首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Complement-receptor-3 (CR3/MAC-1), scavenger-receptor-AI/II (SRAI/II), and Fcgamma-receptor (FcgammaR) can mediate myelin phagocytosis in macrophages and microglia. Paradoxically, after injury to CNS axons these receptors are expressed but myelin is not phagocytosed, suggesting that phagocytosis is subject to regulation between efficient and inefficient states. In the present work, we focus on CR3/MAC-1 and SRAI/II-mediated myelin phagocytosis. Phagocytosis by CR3/MAC-1 and SRAI/II was inhibited by cPKC inhibitor Go-6976, general-PKC inhibitors Ro-318220 and calphostin-C, and BAPTA/AM, which chelates intracellular Ca2+ required for cPKC activation. Signaling/activation by cPKC are thus suggested. PMA, which mimics diacylglycerol (DAG) as an activator of cPKC, novel-PKC (nPKC), and non-PKC DAG-driven molecule(s), produced a dose-dependent dual effect on phagocytosis by CR3/MAC-1 and SRAI/II, i.e., augmentation at low concentrations and inhibition at high concentrations. Inhibition of phagocytosis by CR3/MAC-1 was enhanced by combining inhibiting concentrations of PMA with PKC inhibitors Go-6976 or Ro-318220, suggesting inhibition by PMA/DAG-driven non-PKC molecule(s). In contrast, inhibition of phagocytosis by SRAI/II was enhanced by combining inhibiting concentrations of PMA with cPKC inhibitor Go-6976 but not with general-PKC inhibitor Ro-318220, suggesting inhibition by nPKC. Phagocytosis by CR3/MAC-1 and SRAI/II was further inhibited by PI3K inhibitors wortmannin and LY-294002 and PLCgamma inhibitor U-73122. Altogether, our observations suggest that CR3/MAC-1 and SRAI/II-mediated myelin phagocytosis share activation by PI3K, PLCgamma and cPKC. The two differ, however, in that non-PKC DAG-driven molecule(s) inhibit CR3/MAC-1-mediated phagocytosis, whereas nPKC inhibit SRAI/II-mediated phagocytosis. Each of these signaling steps may be targeted for regulating CR3/MAC-1 and/or SRAI/II-mediated phagocytosis between efficient and inefficient states.  相似文献   

2.
The removal of degenerated myelin is essential for repair in Wallerian degeneration that follows traumatic injury to axons and in autoimmune demyelinating diseases (e.g., multiple sclerosis). Microglia can remove degenerated myelin through phosphatidylinositol-3-kinase (PI3K)-dependent phagocytosis mediated by complement receptor-3 (CR3/MAC-1) and scavenger receptor-AI/II (SRAI/II). Paradoxically, these receptors are expressed in microglia after injury but myelin is not phagocytosed. Additionally, Galectin-3/MAC-2 is expressed in microglia that phagocytose but not in microglia that do not phagocytose, suggesting that Galectin-3/MAC-2 is instrumental in activating phagocytosis. S-trans, trans-farnesylthiosalicylic (FTS), which inhibits Galectin-3/MAC-2 dependent activation of PI3K through Ras, inhibited phagocytosis. K-Ras-GTP levels and PI3K activity increased during normal phagocytosis and decreased during FTS-inhibited phagocytosis. Galectin-3/MAC-2, which binds and stabilizes active Ras, coimmunoprecipitated with Ras and levels of the coimmunoprecipitate increased during normal phagocytosis. A role for Galectin-3/MAC-2 dependent activation of PI3K through Ras, mostly K-Ras, is thus suggested. An explanation may thus be offered for deficient phagocytosis by microglia that express CR3/MAC-1 and SRAI/II without Galectin-3/MAC-2 and efficient phagocytosis when CR3/MAC-1 and SRAI/II are co-expressed with Galectin-3/MAC-2.  相似文献   

