首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study aimed to investigate the roles of glutamate (Glu) receptors in the anteroventral third ventricular region (AV3V), a pivotal area for water, cardiovascular and neuroendocrine regulations, in causing vasopressin (AVP) secretion and other phenomena in response to bleeding. The effects of intracerebral infusions of MK-801 [a N-methyl-D-aspartate (NMDA) receptor antagonist] or a metabotropic Glu receptor antagonist (MCPG) on plasma levels of AVP, electrolytes, osmolality and glucose, heart rate and arterial pressure following AV3V administration with NMDA or bleeding stimuli were analyzed in conscious rats. NMDA provoked prominent rises of plasma AVP, osmolality, glucose and arterial pressure, without changing plasma electrolytes or heart rate significantly. All the effects of NMDA were blocked by pre-administration of MK-801 into the same loci. Removal through a femoral arterial line of 10 ml blood per kg body weight did not affect arterial pressure or other variables significantly, although plasma AVP and angiotensin II (ANG II) tended to increase. When bleeding was repeated after 10 min (B2), arterial pressure dropped promptly, and plasma AVP, ANG II, osmolality and glucose augmented remarkably. MK-801 applied 35 min preceding B2, to loci such as the median preoptic nucleus, periventricular nucleus and medial preoptic area inhibited the response of plasma AVP significantly, without exerting any effects on other variables. When MK-801 was administered intracerebroventricularly, or when MCPG was infused into the AV3V, significant alterations did not occur in B2-evoked responses of plasma AVP nor in those of the other variables. In rats given sham bleeding after AV3V infusions of MK-801 or MCPG or intracerebroventricular applications of MK-801, all monitored variables roughly remained at stable levels throughout the experiments. We conclude that NMDA receptors in AV3V, but not metabotropic Glu receptors, may facilitate AVP secretion in hypotensive hypovolemia.  相似文献   

2.
Although they likely involve activation of N-methyl-D-aspartate (NMDA) receptors, the mechanisms giving rise to perinatal hypoxic-ischemic-induced damages remained unclear. The purpose of the present study was to investigate in vivo the mechanisms regulating the glutamate-induced release of toxic hydroxyl radicals (.OH) in neonatal rat. Anesthetized 7-day-old Wistar rat pups bearing a microdialysis cannula implanted in the striatum were perfused with a solution containing salicylate as an.OH trap. Hydroxyl radicals formation was evaluated, after a 3 hr postoperative delay, by measuring the 2,3-DHBA levels by HPLC/EC before, during and over 3 hr after the administration of glutamatergic agonists or antagonists. Administration of NMDA and of ibotenate dramatically increased the efflux of.OH, 17-fold and sixfold, respectively. Glutamate, used at the same concentration did not produce any significant increase in the.OH release and may even decrease this efflux when given at larger concentrations. The NMDA-induced.OH response was partially but progressively reduced by glutamate coinjection and completely blunted by DHPG [(RS)-3, 5-dihydroxyphenylglycine], a group I metabotropic glutamate receptor agonist. Conversely, AIDA [(RS)-1-aminoindan-1,5-dicarboxylic acid], an antagonist of the same receptors, unmasked an.OH response to glutamate. These results are evidence that the glutamate-induced activation of a group I metabotropic glutamate receptor normally protected the neonatal brain from any glutamate activation of NMDA receptor, which otherwise would produce the release of toxic hydroxyl radicals. Targeting group I metabotropic glutamate receptors and/or.OH might contribute to protecting the neonatal brain against perinatal hypoxic-ischemic induced lesions.  相似文献   

