Methods: Children were randomly assigned to one of three treatment groups before induction of anesthesia: group 1 received sevoflurane in air/oxygen 30% (n = 40), group 2 received sevoflurane in 70% N2 O/30% O2 (n = 40), and group 3 received halothane in 70% N2 O/30% O sub 2 (n = 40). Mapleson D or F circuits with fresh gas flows between 3 and 6 l/min were used. Whole blood was collected at induction and termination of anesthesia and at 1, 4, 6, 12, and 18 or 24 h postoperatively for determination of the [Fluorine sup -]. Plasma urea and creatinine concentrations were determined at induction of anesthesia and 18 or 24 h postoperatively.
Results: The mean (+/-SD) duration of sevoflurane anesthesia, 2.7+/-1.6 MAC *symbol* h (range 1.1-8.9 MAC *symbol* h), was similar to that of halothane, 2.5+/-1.1 MAC *symbol* h. The peak [Fluorine sup -] after sevoflurane was recorded at 1 h after termination of the anesthetic in all but three children (whose peak values were recorded between 4 and 6 h postanesthesia). The mean peak [Fluorine sup -] after sevoflurane was 15.8+/-4.6 micro Meter. The [Fluorine sup -] decreased to < 6.2 micro Meter by 24 h postanesthesia. Both the peak [Fluorine sup -] (r2 = 0.50) and the area under the plasma concentration of inorganic fluoride-time curve (r2 = 0.57) increased in parallel with the MAC *symbol* h of sevoflurane. The peak [Fluorine sup -] after halothane, 2.0+/-1.2 micro Meter, was significantly less than that after sevoflurane (P < 0.0001) and did not correlate with the duration of halothane anesthesia (MAC *symbol* h; r2 = 0.007). Plasma urea concentrations decreased 24 h after surgery compared with preoperative values for both anesthetics (P < 0.01), whereas plasma creatinine concentrations did not change significantly with either anesthetic. 相似文献
Methods: Twenty children were randomized to receive either halothane or sevoflurane for inhalation induction of anesthesia. No preoperative medications were given. Myocardial contractility was evaluated at baseline and at sevoflurane and halothane end-tidal concentrations of 1.0 minimum alveolar concentration (MAC) and 1.5 MAC.
Results: There were no differences between groups in patient age, sex, physical status, weight, or height. Equilibration times and MAC multiples of sevoflurane and halothane were comparable. Vital signs remained stable throughout the study. Left ventricular end-systolic meridional wall stress increased with halothane but remained unchanged with sevoflurane. Systemic vascular resistance decreased from baseline to 1 MAC and 1.5 MAC with sevoflurane. Halothane depressed contractility as assessed by the stress-velocity index and stress-shortening index, whereas contractility remained within normal limits with sevoflurane. Total minute stress and normalized total mechanical energy expenditure, measures of myocardial oxygen consumption, did not change with either agent. 相似文献
Methods: Sixteen patients were anesthetized using sevoflurane (1, 2, or 3%) combined with remifentanil (0.4 [mu]g [middle dot] kg-1 [middle dot] min-1). Raw electroencephalographic signals were collected, and bicoherence was estimated in all pairs of frequencies, between 0.5 and 40 Hz at 0.5-Hz intervals.
Results: Sevoflurane (1%) caused two main peaks, spindle frequencies (11.0 +/- 1.2 Hz, 44.7 +/- 12.3% [bicoherence growth]) and [delta]-[theta] frequencies (5.4 +/- 0.5 Hz, 33.0 +/- 8.4%), in the diagonal line of biphasic bicoherence plots. High concentrations of sevoflurane (2% and 3%) shifted these peaks to 9.8 +/- 1.1 Hz, 46.2 +/- 12.7%; 8.7 +/- 1.3 Hz, 37.2 +/- 13.7% and 4.9 +/- 0.5 Hz, 44.6 +/- 7.0%; 4.3 +/- 0.8 Hz, 45.2 +/- 10.6%, respectively. Sevoflurane caused a third bicoherence peak to appear in another heterogeneous pair frequency (pair of [alpha] basal frequency and its double frequency), outside the diagonal line, which also inherited the behavior of [alpha] bicoherence peaks at different anesthetic depths. 相似文献
Methods: Low-flow sevoflurane anesthesia (fresh gas flow of 1 l/min) was performed in 37 patients using soda lime with water added (perhydrated soda lime) or standard soda lime as the carbon dioxide (CO sub 2) absorbent. The soda lime was not changed between patients, but rather was used until CO2 rebreathing occurred. The perhydrated soda lime was prepared by spraying 100 ml distilled water onto 1 kg fresh soda lime, and water was added only when a new bag of soda lime was placed into the canister. Compound A concentrations in the circle system, soda lime temperatures, inspired and end-tidal CO2 and end-tidal sevoflurane concentrations, and CO2 elimination by the patient were measured during anesthesia.
