous fraction of drug. Solid dispersions prepared with PVP K30 showed the highest improvement in dissolution rate of KETO. Even physical mixtures of KETO prepared with both carriers also showed better dissolution profiles than those of pure KETO.  相似文献   

4.
Solid dispersions in water-soluble carriers have attracted considerable interest as a means of improving the dissolution rate, and hence possibly bioavailability, of a range of hydrophobic drugs. The aim of the present study was to improve the solubility and dissolution rate of a poorly water-soluble drug, Lovastatin, by a solid dispersion technique. Solid dispersions were prepared by using polyethylene glycol 4000 (PEG 4000) and polyvinylpyrrolidone K30 (PVP K30) in different drug-to-carrier ratios. Dispersions with PEG 4000 were prepared by fusion-cooling and solvent evaporation, whereas dispersions containing PVP K30 were prepared by solvent evaporation technique. These new formulations were characterized in the liquid state by phase solubility studies and in the solid state by differential scanning calorimetry, X-ray powder diffraction, and FT-IR spectroscopy. The aqueous solubility of Lovastatin was favored by the presence of both polymers. The negative values of the Gibbs free energy and enthalpy of transfer explained the spontaneous transfer from pure water to the aqueous polymer environment. Solid-state characterization indicated Lovastatin was present as amorphous material and entrapped in polymer matrix. In contrast to the very slow dissolution rate of pure Lovastatin, the dispersion of the drug in the polymers considerably enhanced the dissolution rate. This can be attributed to improved wettability and dispersibility, as well as decrease of the crystalline and increase of the amorphous fraction of the drug. Solid dispersion prepared with PVP showed the highest improvement in wettability and dissolution rate of Lovastatin. Even physical mixture of Lovastatin prepared with both polymers also showed better dissolution profile than that of pure Lovastatin. Tablets containing solid dispersion prepared with PEG and PVP showed significant improvement in the release profile Lovastatin compared with tablets containing Lovastatin without PEG or PVP.  相似文献   

5.
Solid dispersions in water-soluble carriers have attracted considerable interest as a means of improving the dissolution rate, and hence possibly bioavailability, of a range of hydrophobic drugs. The aim of the present study was to improve the solubility and dissolution rate of a poorly water-soluble drug, Lovastatin, by a solid dispersion technique. Solid dispersions were prepared by using polyethylene glycol 4000 (PEG 4000) and polyvinylpyrrolidone K30 (PVP K30) in different drug-to‐carrier ratios. Dispersions with PEG 4000 were prepared by fusion-cooling and solvent evaporation, whereas dispersions containing PVP K30 were prepared by solvent evaporation technique. These new formulations were characterized in the liquid state by phase solubility studies and in the solid state by differential scanning calorimetry, X-ray powder diffraction, and FT-IR spectroscopy. The aqueous solubility of Lovastatin was favored by the presence of both polymers. The negative values of the Gibbs free energy and enthalpy of transfer explained the spontaneous transfer from pure water to the aqueous polymer environment. Solid-state characterization indicated Lovastatin was present as amorphous material and entrapped in polymer matrix. In contrast to the very slow dissolution rate of pure Lovastatin, the dispersion of the drug in the polymers considerably enhanced the dissolution rate. This can be attributed to improved wettability and dispersibility, as well as decrease of the crystalline and increase of the amorphous fraction of the drug. Solid dispersion prepared with PVP showed the highest improvement in wettability and dissolution rate of Lovastatin. Even physical mixture of Lovastatin prepared with both polymers also showed better dissolution profile than that of pure Lovastatin. Tablets containing solid dispersion prepared with PEG and PVP showed significant improvement in the release profile of Lovastatin compared with tablets containing Lovastatin without PEG or PVP.  相似文献   