3.
This study aimed to evaluate the roles of metabotropic glutamate receptors (mGluRs) in the anteroventral third ventricular region (AV3V; a pivotal area for osmotic responses and PGE2 actions) in regulating AVP secretion and cardiovascular function. In conscious and unrestrained rats, we examined the effects of AV3V infusion of t-ACPD (an agonist for mGluRs) and 8-bromo (Br)-cAMP (an agonist for cAMP associated with mGluR action) on plasma and cardiovascular variables, and the effects of MCPG (an antagonist for mGluRs) on the responses to t-ACPD, PGE2, and hyperosmolality. AV3V infusion of t-ACPD or 8-Br-cAMP produced dose-dependent rises in plasma AVP, arterial pressure and heart rate after 5 or 15 min, without altering plasma osmolality, sodium, potassium or chloride. t-ACPD administration into the cerebral ventricle had no effects on the variables. The plasma AVP and arterial pressure responses to AV3V t-ACPD infusion were blocked by preadministration of MCPG 15 min before the infusion. MCPG treatment was also potent at inhibiting the augmentation of plasma AVP elicited by AV3V infusion of PGE2, although its pressor and tachycardiac actions were not influenced. MCPG application, however, had no effect on either the increases in plasma AVP or arterial pressure in response to the enhanced plasma osmolality induced by i.v. infusion of hypertonic saline or their stable levels during isotonic saline infusion. Histological analysis showed that the AV3V drug infusion sites were located in structures such as the median or medial preoptic nucleus and periventricular nucleus. These results suggest that AV3V mGluRs may act to potentiate AVP release and cardiovascular function when stimulated in the basal state, and may participate in the hormone secretion prompted by AV3V PGE2, despite probable negligible contributions to the mechanisms responsible for the PGE2 cardiovascular effects or the phenomenon provoked by osmotic load.  相似文献   

4.
The amygdala plays an important role in emotional learning. Synaptic plasticity underlying the acquisition of conditioned fear occurs in the lateral nucleus of the amygdala: long-term potentiation (LTP) of synapses in the pathway of the conditioned stimulus (CS) has shown to be a neural correlate of this kind of emotional learning. The present study is based on previous results of our laboratory showing an important role of the metabotropic glutamate receptor subtype 5 (mGluR5) in fear conditioning. Here, we explored whether mGlu5 receptors within the lateral nucleus of the amygdala are involved in the plasticity underlying fear conditioning. We used an in vivo approach investigating the acquisition, consolidation and expression of conditioned fear by the fear-potentiated startle paradigm and by the inhibition of motor activity during CS presentation. Additionally, we used an in vitro approach inducing LTP in the lateral amygdala by patch-clamp recordings in rat brain slices. Acquisition of conditioned fear, but not consolidation and expression, was blocked by intra-amygdaloid injections of the specific mGluR5 antagonist 2-methyl-6-(phenylethynyl) pyridine hydrochloride (MPEP) in vivo. Furthermore, induction of amygdaloid LTP but not synaptic transmission was disrupted by MPEP application in vitro. These experiments show for the first time in vivo and in vitro that mGluR5 receptors are necessary for plasticity in the amygdala.  相似文献   

5.
The area of the brain called the anteroventral third ventricular region (AV3V) includes three different subtypes of glutamate receptor, as well as neural circuits controlling fluid balance and cardiovascular and neuroendocrine functions. Although our previous data indicate the ability of AV3V N-methyl-d-aspartate (NMDA) and metabotropic receptors to provoke vasopressin (AVP)-releasing, pressor and hyperglycemic responses, the roles of non-NMDA receptors selective for alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid and kainate have not been elucidated to date. To address this question, the effects of intracerebral infusion with FWD or NBQX (specific agonist and antagonist for non-NMDA receptors, respectively) on plasma AVP, glucose, osmolality, electrolytes and cardiovascular parameters were examined in conscious rats in the absence or presence of an osmotic or volemic stimulus. When applied topically to AV3V structures such as the median preoptic nucleus, FWD augmented plasma AVP, osmolality, glucose and arterial pressure in a dose-associated fashion. All responses of the variables were abolished by pre-administering NBQX, which exerted no conspicuous effect on any variable except arterial pressure. It was revealed that NBQX administration in AV3V structures such as the median preoptic nucleus and the periventricular nucleus inhibited the rise of plasma AVP in response to intravenous infusion with hypertonic saline or removal of systemic blood through the femoral artery. Elevation of plasma osmolality and sodium evoked by osmotic load, and elevation of plasma osmolality, glucose and angiotensin II and decrease of arterial pressure caused by bleeding, were not significantly affected by NBQX treatment. These results suggest that AV3V non-NMDA receptors, as well as NMDA receptors, may elicit AVP-releasing, pressor and hyperglycemic actions when stimulated in the basal state, and may facilitate AVP secretion under both hyperosmotic and hypovolemic conditions, without contributing to cardiovascular, blood glucose or other responses.  相似文献   