Results: Compound A concentrations were significantly lower for the perhydrated soda lime (1.9 +/- 1.8 ppm; means +/- SD) than for the standard soda lime (13.9 +/- 8.2 ppm). No differences were seen between the two types of soda lime with regard to the temperature of the soda lime, end-tidal sevoflurane concentrations, or CO2 elimination. Compound A concentration decreased with the total time of soda lime use for both types of soda lime. The CO2 absorption capacity was significantly less for perhydrated soda lime than for standard soda lime. 相似文献
Methods: In phase 1, 26 children with American Society of Anesthesiologists (ASA) physical status I or II who were scheduled for BMT received intranasal fentanyl, 2 [mu]g/kg, during a standardized anesthetic. Serum fentanyl concentrations in blood samples drawn at emergence and at postanesthesia care unit (PACU) discharge were determined by radioimmunoassay. In phase 2, 265 children with ASA physical status I or II were randomized to receive sevoflurane or halothane anesthesia along with either intranasal fentanyl (2 [mu]g/kg) or saline. Postoperative agitation, Children's Hospital of Eastern Ontario Pain Scale (CHEOPS) scores, and satisfaction of PACU nurses and parents with the anesthetic technique were evaluated.
Results: In phase 1, the mean fentanyl concentrations at 10 +/- 4 min (mean +/- SD) and 34 +/- 9 min after administering intranasal fentanyl were 0.80 +/- 0.28 and 0.64 +/- 0.25 ng/ml, respectively. In phase 2, the incidence of severe agitation, highest CHEOPS scores, and heart rate in the PACU were decreased with intranasal fentanyl. There were no differences between sevoflurane and halothane in these measures and in times to hospital discharge. The incidence of postoperative vomiting, hypoxemia, and slow respiratory rates were not increased with fentanyl. 相似文献
Methods: Children aged 2-12 yr premedicated with midazolam were randomly assigned to one of three induction techniques: 7% sevoflurane in 100% O2 (group SevoRAPID); 2%, 4%, 6%, and 7% sevoflurane in 100% O2 (group SevoINCR); or 1%, 2%, 3%, and 3.5% halothane in 50% N2O-50% O2 (group HaloN2O). An additional group of children who received 7% sevoflurane in 50% N2O-50% O2 (group SevoN2O) was enrolled after completion of the study. Induction was videotaped. EEG, heart rate, and finger blood pressure were continuously recorded during induction until 5 min after tracheal intubation and analyzed in frequency domain using spectral analysis.
Results: Agitation was more frequent when anesthesia was induced with 100% O2 compared to the mixture of oxygen and nitrous oxide. No seizures were recorded in any group. In the four groups, induction of anesthesia was associated with an increase in EEG total spectral power and a shift toward the low-frequency bands. Sharp slow waves were present on EEG tracings of the three sevoflurane groups, whereas slow waves and fast rhythms (spindles) were observed in the halothane group. Sevoflurane induced a greater withdrawal of parasympathetic activity than halothane and a transient relative increase in sympathetic vascular tone at loss of eyelash reflex. 相似文献
Methods: Thirty women were randomly allocated to receive sevoflurane-nitrous oxygen-oxygen mask induction using a single-breath method, followed by either spontaneous breathing (n = 15) or controlled hyperventilation (n = 15) for 6 min. EEG was recorded. Blood pressure and heart rate were recorded at 1-min intervals.
