首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
药用高分子材料智能控释系统的研究   总被引:8,自引:0,他引:8  
药用高分子材料智能控制释放系统是利用智能高分子材料作为药物的载体,与药物一起构成高分子微包囊药物制剂或高分子纳米级包囊药物制剂,此制剂植入人体后,受外界环境的pH值、温度、化学物质、光、电、磁等的刺激,聚合物载体材料的自身性质会随之发生变化。由此可控制药物脉冲释放,从而达到药物控制智能化的目的。本文概述了药用高分子材料智能控释系统的制备及应用研究。  相似文献   

2.
氨基酸类聚合物材料及其在药物控释系统中的应用   总被引:3,自引:0,他引:3  
氨基酸类聚合物材料是一类具有良好生物相容性的离分子材料,在控释药物领域有独特的用途,本文就氨基酸类聚合物材料的类型、优点、生物降解与生物相容性、合成以及其在药物控释系统中的应用等方面做了一简要的综述。  相似文献   

3.
医用纳米控释系统的研究进展   总被引:33,自引:0,他引:33  
医用纳米控释系统作为药物、基因传递和控释的载体,是一种新型的控释体系。安与微米粒子载体的主要区别是超微小体积,它能穿过组织间隙并被细胞吸收,可通过人体最小的毛细血管,还可通过血脑屏障,因而作为新的控释体系而被广泛研究,具有广阔的发展前景。本文重点论述了纳米控释系统在药物和基因载体方面的最新研究进展,并对其发展前景提出展望。  相似文献   

4.
聚乳酸-聚乙二醇共聚物的生物学效应研究   总被引:1,自引:0,他引:1  
目前报道最多用于药物控释系统的载体材料是聚乳酸(PLA)及其共聚物聚乳酸-聚乙醇酸(PL-GA)。它们虽然生物相容性好,降解产物可被人体代谢吸收,也是FDA批准可用于人体的生物降解材料,但存在疏水性太强,对亲水性药物的亲合力弱导致包裹效率低,药物的活性易遭到破坏等缺点。  相似文献   

5.
血糖感应型胰岛素给药智能载体的研究进展   总被引:1,自引:0,他引:1  
胰岛素控制释放高分子载体系统一直是国内外科技工作者的研究热点 ,迄今已经研究报道了多种具有不同工作原理的血糖感应型胰岛素给药智能载体。本文基于国内外大量研究文献 ,综述了血糖感应型胰岛素控制释放智能化高分子载体的研究进展。  相似文献   

6.
目前作为控制释放体系的药物载体材料大多是高分子聚合物材料。生物降解聚合物在一定时间内能被水解或酶解成小分子,可通过生理途径代谢排出体外,不需二次手术取出载体材料,因此比生物惰性材料更安全、更可靠,有更好的生物相容性,成为了药物载体的首选材料。简要综述了主要常用生物降解性聚合物在药物控释体系中的应用进展。  相似文献   

7.
药物纳米控释系统的最新研究进展   总被引:7,自引:0,他引:7  
纳米级聚合物粒子作为药物传递和控释的载体,是一种新的药物控释体系。它与微米颗粒载体的主要区别是超微小体积,它能穿透组织间隙并被细胞吸收,可通过人体最小的毛细血管,因而作为新的药物载运系统被广泛研究。特别是在靶向和定位给药、粘膜吸收给药、基因治疗和蛋白多肽控释等领域,纳米粒子独具优越性。本文以可能的应用方面为线索,介绍了国际上纳米控释体系研究的最新进展  相似文献   

8.
采用环境感应式微囊作为智能化靶向式药物载体 ,可以实现药物的定点、定时、定量控制释放。本文研究了膜孔内接枝聚异丙基丙烯酰胺 (PNIPAM)“开关”的温敏型控制释放微囊载体的制备 ,并对其进行了温度感应控释性能实验。实验中采用界面聚合法制备聚酰胺多孔微囊 ,然后利用等离子体接枝填孔聚合法将PNIPAM接枝在微囊壁的膜孔中。研究结果表明 ,这种接枝了PNIPAM“开关”的微囊具有温度感应特性 ,其利用膜孔内PNI PAM接枝链的膨胀 收缩特性实现了感温性控制释放。当环境温度低于PNIPAM的低临界溶解温度 (LCST)时 ,膜孔内PNIPAM分子链膨胀而使膜孔呈“关闭”状态 ,从而限制囊内溶质分子通过 ,于是释放速率慢 ;而当环境温度高于LCST时 ,PNIPAM分子链变为收缩状态而使膜孔“开启” ,为微囊内溶质分子的释放敞开通道 ,于是释放速率快。  相似文献   