6.
In hippocampus and other regions, alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptors are inserted into synapses during long-term potentiation and removed during long-term depression. However, little is known about regulation of AMPA receptor trafficking in the nucleus accumbens (NAc), despite growing evidence that glutamate-dependent forms of plasticity in the NAc contribute to drug addiction. Using postnatal rat NAc cultures and an immunocytochemical method that selectively detects newly internalized GluR1, we studied the regulation of AMPA receptor internalization in NAc neurons by glutamate agonists. Newly internalized GluR1 was detected during 15 or 30 min of incubation at room temperature, indicating a basal rate of GluR1 turnover. The rate of GluR1 internalization was increased by glutamate (50 microM) within 5 min of its addition. Glutamate-induced GluR1 internalization was partially blocked by either an AMPA receptor antagonist (CNQX; 20 microM) or an N-methyl-D-aspartate (NMDA) receptor antagonist (APV; 50 microM). Both NMDA (50 microM) and AMPA (50 microM) increased GluR1 internalization in a Ca(2+)-dependent manner. The NMDA effect was blocked by APV while the AMPA effect was blocked by APV or CNQX. We interpret these findings to suggest that NMDA and AMPA ultimately trigger GluR1 internalization through the same NMDA receptor-dependent pathway. The effect of glutamate was also partially blocked by the group 1 metabotropic glutamate receptor antagonist N-phenyl-7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxamide (PHCCC; 50 microM), while the group 1 agonist 3,5-dihydroxyphenylglycine (DHPG; 50 microM) stimulated GluR1 internalization. These data suggest that AMPA receptors on NAc neurons may be subject to rapid regulation of their surface expression in response to changes in the activity of glutamate inputs from cortical and limbic regions.  相似文献   

7.
All three types of ionotropic glutamate receptors, AMPA, NMDA and kainate, contribute to the neurotransmission between inner hair cells (IHC) and afferent neurons in the mammalian cochlea. We used microiontophoretic techniques to investigate whether metabotropic glutamate receptors group I (mGluR I) are also involved in the transmission of IHC afferents of the guinea pig. The mGluR I agonist DHPG produced an increase in afferent firing, which lasted significantly longer than that of the ionotropic agonists AMPA and NMDA. The activation was reversibly blocked by the mGluR I antagonist AIDA in a dose-dependent manner. AIDA also diminished spontaneous activity, but only slightly affected the AMPA- or NMDA-induced firing rate. Our results suggest that mGluR I are involved in peripheral auditory processing.  相似文献   

8.
Neurons in the hippocampus exhibit subpopulations of dendritic spines that contain endoplasmic reticulum (ER). ER in spines is important for synaptic activity and its associated Ca(2+) signaling. The dynamic distribution of ER to spines is regulated by diacylglycerol and partly mediated by protein kinase C, metalloproteinases and γ-secretase. In this study, we explored whether pharmacological activation of type I metabotropic glutamate receptors (mGluRs) and muscarinic acetylcholine receptors (mAChRs) known to activate phospholipase C would have any effect on spine ER content. We found that DHPG (100 μM) but not carbachol (10 μM) caused a reduction in the number of spines with ER. We further found that ER Ca(2+) depletion triggered by thapsigargin (200 nM) had no effect on ER localization in spines.  相似文献   

9.
The present study was undertaken to investigate the role of spinal somatostatin SSTR2A receptors in nociceptive processing. SSTR2A receptor-like immunoreactivity was found in a dense network in the spinal cord of normal rats. With Western blot analysis a major band of approximately 80-85 kDa was detected. Both immunohistochemistry and immunoblot analysis indicated a significant increase in SSTR2A receptor content in the spinal cord 6 h after noxious thermal stimulation that lasted for at least 24 h. However, there were no notable changes in SSTR2A receptor content 3, 6, 12, or 24 h after noxious mechanical stimulation. Effects of intrathecally administered polyclonal antiserum to SSTR2A receptor (anti-SSTR2A) on thermal and mechanical pain thresholds were determined with behavioral tests. In normal rats, pretreatment with anti-SSTR2A (1 microl, intrathecal) did not affect paw withdrawal latency or pinch threshold. Hindpaw inflammation induced by complete Freund's adjuvant led to thermal and mechanical hyperalgesia as reflected by a robust decrease in paw withdrawal latency and pinch threshold. Significant attenuation of the thermal hyperalgesia was observed 3, 5, 7, 9, and 24 h after pretreatment with anti-SSTR2A. This effect disappeared in another 24 h. In contrast, pretreatment with anti-SSTR2A failed to exert any notable effect on adjuvant-induced mechanical hyperalgesia. The present findings provide the first evidence that SSTR2A receptors are responsible for thermal, but not mechanical, nociceptive transmission in the spinal cord. The results also suggest that somatostatin has an excitatory role in spinal nociceptive processing and that there are differential receptor responses to different types of noxious stimuli.  相似文献   