6.
Poly(2-ethyl-2-oxazoline) (PEOX), a biocompatible polymer considered as pseudopolypeptide, was introduced as a potential alternative to the commonly used polymer, poly(vinylpyrrolidone) (PVP) for the preparation of solid dispersion with a poorly soluble drug. Glipizide (GPZ), a Biopharmaceutical Classification System class II model drug, was selected for solubility and dissolution rate study. GPZ-polymer solid dispersions and physical mixtures were characterized and investigated by X-ray diffractometry, differential scanning calorimetry, scanning electron microscopy, and FTIR spectroscopy. The impact of polymers on crystal nucleation kinetics was studied, and PEOX exhibited strong inhibitory effect compared with PVP. Solubility and dissolution behavior of the prepared solid dispersions and their physical blends were in vitro examined and evaluated. A significant enhancement in GPZ solubility was obtained with PEOX compared with the pure drug and solid dispersion with PVP. A big improvement in the intrinsic dissolution rate (45 times) and dissolved amount of GPZ (58 times) was achieved with PEOX in fasted state simulated intestinal fluid, against comparable enhancement observed with PEOX and PVP in phosphate buffer at pH 6.8. Lower molecular weight of PEOX-5K (5000 g/mol) was found to be superior to higher molecular weight PEOX-50K (50,000 g/mol) in the improvement of dissolution behavior. The findings of this study with GPZ as a model drug introduce lower molecular weight PEOX as a promising polymeric carrier toward better oral bioavailability of poorly soluble drugs.  相似文献   

7.
A straightforward solvent wetting method was used to prepare felodipine solid dispersions in the presence of various carriers. Dichloromethane is not needed when HPMC solid dispersions were produced using the solvent wetting method. The amount of ethanol used to prepare solid dispersions did not have a significant effect on the dissolution rate of felodipine. The results of X-ray diffraction and thermal analysis indicated that the drug was in the amorphous state when PVP, HPMC, and poloxamer were used as carriers. The dissolution rates of felodipine in PVP, HPMC, or poloxamer solid dispersions were much faster than those for the corresponding physical mixtures. However, dissolution profiles were found to depend on the carrier used; the dissolution rate of felodipine increased slowly for solid dispersions prepared using HPMC, whereas rapid initial dissolution rates were observed for solid dispersions prepared using PVP or poloxamer. Increases in dissolution rates were partly dependent on the ratios of felodipine to carrier. No significant changes in crystal form were observed by X-ray diffraction or thermal analysis, and no significant changes in dissolution rate were observed when sorbitol and mannitol were used as carriers.  相似文献   

8.
Preparation of amorphous solid dispersions using hot-melt extrusion process for poorly water soluble compounds which degrade on melting remains a challenge due to exposure to high temperatures. The aim of this study was to develop a physically and chemically stable amorphous solid dispersion of a poorly water-soluble compound, NVS981, which is highly thermal sensitive and degrades upon melting at 165 °C. Hydroxypropyl Methyl Cellulose (HPMC) based polymers; HPMC 3cps, HPMC phthalate (HPMCP) and HPMC acetyl succinate (HPMCAS) were selected as carriers to prepare solid dispersions using hot melt extrusion because of their relatively low glass transition temperatures. The solid dispersions were compared for their ease of manufacturing, physical stability such as recrystallization potential, phase separation, molecular mobility and enhancement of drug dissolution. Two different drug loads of 20 and 50% (w/w) were studied in each polymer system. It was interesting to note that solid dispersions with 50% (w/w) drug load were easier to process in the melt extruder compared to 20% (w/w) drug load in all three carriers, which was attributed to the plasticizing behavior of the drug substance. Upon storage at accelerated stability conditions, no phase separation was observed in HPMC 3cps and HPMCAS solid dispersions at the lower and higher drug load, whereas for HPMCP, phase separation was observed at higher drug load after 3 months. The pharmaceutical performance of these solid dispersions was evaluated by studying drug dissolution in pH 6.8 phosphate buffer. Drug release from solid dispersion prepared from polymers used for enteric coating, i.e. HPMCP and HPMCAS was faster compared with the water soluble polymer HPMC 3cps. In conclusion, of the 3 polymers studied for preparing solid dispersions of thermally sensitive compound using hot melt extrusion, HPMCAS was found to be the most promising as it was easily processible and provided stable solid dispersions with enhanced dissolution.  相似文献   