3.
Microglia and macrophages express the alpha(M)/beta(2) integrin complement-receptor-3 (CR3/MAC-1; CD11b/CD18) and scavenger-receptor-AI/II (SRAI/II). Both can mediate myelin phagocytosis. We document that CR3/MAC-1 mediated myelin phagocytosis in microglia is modulated by complement and anti-CR3/MAC-1 mAbs. Complement augmented phagocytosis twofold. Anti-alpha(M) mAbs M1/70 and 5C6 inhibited and anti-beta(2) mAb M18/2 augmented myelin phagocytosis in the presence and absence of active complement. Active complement modulated phagocytosis inhibition by M1/70 and 5C6 and phagocytosis augmentation by M18/2. CR3/MAC-1 mediated myelin phagocytosis may thus be, at least partially, independent of but modulated by complement. Anti-beta(2) mAb Game-46 did not affect phagocytosis. However, combining M18/2 with Game-46 resulted in phagocytosis augmentation that was larger in magnitude than that induced by M18/2 alone. Thus, phagocytosis augmentation induced by one anti-beta(2) mAb was potentiated by another anti-beta(2) mAb. Combining M1/70 or 5C6 with M18/2 inhibited M18/2-induced augmentation. Overall, mAbs-induced phagocytosis modulation ranged three- to sevenfold from inhibition to augmentation. Anti-CR3/MAC-1 mAbs may reveal a mechanism by which native extracellular molecules bind to and modulate CR3/MAC-1 mediated myelin phagocytosis in microglia and macrophages. We further document SRAI/II mediated myelin phagocytosis in microglia and CR3/MAC-1 contributing to myelin phagocytosis two- to threefold more than SRAI/II when the two receptors function together.  相似文献   

4.
The removal of damaged myelin is central to repair after injury to axons and in autoimmune demyelinating diseases. Complement receptor 3 (CR3/MAC-1) plays a major role in mediating the phagocytosis of damaged myelin by macrophages and microglia. We studied the modulation (inhibition and augmentation) of CR3/MAC-1 mediated myelin phagocytosis by mAbs that bind to distinct epitopes of subunits alphaM and beta2 of CR3/MAC-1. mAb M1/70 anti-alpha(M) and mAb 5C6 anti-alpha(M) inhibited, whereas mAb M18/2 anti-beta2 augmented myelin phagocytosis. This mAb-induced modulation of myelin phagocytosis occurred in the presence and absence of active complement. Inhibition induced by M1/70 or 5C6 did not add when the two were combined. Combining M1/70 or 5C6 with M18/2 reduced the augmentation induced by M18/2 alone. CR3/MAC-1-mediated myelin phagocytosis may thus be subjected to modulation between efficient and inefficient functional/activation states. These observations and conclusions may offer an explanation for the observed discrepancy between efficient myelin phagocytosis in experimental allergic encephalomyelitis and inefficient myelin phagocytosis after injury to CNS axons, although in both instances macrophages/microglia express CR3/MAC-1.  相似文献   

5.
Microglia and macrophages play critical roles in the response of the central and peripheral nervous systems (CNS and PNS, respectively) to injury and disease, one of which is the removal of degenerated myelin by phagocytosis. Myelin removal is efficient during Wallerian degeneration, which follows injury to PNS axons, and in CNS autoimmune demyelinating diseases (e.g., multiple sclerosis) but is inefficient after injury to CNS axons. We suggest that inefficient myelin removal results from deficient microglia activation, reflected by the failure to up-regulate Galectin-3/MAC-2 expression, which marks a state of activation correlated with efficient myelin phagocytosis. Surprisingly, whether or not executing myelin phagocytosis, CNS microglia express the alphaM/beta2 integrin complement receptor-3 (CR3/MAC-1), which has the potential of mediating efficient myelin phagocytosis. We hypothesize that CR3/MAC-1 might be present in distinct inactive and active states that determine, respectively, efficient and inefficient CR3/MAC-1-mediated myelin phagocytosis. We present evidence that CR3/MAC-1-mediated myelin phagocytosis is regulated in microglia and macrophages. First, CR3/MAC-1- mediated myelin phagocytosis has complement-dependent and -independent components. Second, an active complement system augments CR3/MAC-1-mediated myelin phagocytosis. Third, anti-alphaM monoclonal antibodies (MAbs) inhibit and anti-beta2 MAbs augment CR3/MAC-1-mediated myelin phagocytosis in the presence and absence of an active complement system. Fourth, an active complement system modulates MAb-induced regulation of CR3/MAC-1-mediated myelin phagocytosis. Overall, MAb-induced phagocytosis regulation might range three- to sevenfold from inefficient to efficient. We suggest that one of the mechanisms underlying MAb-induced phagocytosis regulation is the induction/stabilization of inactive and active conformational changes. Monoclonal antibody-induced phagocytosis regulation must reveal a mechanism by which native extracellular molecules bind to and regulate CR3/MAC-1-mediated myelin phagocytosis in microglia and macrophages.  相似文献   