10.
Fyn, a major Src family kinase (SFK) member that is densely expressed in striatal neurons, is actively involved in the regulation of cellular and synaptic activities in local neurons. This SFK member is likely regulated by dopamine signaling through a receptor mechanism involving dopamine D2 receptors (D2Rs). This study characterizes the D2R‐dependent regulation of Fyn in the rat striatum in vivo. Moreover, we explore whether D2Rs regulate metabotropic glutamate receptor 5 (mGluR5) in its tyrosine phosphorylation and whether the D2R–SFK pathway modulates trafficking of mGluR5. We found that blockade of D2Rs by systemic administration of a D2R antagonist, eticlopride, substantially increased SFK phosphorylation in the striatum. This increase was a transient and reversible event. The eticlopride‐induced SFK phosphorylation occurred predominantly in immunopurified Fyn but not in another SFK member, Src. Eticlopride also elevated tyrosine phosphorylation of mGluR5. In parallel, eticlopride enhanced synaptic delivery of active Fyn and mGluR5. Pretreatment with an SFK inhibitor blocked the eticlopride‐induced tyrosine phosphorylation and synaptic trafficking of mGluR5. These results indicate that D2Rs inhibit SFK (mainly Fyn) phosphorylation in the striatum. D2Rs also inhibit tyrosine phosphorylation and synaptic recruitment of mGluR5 through a signaling mechanism likely involving Fyn. © 2016 Wiley Periodicals, Inc.  相似文献   

11.
Psychiatric symptom can be a prominent feature early in Creutzfeldt-Jakob disease (CJD), which is also common in autoantibody-mediated limbic encephalitis. We hypothesized that anti-neuronal autoantibodies, especially those against N-methyl-D-aspartate glutamate receptors (NMDAR), can also be associated with CJD. Thirteen patients with CJD and 13 patients with limbic encephalitis were enrolled. Immunohistochemistry demonstrated that serum of CJD patients reacted with neuronal components of the rat hippocampus, indicating that those samples contained anti-neuronal antibodies. Enzyme-linked immunosorbent assay revealed that titers of antibodies against peptides of GluN2B subunit of NMDAR were significantly elevated in the serum and cerebrospinal fluid of CJD patients.  相似文献   

12.
In the brain and the retina metabotropic glutamate receptors (mGluRs) modulate synaptic transmission; in particular, L-2-amino-4-phosphonobutyrate-sensitive group-III mGluRs are generally presynaptic and provide negative feedback of neurotransmitter release. We performed a comparative immunohistochemical analysis of the distribution of all group-III mGluRs in the mouse retina. mGluR6 expression was limited to the outer plexiform layer. Discrete, punctate immunolabeling, exclusively in the inner plexiform layer (IPL), was observed for each of the remaining group-III mGluRs. mGluR4 immunostaining was most abundant in IPL sublamina 1; mGluR7 immunoreactivity was organized in four bands, corresponding to sublaminae 1-4; and mGluR8 was localized in two broad bands, one each in the OFF and ON layers of the IPL. mGluR8 immunoreactivity was evident in the OFF plexus of cholinergic amacrine cell processes. Surprisingly, we found little overlap between group-III mGluR immunolabeling and that for the vesicular glutamate transporter VGLUT1. Instead, we found that mGluR4 and mGluR7 were located close to bipolar cell ribbons. No compensatory changes in the distribution of group-III mGluRs, or of several other markers also showing a stratified localization in the IPL, were observed in genetically engineered mice lacking either mGluR4, mGluR8, or both mGluR4 and mGluR8. The unique pattern of expression of each receptor suggests that they have distinct functions in the retina, and their asymmetric distribution in the ON and OFF layers of the IPL suggests distinct roles in the processing of light-ON and light-OFF stimuli.  相似文献   