9.
纳米控释系统的应用   总被引:2,自引:0,他引:2  
纳米控释系统作为药物、基因传递和控释的载体 ,由于它的超微小体积 ,使其具有特殊的重要性。纳米粒子能穿透组织间隙和被细胞吸收 ,可在组织和细胞内驻留并长期释放药物 ,因此可用于许多特殊给药方式 ,如可用于介入方法导入血管内 ,可穿越血脑屏障导入脑内 ,口服后可被肠粘膜吸收并驻留在肠壁内 ,静脉注射可导向靶细胞 ,可将 DNA导入细胞浆质内。本文重点论述了纳米控释系统在药物和基因载体方面的应用 ,并作出展望  相似文献   

10.
采用环境感应式微囊作为智能化靶向式药物载体,可以实现药物的定点、定时、定量控制释放。本文研究了膜孔内接枝聚异丙基丙烯酰胺(PNIPAM)“开关”的温敏型控制释放微囊载体的制备,并对其进行了温度感应控释性能实验。实验中采用界面聚合法制备聚酰胺多孔微囊,然后利用等离子体接枝填孔聚合法将PNIPAM接枝在微囊壁的膜孔中。研究结果表明,这种接枝了PNIPAM“开关”的微囊具有温度感应特性,其利用膜孔内PNIPAM接枝链的膨胀一收缩特性实现了感温性控制释放。当环境温度低于PNIPAM的低临界溶解温度(LCST)时,膜孔内PNIPAM分子链膨胀而使膜孔呈“关闭”状态,从而限制囊内溶质分子通过,于是释放速率慢;而当环境温度高于LCST时,PNIPAM分子链变为收缩状态而使膜孔“开启”,为微囊内溶质分子的释放敞开通道,于是释放速率快。  相似文献   

11.
Hybrid lipopolymer vesicles are membrane vesicles that can be self-assembled on both the micro- and nano-scale. On the nanoscale, they are potential novel smart materials for drug delivery systems that could combine the relative strengths of liposome and polymersome drug delivery systems without their respective weaknesses. However, little is known about their properties and how they could be tailored. Currently, most methods of investigation are limited to the microscale. Here we provide a brief review on hybrid vesicle systems with a specific focus on recent developments demonstrating that nanoscale hybrid vesicles have different properties from their macroscale counterparts.  相似文献   

12.
Design of a Self-Regulated Drug Delivery Device   总被引:2,自引:0,他引:2  
Most conventional drug delivery systems are based on polymers or lipid vesicles. These chemically synthesized materials can be designed to be biocompatible and have good functionality, but they often lack well-defined properties, due to an inherent size and structure distribution resulting from chemical synthesis. On the other hand, micro-fabrication technology developed for microelectronic applications is capable of mechanically creating devices with more precisely defined features, in a size range similar to polymeric and lipid materials. In this paper, we describe the design of a self-regulated drug delivery device based on the integration of both mechanical and chemical methods. In this device, a constant release rate can be achieved by carefully designing the shape of the drug reservoir, while a pH-sensitive hydrogel switch is used to regulate the drug release.  相似文献   

13.
Recently, several technical advancements have been made in the development of new generation of drug delivery systems. These systems are capable of controlling the rate of drug delivery, sustaining the duration of therapeutic efficacy, and/or targeting the delivery of drug to a tissue. Depending upon the technical sophistication, these rate-control drug delivery systems can be classified into three major categories: (i) pre-programmed drug delivery, (ii) activation-controlled drug delivery, and (iii) feedback-regulated drug delivery. Various types of drug delivery devices which have been recently marketed or under active development are grouped, on technology basis, under each category. The fundamentals behind the development of each type of the rate-control drug delivery systems with the successful examples of biomedical application are analyzed, aiming to gain a better understanding of the science and technology involved as well as to pave a solid foundation for future development of innovative new drug delivery systems.  相似文献   

14.
Chitosan, a natural based-polymer obtained by alkaline deacetylation of chitin, is nontoxic, biocompatible, and biodegradable. These properties make chitosan a good candidate for the development of conventional and novel drug delivery systems. Chitosan has been found to be used as a support material for gene delivery, cell culture, and tissue engineering. However, practical use of chitosan has been mainly confined to the unmodified forms. For a breakthrough in utilization, especially in the field of controlled drug delivery, graft copolymerization onto chitosan will be a key point, which will introduce desired properties and enlarge the field of the potential applications of chitosan by choosing various types of side chains. Chemical modification of chitosan is useful for the association of bioactive molecules to polymer and controlling the drug release profile. This paper reviews the various methods of preparation of chitosan derivatives intended for controlled drug delivery. From the studies reviewed it is concluded that chitosan derivatives are promising materials for controlled drug and nonviral gene delivery.  相似文献   