6.
The removal by phagocytosis of degenerated myelin is central for repair in Wallerian degeneration that follows traumatic injury to axons and in autoimmune demyelinating diseases (e.g., multiple sclerosis). We tested for roles played by the cAMP cascade in the regulation of myelin phagocytosis mediated by complement receptor-3 (CR3/MAC-1) and scavenger receptor-AI/II (SRAI/II) separately and combined in mouse microglia and macrophages. Components of the cAMP cascade tested are cAMP, adenylyl cyclase (AC), Gi, protein kinase A (PKA), exchange protein directly activated by cAMP (Epac), and phosphodiesterases (PDE). PKA inhibitors H-89 and PKI(14-22) amide inhibited phagocytosis at normal operating cAMP levels (i.e., those occurring in the absence of reagents that alter cAMP levels), suggesting activation of phagocytosis through PKA at normal cAMP levels. Phagocytosis was inhibited by reagents that elevate endogenous cAMP levels to above normal: Gi-inhibitor Pertussis toxin (PTX), AC activator Forskolin, and PDE inhibitors IBMX and Rolipram. Phagocytosis was inhibited also by cAMP analogues whose addition mimics abnormal elevations in endogenous cAMP levels: nonselective 8-bromo-cAMP, PKA-specific 6-Benz-cAMP, and Epac-specific 8-CPT-2'-O-Me-cAMP, suggesting that abnormal high cAMP levels inhibit phagocytosis through PKA and Epac. Altogether, observations suggest a dual role for cAMP and PKA in phagocytosis: activation at normal cAMP levels and inhibition at higher. Furthermore, a balance between Gi-controlled cAMP production by AC and cAMP degradation by PDE maintains normal operating cAMP levels that enable efficient phagocytosis.  相似文献   

7.
8.
Galectin-3/MAC-2 in experimental allergic encephalomyelitis   总被引:3,自引:0,他引:3  
The removal of degenerating myelin by phagocytosis is central to pathogenesis and repair in traumatized and diseased nervous system. Galectin-3/MAC-2 is a differentiation and activation marker of murine and human monocytes/macrophages/microglia. Galectin-3/MAC-2, along with MAC-1 that mediates myelin phagocytosis, marks an in vivo activation state in macrophages, which are involved in myelin degeneration and phagocytosis in injured mouse peripheral nerves. In contrast, high levels of MAC-1 but extremely low levels of Galectin-3/MAC-2 are expressed in vivo in injured CNS where myelin degeneration and phagocytosis progress extremely slowly. The present study was aimed at testing whether an activation state marked by Galectin-3/MAC-2 is present in vivo in the CNS of EAE mice concomitant with autoimmune induced myelin degeneration and phagocytosis. EAE was inflicted by mouse spinal cord homogenate. Demyelination was assessed by light microscopy and Galectin-3/MAC-2, MAC-1, and F4/80 expression by immunocytochemistry. We presently document that Galectin-3/MAC-2 expression is up regulated, along with MAC-1 and F4/80, in spinal cords and optic nerves of EAE mice in areas of demyelination and myelin degeneration, in myelin phagocytosing microglia and macrophages. Copolymer 1 (Glatiramer acetate) suppresses EAE, demyelination, and Galectin-3/MAC-2 expression. EAE pathogenesis thus involves a state of activation in microglia and macrophages characterized by the expression Galectin-3/MAC-2 along with MAC-1. Furthermore, the in vivo responses to injury and autoimmune challenge in the CNS differ in the activation pattern of microglia and macrophages with regard to Galectin-3/MAC-2 expression and the corresponding occurrence of myelin degeneration and phagocytosis.  相似文献   