9.
The ability of various polymers to inhibit the crystallization of amorphous felodipine was studied in amorphous molecular dispersions. Spin-coated films of felodipine with poly(vinylpyrrolidone) (PVP), hydroxypropylmethylcellulose acetate succinate (HPMCAS), and hydroxypropylmethylcellulose (HPMC) were prepared and used for measurement of the nucleation rate and to probe drug-polymer intermolecular interactions. Bulk solid dispersions were prepared by a solvent evaporation method and characterized using thermal analysis. It was found that each polymer was able to significantly decrease the nucleation rate of amorphous felodipine even at low concentrations (3-25% w/w). Each polymer was found to affect the nucleation rate to a similar extent at an equivalent weight fraction. For HPMC and HPMCAS, thermal analysis indicated that the glass transition temperature (T(g)) of the solid dispersions were not significantly different from that of felodipine alone, whereas an increase in T(g) was observed for the PVP containing solid dispersions. Infrared spectroscopic studies indicated that hydrogen bonding interactions were formed between felodipine and each of the polymers. These interactions were stronger between felodipine and PVP than for the other polymers. It was speculated that, at the concentrations employed, the polymers reduce the nucleation rate through increasing the kinetic barrier to nucleation.  相似文献   

10.
Solid dispersions were prepared by a melting method from the water-insoluble model drugs carbamazepine and nifedipine and polyethylene glycol 1500 (PEG 1500) or 1:1 mixtures of PEG 1500 and the polymers polyvinylpyrrolidone (PVP 30, PVP 12), polyvinylpyrrolidone-co-vinylacetate (PVPVA) and Eudragit EPO (Eudragit) in order to combine advantages of the different carrier polymers (recrystallization inhibition, processability and stability). The solid dispersions were characterized by dissolution, powder X-ray diffractometry and microscopy directly after preparation and after storage for 3 and 6 months at 25 °C/0% relative humidity (RH) or 3 months at 40 °C/75% RH. More than 80% drugs were released from all solid dispersions within 20 min. The dissolution rate of carbamazepine decreased in the order of PEG 1500 > PEG 1500/Eudragit > PEG 1500/PVP 30 > PEG 1500/PVPVA > PEG 1500/PVP 12. The dissolution rank order was not directly correlated to the amorphous/crystalline state of the drugs, but rather to the properties of the PEG 1500/polymer compositions. Nifedipine was released in the order of PEG 1500 > PEG 1500/PVPVA > PEG 1500/PVP 30 > PEG 1500/PVP 12 > PEG 1500/Eudragit. Amorphous nifedipine was present in all PEG 1500/polymer dispersions except in pure PEG 1500 solid dispersion. The significant increase in dissolution rate of PEG 1500 solid dispersions was due to the reduced crystallinity of the drug and the excellent solubilisation properties of PEG 1500. After 6 months storage at 25 °C/0% RH, the solid dispersions released both drugs in the order PEG 1500/PVPVA > PEG 1500/PVP 30 > PEG 1500/PVP 12 > PEG 1500/Eudragit > PEG 1500. The stabilized amorphous state of the drug resulted in stable dissolution profiles of PEG 1500/PVPVA, PEG 1500/PVP 30 and PEG 1500/PVP 12 when compared to the PEG 1500 solid dispersions, which contained a higher amount of crystalline drug. The solid dispersions with PEG 1500/PVPVA or PEG 1500/PVP stored for 3 months at 40 °C/75% RH showed phase separation due to the hygroscopic properties of the polymers. The influence of 10% (w/w) of the solubilisers polyoxyl 40 hydrogenated castor oil (Cremophor), macrogol-15-hydroxystearate (Solutol) and fatty alcohol alkoxylate (Pluronic) on the dissolution rate and the physical state of the drug was significant.  相似文献   