Results: Epileptiform EEG activity (spikes or polyspikes) was seen in all patients with controlled hyperventilation, and in seven patients with spontaneous breathing (P< 0.01). Jerking movements were seen in three patients with controlled hyperventilation. In the controlled hyperventilation group, heart rate increased 54% from baseline at 4 min after induction (P< 0.001). Mean arterial pressure increased 17% (P< 0.05), peaking at 3 min. In the spontaneous breathing group, heart rate showed no change, and mean arterial pressure decreased by 14% (P< 0.01) at 6 min. Heart rate and mean arterial pressure differed significantly between the groups from 2 min after beginning of the induction to the end of the trial. An increase in heart rate of more than 30% from baseline always was associated with epileptiform EEG activity. 相似文献
Methods: Informed consent was obtained from patients undergoing elective surgery with general anesthesia. We recorded airway flow and pressure after thiopental induction and tracheal intubation (baseline) and for 10 min after beginning volatile anesthesia (~ 1 minimum alveolar concentration inspired). Respiratory system resistance was determined using the isovolume technique.
Results: Fifty subjects were randomized to receive sevoflurane (n = 20), desflurane (n = 20), or thiopental infusion (n = 10, 0.25 mg [middle dot] kg-1 [middle dot] h-1). There were no differences between groups for age, height, weight, smoking history, and American Society of Anesthesiologists physical class. On average, sevoflurane reduced respiratory resistance 15% below baseline, whereas both desflurane (+5%) and thiopental (+10%) did not decrease respiratory resistance. The respiratory resistance changes did not differ in patients with and without a history of smoking during sevoflurane or thiopental. In contrast, administration of desflurane to smokers resulted in the greatest increase in respiratory resistance. 相似文献
Methods: Eight healthy subjects received a remifentanil infusion and were anesthetized with propofol (140 [mu]g [middle dot] kg-1 [middle dot] min-1) and sevoflurane (1.0-1.1% end tidal) in a randomized crossover study. Ventilation was adjusted to achieve incremental increases in arterial carbon dioxide partial pressure (Paco2) until autoregulation was impaired. Cerebral autoregulation was tested by increasing the mean arterial pressure (MAP) from 80 to 100 mmHg with phenylephrine while measuring middle cerebral artery flow velocity by transcranial Doppler. The autoregulation index, which has a value ranging from 0 to 1, representing absent to perfect autoregulation, was calculated, and an autoregulation index of 0.4 or less represented significantly impaired autoregulation.
Results: The threshold Paco2 to significantly impair cerebral autoregulation ranged from 50 to 66 mmHg. The threshold averaged 56 +/- 4 mmHg (mean +/- SD) during sevoflurane anesthesia and 61 +/- 4 mmHg during propofol anesthesia (P = 0.03). Carbon dioxide reactivity measured at a MAP of 100 mmHg was 30% greater than that at a MAP of 80 mmHg. 相似文献
Methods: Sevoflurane was compared to isoflurane in eight studies (N = 2,008) and to propofol in three studies (N = 436). Analysis of variance was applied using least squares method mean values to calculate the pooled mean difference in recovery endpoints between primary anesthetics. The effects of patient age and case duration also were determined.
Results: Sevoflurane resulted in statistically significant shorter times to emergence (-3.3 min), response to command (-3.1 min), orientation (-4.0 min) and first analgesic (-8.9 min) but not time to eligibility for discharge (-1.7 min) compared to isoflurane (mean difference). Times to recovery endpoints increased with increasing case duration with isoflurane but not with sevoflurane (patients receiving isoflurane took 4-5 min more to emerge and respond to commands and 8.6 min more to achieve orientation during cases longer than 3 hr in duration than those receiving sevoflurane). Patients older than 65 yr had longer times to orientation, but within any age group, orientation was always faster after sevoflurane. There were no differences in recovery times between sevoflurane and propofol. 相似文献
Methods: Forty-eight patients with gastric cancer undergoing gastrectomy were studied. Patients were randomized to receive sevoflurane anesthesia with fresh gas flow of 1 l/min (low-flow sevoflurane group; n = 16) or 6-10 l/min (high-flow sevoflurane group; n = 16) or isoflurane anesthesia with a fresh gas flow of 1 l/min (low-flow isoflurane group; n = 16). In all groups, the carrier gas was oxygen/nitrous oxide in the ratio adjusted to ensure a fractional concentration of oxygen in inspired gas (FiO2) of more than 0.3. Fresh Baralyme was used in the low-flow sevoflurane and low-flow isoflurane groups. Glass balls were used instead in the high-flow sevoflurane group, with the fresh gas flow rate adjusted to eliminate rebreathing. The compound A concentration was measured by gas chromatography. Gas samples taken from the inspiratory limb of the circle system at 1-h intervals were analyzed. Blood samples were obtained before and on days 1, 2, and 3 after anesthesia to measure BUN and serum creatinine. Twenty-four-hour urine samples were collected before anesthesia and for each 24-h period from 0 to 72 h after anesthesia to measure creatinine, N-acetyl-beta-D-glucosaminidase, and alanine aminopeptidase.