9.
The underlying mechanism for nerve growth factor (NGF) evoked pain and long-lasting mechanical hyperalgesia remains poorly understood. Using intrathecal antisense against the NGF receptor, receptor tyrosine kinase (TrkA), we found NGF to act at the primary afferent nociceptor directly in the Sprague-Dawley rat. Inhibitors of the three major pathways for TrkA receptor signalling, extracellular signal-related kinase (ERK)/mitogen-activated protein kinase kinase (MEK) (ERK/MEK), phosphatidylinositol 3-kinase (PI3K), and phospholipase Cgamma (PLCgamma) all attenuate NGF-induced hyperalgesia. Although inhibitors of kinases downstream of PI3K and PLCgamma[glycogen synthetase kinase 3 (GSK3), calmodulin-dependent protein kinase II (CAMII-K) or protein kinase C (PKC)] do not reduce mechanical hyperalgesia, hyperalgesia induced by activation of PI3K was blocked by ERK/MEK inhibitors, suggesting cross-talk from the PI3K to the ERK/MEK signalling pathway. As integrins have been shown to modulate epinephrine and prostaglandin E(2)-induced hyperalgesia, we also evaluated a role for integrins in NGF-induced mechanical hyperalgesia using beta(1)-integrin-specific antisense or antibodies.  相似文献   

10.
Previous studies have established that reciprocal interactions between the low-affinity p75 nerve growth factor (NGF) receptor (p75(NTR)) and the high-affinity TrkA NGF receptor can dictate the cellular response to NGF. As the most important interaction, TrkA signaling was found to inhibit p75(NTR)-mediated sphingomyelinase (SMase) stimulation, ceramide production, and apoptosis. However, the mechanism by which TrkA counteracts p75(NTR)-coupled sphingolipid signaling is still unclear. Considering the stimulatory effect of NGF on protein kinase C (PKC) activity, we investigated the role of PKC in TrkA/p75(NTR) signaling interaction. In this study, we found that, in SK-N-BE cells, which selectively express p75(NTR), phorbol ester-induced PKC stimulation resulted in the abrogation of SMase stimulation and ceramide production induced by NGF. Moreover, in SK-N-BE neuroblastoma cells, which selectively express TrkA, NGF stimulated global PKC activity through two independent pathways involving phospholipase Cgamma (PLCgamma) and phosphoinositide-3 kinase (PI3K). In SH-SY5Y, another neuroblastoma cell line, which coexpresses TrkA and p75(NTR), NGF induced PKC stimulation through a TrkA/PI3K signaling pathway, whereas there was no ceramide production. However, in these cells, the inhibition of TrkA, PI3K, and PKC resulted in the restoration of NGF-induced ceramide production. Thus, our study demonstrates for the first time that TrkA interferes with p75(NTR) signaling through a PI3K/PKC-dependent mechanism.  相似文献   