15.
目前,对聚己酸内酯的性质和应用的研究日益增多。本文综述了聚己酸内酯材料的制备、一般理化性质、降解吸收性质和在临床及给药系统中的应用等。聚己酸内酯一般由开环聚合得到,为半结晶性聚合物,有较好的柔韧性。该材料降解属于水解反应,不在体内积蓄,排泄完全;可以作为手术缝线、骨折固定材料、药物载体等使用。由于它安全、低毒、可生物降解,所以在医药领域得到广泛应用。  相似文献   

16.
血脑屏障(blood-brain barrier, BBB)是中枢神经系统内的一种特殊结构,其优良的屏障特性能够保护大脑免于血液循环中有害大分子及病原体的侵害。然而,这一屏障同时也限制了药物递送的效果,并成为治疗神经退行性疾病、脑胶质瘤等脑部疾病的新药开发过程中最严峻的挑战之一。近年来,纳米技术的突破使得各类纳米颗粒(nanoparticles, NPs)逐渐得到了广泛的运用,在靶向递药领域被用做药物载体,经各种途径辅助药物实现BBB的跨越。本文主要通过阐述BBB的复杂成分和特殊特性,以理解跨越BBB的难点及可能途径;同时还介绍了目前用于药物递送系统的NPs的3种主要类型:聚合物型(polymeric-based)、仿生型(biomimetic-based)及无机型(inorganic-based)NPs;在靶向递药策略方面,本文主要介绍了吸附介导(adsorptive-mediated)、载体介导(carrier-mediated)及受体介导(receptor-mediated)的胞吞作用,并在文末对脑靶向纳米递药系统的未来发展进行了展望。  相似文献   

17.
A new generation of drug delivery systems based on heparin-poly(isobutylcyanoacrylate) copolymers has been developed to carry hemoglobin. These copolymers spontaneously form, in water, nanoparticles with a ciliated surface of heparin. These nanoparticles maintain the heparin antithrombotic properties and inhibit complement activation. One ml of nanoparticle suspension can be loaded with up to 2.1mg of hemoglobin, which preserves its ligand binding capacity. This work constitutes the first demonstration of hemoglobin loaded on nanoparticle surface, rather than being encapsulated. With a size of 100 nm, these drug delivery systems make suitable tools in the treatment of thrombosis oxygen deprived pathologies.  相似文献   

18.
Vitamin E TPGS as a molecular biomaterial for drug delivery   总被引:1,自引:0,他引:1  
Zhang Z  Tan S  Feng SS 《Biomaterials》2012,33(19):4889-4906
D-α-tocopheryl polyethylene glycol succinate (Vitamin E TPGS, or simply TPGS) is a water-soluble derivative of natural Vitamin E, which is formed by esterification of Vitamin E succinate with polyethylene glycol (PEG). As such, it has advantages of PEG and Vitamin E in application of various nanocarriers for drug delivery, including extending the half-life of the drug in plasma and enhancing the cellular uptake of the drug. TPGS has an amphiphilic structure of lipophilic alkyl tail and hydrophilic polar head with a hydrophile/lipophile balance (HLB) value of 13.2 and a relatively low critical micelle concentration (CMC) of 0.02% w/w, which make it to be an ideal molecular biomaterial in developing various drug delivery systems, including prodrugs, micelles, liposomes and nanoparticles, which would be able to realize sustained, controlled and targeted drug delivery as well as to overcome multidrug resistance (MDR) and to promote oral drug delivery as an inhibitor of P-glycoprotein (P-gp). In this review, we briefly discuss its physicochemical and pharmaceutical properties and its wide applications in composition of the various nanocarriers for drug delivery, which we call TPGS-based drug delivery systems.  相似文献   

19.
The biomedical applications of graphene-based materials, including drug delivery, have grown rapidly in the past few years. Graphene and graphene oxide have been extensively explored as some of the most promising biomaterials for biomedical applications due to their unique properties: two-dimensional planar structure, large surface area, chemical and mechanical stability, superb conductivity and good biocompatibility. These properties result in promising applications for the design of advanced drug delivery systems and delivery of a broad range of therapeutics. In this review we present an overview of recent advances in this field of research. We briefly describe current methods for the surface modification of graphene-based nanocarriers, their biocompatibility and toxicity, followed by a summary of the most appealing examples demonstrated for the delivery of anti-cancer drugs and genes. Additionally, new drug delivery concepts based on controlling mechanisms, including targeting and stimulation with pH, chemical interactions, thermal, photo- and magnetic induction, are discussed. Finally the review is summarized, with a brief conclusion of future prospects and challenges in this field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号