11.
Properties of solid dispersions of piroxicam in polyvinylpyrrolidone.   总被引:5,自引:0,他引:5  
Solid dispersions of piroxicam were prepared with polyvinylpyrrolidone (PVP) K-17 PF and PVP K-90 by solvent method. The physical state and drug:PVP interaction of solid dispersions and physical mixtures were characterized by X-ray diffraction, Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC). FTIR analysis demonstrated the presence of intermolecular hydrogen bonding between piroxicam and PVP in solid dispersions. These interactions reflected the changes in crystalline structures of piroxicam. The amorphousness within the PVP moeity might be predicted in piroxicam dispersions by the disappearance of N-H or O-H peak of piroxicam. Dissolution studies indicated a significant increase in dissolution of piroxicam when dispersed in PVP. The better results were obtained with the lower molecular weight PVP K-17 than with higher molecular weight PVP K-90. The non-amorphous solid dispersions in PVP K-17 showed almost equally fast dissolution rates to amorphous dispersions in PVP K-90. The mechanism of dissolution of solid dispersion in PVP K-90 is predominantly diffusion-controlled due to the very high viscosity of PVP K-90. Dissolution was maximum with the amorphous solid dispersions containing drug:PVP K-17 1:5 and 1:6 which showed a 40-fold increase in dissolution in 5 min as compared with pure drug. Copyright  相似文献   

12.
The purpose of this study was to elucidate the physical structure of solid dispersions of the antiviral agent UC-781 (N-[4-chloro-3-(3-methyl-2-butenyloxy)phenyl]-2-methyl-3-furancarbothioamide) with polyvinylpyrrolidone (PVP K30). Solid dispersions were prepared by coevaporating UC-781 with PVP K30 from dichloromethane. The physicochemical properties of the dispersions were evaluated in comparison with the physical mixtures by differential scanning calorimetry (DSC), X-ray powder diffraction, and FT-IR spectroscopy. We investigated the single crystal structure of pure UC-781. The data from single crystal analysis showed that UC-781 crystallized with orthorhombic symmetry in the space group Pcab. Its cell parameters were found to be; a = 8.1556(7) A,b = 17.658(2) A and c = 23.609(2) A; the unit cell was made up of eight molecules of UC-781. The molecules formed intermolecular hydrogen bonds between NH and thio groups, and were packed in a herringbone-like structure. The data from X-ray powder diffraction showed that crystalline UC-781 was changed into the amorphous state by co-evaporating it with PVP K30. From differential scanning calorimetry analysis, UC-781 peaks were observed in the DSC curves of all physical mixtures, while no peaks corresponding to the drug could be observed in the solid dispersions with the same drug composition up to the concentration of 50% w/w. The data from FT-IR spectroscopy showed the distortions and disappearance of some bands from the drug, while other bands were too broad or significantly less intense compared with the physical mixtures of the crystalline drug in PVP K30. Furthermore, the results from IR spectroscopy demonstrated that UC-781 interacted with PVP K30 in solid dispersions through intermolecular H-bonding.  相似文献   

13.
The aim of this study was to increase the solubility of ampelopsin (AMP) in water by two systems: solid dispersions with polyethylene glycol 6000 (PEG 6000) or polyvinylpyrrolidone K-30 (PVP K30) and inclusion complexes with beta-cyclodextrin (BCD) and hydroxypropyl-beta-cyclodextrin (HPBCD). The interaction of AMP with the hydrophilic polymers was evaluated by differential scanning calorimetry (DSC), Fourier transformation-infrared spectroscopy (FTIR), scanning electron microscopy (SEM). The results from DSC, FTIR and SEC analyses of solid dispersions and inclusion complexes showed that AMP might exist as an amorphous state or as a solid solution. On the other hand, the SEM images of the physical mixtures revealed that to some extent the drug was present in a crystalline form. The influence of various factors (pH, temperature, type of polymer, ration of the drug to polymer) on the solubility and dissolution rate of the drug were also evaluated. The solubility and dissolution rates of AMP were significantly increased by solid dispersions and cyclodextrin complexes as well as their physical mixtures. The improvement of solubility using polymers was in the following order: HPBCD approximately BCD>PVP K30>PEG 6000.  相似文献   