11.
Peripheral neuropathy is a dose-limiting and debilitating side effect of the chemotherapeutic drug, paclitaxel. Consequently, elucidating the mechanisms by which this drug alters sensory neuronal function is essential for the development of successful therapeutics for peripheral neuropathy. We previously demonstrated that chronic treatment with paclitaxel (3–5 days) reduces neuropeptide release stimulated by agonists of TRPV1. Because the activity of TRPV1 channels is modulated by conventional and novel PKC isozymes (c/nPKC), we investigated whether c/nPKC mediate the loss of neuropeptide release following chronic treatment with paclitaxel (300 nM; 3 and 5 days). Release of the neuropeptide, calcitonin gene-related peptide (CGRP), was measured as an index of neuronal sensitivity. Following paclitaxel treatment, cultured dorsal root ganglia sensory neurons were stimulated with a c/nPKC activator, phorbol 12,13-dibutyrate (PDBu), or a TRPV1 agonist, capsaicin, in the absence and presence of selective inhibitors of conventional PKCα and PKCβI/II isozymes (cPKC). Paclitaxel (300 nM; 3 days and 5 days) attenuated both PDBu- and capsaicin-stimulated release in a cPKC-dependent manner. Under basal conditions, there were no changes in the protein expression, phosphorylation or membrane localization of PKC α, βI or βII, however, paclitaxel decreased cPKC activity as indicated by a reduction in the phosphorylation of cPKC substrates. Under stimulatory conditions, paclitaxel attenuated the membrane translocation of phosphorylated PKC α, βI and βII, providing a rationale for the attenuation in PDBu- and capsaicin-stimulated release. Our findings suggest that a decrease in cPKC activity and membrane localization are responsible for the reduction in stimulated peptide release following chronic treatment with paclitaxel in sensory neurons.  相似文献   

12.
Preconditioning by N-methyl-d-aspartate (NMDA) may be promoted in vivo by the administration of a sub-convulsing dose of NMDA, with a neuroprotective effect against seizures and neuronal death induced by the infusion of quinolinic acid (QA) in mice. This study aimed to evaluate the participation of protein kinase C (PKC), cyclic AMP-dependent protein kinase (PKA), mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) kinase (MEK), Ca(2+)/calmodulin dependent protein kinase II (CaMKII) and phosphatidilinositol-3 kinase (PI3K) signaling pathways in this neuroprotection model. Adult Swiss male mice were preconditioned with NMDA 24 h before the infusion of QA, and were treated with inhibitors of the aforementioned signaling pathways either 15 min before the preconditioning or infusion of QA. Inhibition of the PKA and PI3K pathways abolished the protection evoked by NMDA, and inhibition of the MEK pathway significantly diminished this protection. Treatment with PKC and CaMKII inhibitors did not alter the protection rate. Inhibition of the MEK and PKC pathways resulted in an increased mortality rate when followed by the infusion of QA, or NMDA preconditioning and QA infusion, respectively. These results suggest that the PKA, PI3K and MEK pathways have a crucial role in the achievement of a neuroprotective state following preconditioning.  相似文献   

13.
14.
Macrophages are considered essential mediators in multiple sclerosis (MS) pathogenesis, presumably through myelin phagocytosis and release of inflammatory mediators. Macrophages and microglia express activating Fcgamma receptors (FcgammaRI and FcgammaRIII), which depend on the FcRgamma chain for surface expression and signaling. In MS lesions, crosslinking of FcgammaR by immunoglobulins (IgG) directed against myelin may enhance myelin phagocytosis and inflammation. We studied the role of FcgammaR and anti-myelin antibodies in MOG35-55-induced experimental allergic encephalomyelitis (EAE) in C57BL/6 mice, a model of MS-like disease. Incidence and severity of EAE were similar in FcRy chain-/- (FcRgamma-/-) and wild-type (wt) mice, albeit with delayed onset in FcRgamma-/- mice. This demonstrates that the FcRy chain is not essential for induction of EAE, but that FcRgamma signaling may contribute to the preclinical phase. The role of FcgammaR in antibody-mediated demyelination was addressed by injection of anti-myelin antibodies (Z12 mAb) at onset of MOG35-55-induced EAE. Injection of Z12 mAb rapidly reduced survival time in both wt and FcRgamma-/- mice, demonstrating that antibody-mediated exacerbation of EAE is independent of the FcRgamma chain. Interestingly, Z12-induced exacerbation of inflammation and demyelination persisted longer in wt than FcRgamma-/- mice, suggesting that IgG-FcgammaR interactions may contribute to a sustained pathologic effect of anti-myelin antibodies in the CNS.  相似文献   