Results: The average inspired concentration of compound A was 20 +/- 7.8 ppm (mean +/- SD), and the average duration of exposure to this concentration was 6.11 +/- 1.77 h in the low-flow sevoflurane group. Postanesthesia BUN and serum creatinine concentrations decreased, creatinine clearance increased, and urinary N-acetyl-beta-D-glucosaminidase and alanine aminopeptidase excretion increased in all groups compared with preanesthesia values, but there were no significant differences between the low-flow sevoflurane, high-flow sevoflurane, and low-flow isoflurane groups for any renal function parameter at any time after anesthesia. 相似文献
Methods: Sixty-three preschool boys aged 3-5 yr (classified as American Society of Anesthesiologists [ASA] physical status I), and 53 school-age boys aged 6-10 yr (ASA physical status I) who underwent minor urologic surgery were randomly assigned to receive either halothane or sevoflurane, thus creating four groups: preschool-halothane (n = 32), preschool-sevoflurane (n = 31), school-halothane (n = 27), and school-sevoflurane (n = 26). Anesthesia was induced by inhalation of halothane or sevoflurane in oxygen and was maintained at 1 minimum alveolar concentration of each agent throughout surgery. For intra- and postoperative analgesia, caudal block with 0.5-1.0 ml/kg 0.25% plain bupivacaine and topical infiltration with 3-5 ml 1% lidocaine were provided for all patients. Recovery characteristics and incidence of delirium on emergence were compared among the four groups.
Results: Two patients in the preschool-halothane group, one in the preschool-sevoflurane group, and one in the school-halothane group were excluded from the comparison because of insufficient analgesia or agitation before induction. In both age groups, the time to emergence from sevoflurane was significantly faster (about 3 min) than from halothane. The incidence of delirium during recovery in the preschool-sevoflurane group (40%) was significantly greater than that in the other groups (preschool-halothane, 10%; school-halothane, 15.4%; school-sevoflurane, 11.5%). 相似文献
Methods: Rats were anesthetized with halothane or sevoflurane in 100% oxygen and the lungs were mechanically ventilated. Leukocyte behavior in mesenteric venules was recorded through intravital video microscopy under monitoring microvascular hemodynamics. To examine the mechanisms for leukocyte rolling and adhesion, these studies were repeated after animals were pretreated with a monoclonal antibody against P-selectin (MAb PB1.3) or against intracellular adhesion molecule-1 (ICAM-1; MAb 1A29): P-selectin required for rolling of circulating leukocytes and ICAM-1 for firm adhesive interactions with leukocyte integrins.
Results: Under baseline anesthetic conditions (1 minimum alveolar concentration [MAC]), venular wall shear rates, an index of the disperse force on marginating leukocytes, in the sevoflurane-treated rats were about two times higher than those with halothane. At 2 MAC, halothane caused a marked arteriolar constriction and decreasing shear rates concurrent with an increasing density of venular leukocyte adhesion. Sevoflurane at 2 MAC induced leukocyte rolling and adhesion, which were attenuated by PB1.3 and 1A29, without alterations in the wall shear rates. Halothane-induced leukocyte adhesion was not prevented by PB1.3 but it was by 1A29. 相似文献