14.
Purpose To investigate the ability of various polymers to inhibit the crystallization of amorphous felodipine from amorphous molecular dispersions in the presence of absorbed moisture. Methods Spin coated films of felodipine with poly(vinylpyrrolidone) (PVP), hydroxypropylmethylcellulose acetate succinate (HPMCAS) and hydroxypropylmethylcellulose (HPMC) were exposed to different storage relative humidities and nucleation rates were measured using polarized light microscopy. Solid dispersions were further characterized using differential scanning calorimetry, infrared spectroscopy and gravimetric measurement of water vapor sorption. Results It was found that the polymer additive reduced nucleation rates whereas absorbed water enhanced the nucleation rate as anticipated. When both polymer and water were present, nucleation rates were reduced relative to those of the pure amorphous drug stored at the same relative humidity, despite the fact that the polymer containing systems absorbed more water. Differences between the stabilizing abilities of the various polymers were observed and these were explained by the variations in the moisture contents of the solid dispersions caused by the different hygroscopicities of the component polymers. No correlations could be drawn between nucleation rates and the glass transition temperature (T g) of the system. PVP containing solid dispersions appeared to undergo molecular level changes on exposure to moisture which may be indicative of phase separation. Conclusions In conclusion, it was found that for a given storage relative humidity, although the addition of a polymer increases the moisture content of the system relative to that of the pure amorphous drug, the crystallization tendency was still reduced.  相似文献   

15.
The stabilities of X-ray amorphous solid dispersions of piroxicam and polyvinylpyrrolidone (PVP) K-17 and PVP K-30 (1:5 and 1:4), respectively, were investigated after storage for 12 months. X-ray diffraction showed that in the aged solid dispersions piroxicam remained in the amorphous state. Fourier transform infrared (FTIR) spectroscopy indicated that the interactions between drug and PVP in aged solid dispersions are similar to those in freshly prepared samples. The dissolution rates of the X-ray amorphous solid dispersions during storage for 12 months at 45 degrees C and ambient temperature were examined. Very minor decreases in dissolution rates of aged solid dispersions were found which might be due to the coarsening of the particles. Dissolutions of these amorphous solid dispersions after aging for 12 months still showed an about 40-fold increase in dissolution in 5 min compared to pure drug.  相似文献   

16.
In the present study the release mechanism of the sparingly water-soluble drug felodipine (FELO) from particulate solid dispersions in PVP or PEG was investigated. FT-IR data indicated that a N-H...O hydrogen bond is formed between FELO and polymers. The drug-polymer interaction was theoretically studied with the density functional theory with the B3LYP exchange correlation function. The interaction energies have been estimated at -31.8 kJ/mol for PVP and -18.8 kJ/mol for PEG. Also, detailed vibrational analysis of the complexes showed that the red shift of the N-H bond stretching in FELO molecule due to H-bonding was higher in the FELO-PVP complex than in the FELO-PEG complex. Both the experimental and theoretical data indicated that a stronger interaction of FELO with PVP than with PEG was developed. The interactions of FELO with the polymer appeared to control the physical state (amorphous or crystalline) and the particle size of FELO in the solid dispersions. In the FELO/PVP dispersions, the drug is found as amorphous nanoparticles whereas in FELO/PEG dispersions the drug is dispersed as crystalline microparticles. The size of drug particles in the dispersion was also influenced by drug proportion, with an increase in drug content of the dispersion resulting in increased drug particle size. The particle size of drug, the proportion of drug in the dispersion and the properties of the polymer (molecular weight) appeared to determine the mechanism of drug release from the solid dispersions, which was drug diffusion (through the polymer layer)-controlled at low drug contents and drug dissolution-controlled at high drug contents. In situ DLS measurements indicate that the large initial particles of FELO/PVP and FELO/PEG solid dispersions with low drug content (10-20 wt%) are very rapidly decreased to smaller particles (including nanoparticles) during dissolution, leading to the observed impressive enhancement of FELO release rate from these dispersions.  相似文献   