15.
Transection of an optic nerve (ON) is followed by slow removal of myelin. We studied microglia for the expression of molecules that characterize activated myelin phagocytosing macrophages: MAC-1, FcγII/III receptor (FcR), MAC-2, and F4/80. In-vitro, microglia expressed all molecules and phagocytosed myelin. In-vivo, intact ON displayed high levels of MAC-1, little FcR and F4/80, and no MAC-2. The expression of these molecules was upregulated differentially in in-vivo degenerating ON: MAC-1 uniformly, FcR and F4/80 variably, and MAC-2 sporadically. The distribution of MAC-2 expression correlated best with a pattern of sporadic structural degeneration. Thus in-vivo, ON injury is followed by deficient microglia activation, which we suggest contributes significantly to the slow clearance of myelin.  相似文献   

16.
Stress, either psychological or physical, can have a dramatic impact on the immune system. Toll-like receptors (TLRs) play a pivotal role in the induction of innate and adaptive immune response. We have reported that stress modulates the immune response in a TLR4-dependent manner. However, the mechanisms underlying TLR4-mediated signaling in stress modulation of immune system have not been identified. Here, we demonstrate an essential role for the TLR4-mediated phosphoinositide 3-kinase (PI3K)/Akt signaling. PI3K inhibition by inhibitors wortmannin or LY294002 abrogated protection of stress-induced immune suppression in TLR4-deficient mice compared with TLR4-deficient mice that did not receive the inhibitors. The mechanisms by which PI3K are increased in the TLR4-deficient lymphocytes may involve increased phosphorylation of Akt as well as increased phosphorylation of glycogen synthase kinase-3 beta (GSK-3 beta). The stress-mediated suppression of T help 1 (Th1) cytokine and increased production of Th2 cytokine was greatly reduced in TLR4 deficient mice compared with the wild type mice. Moreover, inhibition of PI3K diminished protection of the above Th1 and Th2 changes caused by stress in TLR4-deficient mice compared with non-stressed mice and the wild type mice. Our data demonstrated that TLR4 negatively regulates PI3K activity in wild type mice, leading to the observed the stress-induced immune response. The higher levels of PI3K prevent TLR4 deficient mice from the stress-induced immune response. Therefore, stress modulates the immune system through TLR4-mediated PI3K/Akt signaling.  相似文献   

17.
Summary Myelin phagocytosis in Wallerian degeneration of peripheral nerves depends on invasion of nerves by non-resident macrophages. The present study was done to clarify the role of the macrophage complement receptor type 3 (CR3) in myelin removal. Myelin phagocytic capacity of invading macrophages was abolished by treatment of cultured nerves and macrophages with anti-CR3 antibody or by serum complement depletion with cobra venom factor. This indicates that myelin phagocytosis is mediated by the macrophage CR3.Supported by grant 609/2-1 from the Deutsche Forschungsgemeinschaft  相似文献   

18.
Neuregulins (NRGs), which are highly expressed in the nervous system, bind and activate two receptor tyrosine kinases, ErbB-3 and ErbB-4. We previously showed that NRG mediates survival of PC12-ErbB-4 cells from apoptosis induced by serum deprivation, tumor necrosis factor-alpha treatment, or H2O2. These effects of NRGs are mediated by the phosphoinositide 3-kinase (PI3K) signaling pathway. In the present study, we show that NRG induces a significant protective effect from beta-amyloid 25-35 (Abeta[25-35]) peptide-induced cell death. The PI3K signaling pathway might be involved in this effect of NRG as the downstream effector of PI3K, protein kinase B (PKB/AkT), is activated by NRG in the presence of Abeta, and PKB/AkT activation is inhibited by the PI3K inhibitor, LY294002. In addition, our results demonstrate that Abeta-induced cell death is reduced by expression of activated PI3K. These results suggest that PI3K-dependent pathways might regulate the toxic effect of Abeta. In addition, Abeta induced alteration in the levels of the proapoptotic protein Bax. Neuregulin (NRG) treatment however, induced elevation in the levels of the antiapoptotic protein BclxL. The NRG-mediated BclxL elevation is regulated by protein kinase C (PKC), as NRG failed to elevate BclxL in the presence of the PKC inhibitor, GF109203X. Moreover, activation of PKC by phorbol 12-myristate 13-acetate markedly attenuated cell death induced by Abeta and induced elevation in BclxL levels. The results suggest that NRG might affect cell viability using two signaling pathways: activation of PI3K/PKB/AkT pathway and activation of PKC, which results in increasing levels of the antiapoptotic protein BclxL.  相似文献   