13.
Purpose: The present study was undertaken to clarify the effects of (RS)‐1‐aminoindan‐1,5‐dicarboxylic acid (AIDA), a metabotropic glutamate receptor (mGluR) 1 antagonist, (2R,4R)‐4‐aminopyrrolidine‐2,4‐dicarboxylate ((2R,4R)‐APDC), a mGluR2/3 agonist, and L‐(+)‐2‐amino‐4‐phosphonobutyric acid (L‐AP4), a mGluR4/8 agonist, on pentetrazol‐induced kindled seizures. Methods: Mice were anesthetized with pentobarbital; the electrodes and guide cannula were chronically implanted into the cortex and lateral ventricle. To induce kindling, pentetrazol at a dose of 40 mg/kg was injected once every 48 h. Behavioral and electroencephalographic seizures were monitored for 20 min following pentetrazol administration. Fully kindled mice were used for pharmacologic studies. Results: Intracerebroventricular injection of AIDA and L‐AP4 showed significant inhibitory effects on pentetrazol‐induced kindled seizures. In addition, simultaneous use of AIDA and (2R,4R)‐APDC or L‐AP4 caused more potent inhibition of seizure activities. The inhibitory effect of AIDA on pentetrazol‐induced kindled seizures was antagonized by (RS)‐3,5‐dihydroxyphenylglycine ((RS)‐3,5‐DHPG), a group I mGluR agonist; (2S)‐a‐ethylglutamic acid (EGLU), a group II mGluR antagonist; and (RS)‐α‐methyl‐4‐phosphonophenylglycine (MPPG), a group III mGluR antagonist. On the other hand, the inhibitory effect of L‐AP4 was antagonized only by MPPG. Discussion: It is proposed that mGluR1 antagonists and mGluR4/8 agonists show anticonvulsive effects on pentetrazol‐induced kindled seizures. Furthermore, it is also proposed that the simultaneous use of an mGluR1 antagonist and an mGluR2/3 or mGluR4/8 agonist is a potential novel therapeutic strategy in epileptic disorders.  相似文献   

14.
The aim of this study is to pursue roles of N-methyl-d-aspartate (NMDA) receptors in the anteroventral third ventricular region (AV3V; a pivotal area for autonomic functions) in controlling vasopressin (AVP) release and cardiovascular system. In conscious rats, we examined effects of AV3V infusion of MK-801 (a selective antagonist for NMDA receptor) on plasma AVP, osmolality, electrolytes, arterial pressure and heart rate, in the absence or presence of NMDA, hyperosmotic or prostaglandin (PG) E2 stimulus. The AV3V infusion of NMDA caused significant increases in plasma AVP, osmolality and sodium, hematocrit, arterial pressure and heart rate after 5 or 15min. When NMDA was administered into the cerebral ventricle, relatively smaller elevations were observed only in plasma AVP and arterial pressure. The effects of AV3V infusion of NMDA were nearly completely prevented by MK-801 applied to the same region before 15min. The application of MK-801 was also potent to block rises of plasma AVP elicited by AV3V injection of PGE2 or i.v. infusion of hypertonic saline. However, it inhibited neither increases of arterial pressure and heart rate due to the PGE2 treatment nor those of arterial pressure, plasma osmolality and sodium in response to the osmotic load. Histological analysis on the AV3V infusion sites of NMDA, MK-801 and PGE2 indicated that they had been located in the structures such as the median and medial preoptic nuclei, periventricular nucleus and medial preoptic area. These results suggest that stimulation of AV3V NMDA receptors in the basal state may facilitate AVP secretion and cause pressor and tachycardiac actions, and that these receptors may be involved in both the hyperosmolality- and PGE2-induced hormone release, but not in the cardiovascular responses to these stimuli.  相似文献   

15.
Wang H  Jiang W  Yang R  Li Y 《Neuroreport》2011,22(5):244-248
Glutamate receptors (GluRs) play a critical role in pain pathway. Recent studies have shown that activation of spinal group III metabotropic GluRs attenuated hyperalgesia in neuropathic pain model rats. However, it is unclear which subtype of group III metabotropic GluRs is involved in neuropathic pain. In this study, we have shown that spinal administration of metabotropic GluRs (mGluR4)-positive allosteric modulator (VU0155041) dose dependently attenuated hyperalgesia in neuropathic pain model rats, whereas that of mGluR7-positive allosteric modulator (AMN082) did not. Furthermore, we confirmed that it was mGluR4 not mGluR7, whose expression was downregulated in the spinal dorsal horn after spinal nerve ligation. Thus, these results suggest the alteration of the spinal mGluR4 expression that contributes to the development of neuropathic pain.  相似文献   