17.
This study was conducted to enhance dissolution rate of aceclofenac (ACF) with extremely low solubility and high permeability (BCS class II) in water using poly vinyl pyrrolidone (PVP) and sodium lauryl sulfate as carriers. Solid dispersions were prepared by spray drying method and rotary evaporation method using different ratios of ACF and polymers. The characterization of solid dispersions was evaluated by scanning electron microscopy, Fourier transformation infrared spectroscopy, differential scanning calorimetry and powder X-ray diffractometer. The dissolution behavior of solid dispersions was compared with pure ACF (API) and Airtal® (Deawoong, Co, Korea) as control groups in simulated phosphate buffer at pH 6.8. The dissolution rate of the drug was affected by nature and amount of polymer used. The prepared solid dispersion of ACF/PVP (1:5) appeared to have the highest dissolution rate. Therefore, solid dispersion techniques of spray drying and rotary evaporation method can be successfully used for the enhancement of the dissolution rate of ACF.  相似文献   

18.
The purpose of this study was to understand the combined effect of two polymers showing drug–polymer interactions on amorphous stabilization and dissolution enhancement of indomethacin (IND) in amorphous ternary solid dispersions. The mechanism responsible for the enhanced stability and dissolution of IND in amorphous ternary systems was studied by exploring the miscibility and intermolecular interactions between IND and polymers through thermal and spectroscopic analysis. Eudragit E100 and PVP K90 at low concentrations (2.5%–40%, w/w) were used to prepare amorphous binary and ternary solid dispersions by solvent evaporation. Stability results showed that amorphous ternary solid dispersions have better stability compared with amorphous binary solid dispersions. The dissolution of IND from the ternary dispersion was substantially higher than the binary dispersions as well as amorphous drug. Melting point depression of physical mixtures reveals that the drug was miscible in both the polymers; however, greater miscibility was observed in ternary physical mixtures. The IR analysis confirmed intermolecular interactions between IND and individual polymers. These interactions were found to be intact in ternary systems. These results suggest that the combination of two polymers showing drug–polymer interaction offers synergistic enhancement in amorphous stability and dissolution in ternary solid dispersions. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 103:3511–3523, 2014  相似文献   

19.
PVP K30对葛根黄豆苷元增溶的研究   总被引:1,自引:0,他引:1  
研究了葛根黄豆苷元(1)在不同温度、不同浓度的PVP K30—磷酸盐缓冲液中的溶解度,1溶解度随辅料浓度的增大而明显增大。溶解度数据经热力学方法处理,表明这是个自发过程。采用溶剂法,以PVP K30为载体制备1固体分散体,考察固体分散体中1的溶解度和溶出度。与其本身相比,固体分散体中1溶解度显著提高,溶出速度明显增大。  相似文献   

20.

Purpose

To correlate the polymer’s degree of precipitation inhibition of indomethacin in solution to the amorphous stabilization in solid state.

Methods

Precipitation of indomethacin (IMC) in presence of polymers was continuously monitored by a UV spectrophotometer. Precipitates were characterized by PXRD, IR and SEM. Solid dispersions with different polymer to drug ratios were prepared using solvent evaporation. Crystallization of the solid dispersion was monitored using PXRD. Modulated differential scanning calorimetry (MDSC), IR, Raman and solid state NMR were used to explore the possible interactions between IMC and polymers.

Results

PVP K90, HPMC and Eudragit E100 showed precipitation inhibitory effects in solution whereas Eudragit L100, Eudragit S100 and PEG 8000 showed no effect on IMC precipitation. The rank order of precipitation inhibitory effect on IMC was found to be PVP K90?>?Eudragit E100?>?HPMC. In the solid state, polymers showing precipitation inhibitory effect also exhibited amorphous stabilization of IMC with the same rank order of effectiveness. IR, Raman and solid state NMR studies showed that rank order of crystallization inhibition correlates with strength of molecular interaction between IMC and polymers.

Conclusions

Correlation is observed in the polymers ability to inhibit precipitation in solution and amorphous stabilization in the solid state for IMC and can be explained by the strength of drug polymer interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号