19.
Upregulation of expression of the close homolog of adhesion molecule L1 (CHL1) by reactive astrocytes in the glial scar reduces axonal regeneration and inhibits functional recovery after spinal cord injury (SCI). Here, we investigate the molecular mechanisms underlying upregulation of CHL1 expression by analyzing the signal transduction pathways in vitro. We show that astrogliosis stimulated by bacterial lipopolysaccharide (LPS) upregulates CHL1 expression in primary cultures of mouse cerebral astrocytes, coinciding with elevated protein synthesis and translocation of protein kinase δ (PKCδ) from cytosol to the membrane fraction. Blocking PKCδ activity pharmacologically and genetically attenuates LPS‐induced elevation of CHL1 protein expression through a phosphatidylinositol 3‐kinase (PI3K) dependent pathway. LPS induces extracellular signal‐regulated kinases (ERK1/2) phosphorylation through PKCδ and blockade of ERK1/2 activation abolishes upregulation of CHL1 expression. LPS‐triggered upregulation of CHL1 expression mediated through translocation of nuclear factor κB (NF‐κB) to the nucleus is blocked by a specific NF‐κB inhibitor and by inhibition of PI3K, PKCδ, and ERK1/2 activities, implicating NF‐κB as a downstream target for upregulation of CHL1 expression. Furthermore, the LPS‐mediated upregulation of CHL1 expression by reactive astrocytes is inhibitory for hippocampal neurite outgrowth in cocultures. Although the LPS‐triggered NO‐guanylate cyclase‐cGMP pathway upregulates glial fibrillary acid protein expression in cultured astrocytes, we did not observe this pathway to mediate LPS‐induced upregulation of CHL1 expression. Our results indicate that elevated CHL1 expression by reactive astrocytes requires activation of PI3K/PKCδ‐dependent pathways and suggest that reduction of PI3K/PKCδ activity represents a therapeutic target to downregulate CHL1 expression and thus benefit axonal regeneration after SCI. © 2009 Wiley‐Liss, Inc.  相似文献   

20.
The heme oxygenase (HO) enzymes catalyze the rate-limiting step of heme breakdown, and may accelerate oxidative injury to neurons exposed to heme or hemoglobin. HO-1 and HO-2 are activated in vitro by the phos-phatidylinositol 3-kinase (PI3K)/Akt and protein kinase C (PKC)/CK2 pathways, respectively. The present study tested the hypotheses that CK2, PKC, and PI3K inhibitors would reduce both HO activity and neuronal vulnerability to hemoglobin in murine cortical cultures. Oxidative cell injury was quantified by LDH release and malondialdehyde assays. HO activity was assessed by carbon monoxide assay. Consistent with prior observations, treating primary cortical cultures with hemoglobin for 16h resulted in release of approximately half of neuronal LDH and a seven-fold increase in malondialdehyde. Both endpoints were significantly reduced by the CK2 inhibitors 4,5,6,7-tetrabromobenzotriazole (TBB) and 2-dimethyl-amino-4,5,6,7-tetrabromo-1H-benzimidazole (DMAT), and by the PKC inhibitor GF109203X; the PI3K inhibitors LY294002 and wortmannin had no effect. None of these inhibitors altered basal HO activity. The 1.9-fold activity increase observed after hemoglobin treatment was largely prevented by LY294002 and LY303511, a structural analog of LY294002 that does not inhibit PI3K activity. It was not reduced by wortmannin, TBB or GF109203X. These results suggest that the protective effect of CK2 and PKC inhibitors in this model is not dependent on reduction in HO activity. In this culture system that expresses both HO-1 and HO-2, HO activity does not appear to be primarily regulated by the PKC/CK2 or PI3K pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号