16.
The aim of the present study was to find out whether the metabotropic receptor 1 (mGluR1) and group II mGluRs, localized in the striatum, are involved in antiparkinsonian-like effects in rats. Haloperidol (1 mg/kg ip) induced parkinsonian-like muscle rigidity, measured as an increased resistance of a rat’s hind foot to passive flexion and extension at the ankle joint. (RS)-1-aminoindan-1,5-dicarboxylic acid (AIDA; 0.5–15 μg/0.5 μl), a potent and selective mGluR1 antagonist, or (2R,4R)-4-aminopyrrolidine-2,4-dicarboxylate (2R,4R-APDC; 7.5–15 μg/0.5 μl), a selective group II agonist, was injected bilaterally into the striatum of haloperidol-treated animals. AIDA in doses of 7.5–15 μg/0.5 μl diminished the haloperidol-induced muscle rigidity. In contrast, 2R,4R-APDC injections were ineffective. The present results may suggest that the blockade of striatal mGluR1, but not the stimulation of group II mGluRs, may ameliorate parkinsonian muscle rigidity.  相似文献   

17.
Disruption of glutamate homeostasis frequently leads to oxidative stress and to the release of hydroxyl radicals (radical OH). Here, we investigated, via a microdialysis approach, the possible involvement of metabotropic glutamate receptors in the glutamate-induced release of hydroxyl radicals in adult rat striatum. Glutamate was applied at low amount, resulting in a moderate release that was not inhibited by dizocilpine (MK-801), a specific NMDA receptor antagonist. (RS)-alpha-methyl-4-carboxyphenylglycine (MCPG), a broad spectrum metabotropic antagonist, that does not exert any effect on the basal release of radical OH suppressed their response to glutamate. (+/-)-1-aminocyclopentane-trans-1,3-dicarboxylic acid (t-ACPD), a non-selective metabotropic glutamate receptors agonist, promoted an radical OH release almost similar to that observed after glutamate, which was similarly impaired by co-infusion with MCPG. By contrast, infusion of (RS)-3,5-dihydroxyphenylglycine (DHPG), a more specific group I metabotropic glutamate receptors agonist, did not result in any appreciable radical OH response. Thus, beside NMDA receptors, some metabotropic glutamate receptors may also be involved in the glutamate-induced release of hydroxyl radicals.  相似文献   

18.
Recently it has emerged that hippocampal long-term depression (LTD) may play an important role in the acquisition and storage of spatial memories. This form of synaptic plasticity is tightly regulated by metabotropic glutamate receptors (mGluRs) that negatively couple to adenylyl cyclase. Activation of group III mGluRs is necessary for persistent hippocampal LTD, but is not required for depotentiation or long-term potentiation (LTP) in the dentate gyrus in vivo. In the CA1 region antagonism of group III mGluRs prevents LTD in vivo. Effects on LTP in vivo are as yet unknown. We investigated the effects of group III mGluR antagonism on LTP and LTD at Schaffer collateral-CA1 synapses, and on spatial learning in the eight-arm radial maze. Daily application of the group III mGluR antagonist (R,S)-alpha-cyclopropyl-4-phosphonophenylglycine (CPPG) resulted in impairment of long-term (reference) memory, with effects becoming apparent 4 days after training and drug treatment began. Short-term (working) memory was unaffected throughout the 10-day study. Application of CPPG prevented LTD, but not LTP, in the CA1 region. These data suggest that activation of group III mGluRs is required for the establishment of spatial long-term memory. Their exclusive role in mediating hippocampal LTD provides correlational evidence for a role for LTD in the type of spatial learning studied.  相似文献   

19.
Sugitani M  Sugai T  Onoda N 《Neuroreport》2002,13(11):1473-1476
Effects of some glutamate receptor antagonists on signal propagation elicited by stimulation of association fibers in guinea pig piriform cortex slices were investigated using optical imaging. During simultaneous application of both NMDA and non-NMDA receptor antagonists (D-2-amino-5-phosphonopentanoic acid and 6-cyano-7-nitroquinoxaline-2,3-dione, respectively) the postsynaptic activity was largely suppressed, and a weak although distinct late propagation component was found to survive. This latter component was reversibly suppressed by application of low Ca(2+) solution or a group I/II specific metabotropic glutamate receptor (mGluR) antagonist (+)-alpha-methyl-4-carboxyphenylglycine. These results suggest that mGluRs mediate postsynaptic excitation, which would play a crucial role in activating the reverberating positive feedback circuit effectively.  相似文献   

20.
We investigated the role of hippocampal metabotropic glutamate receptors in spatial learning and memory, using an eight-arm radial maze task. (S)-4-Carboxyphenylglycine, a group I metabotropic glutamate receptor antagonist, or trans-(+/-)-1-amino-(1S,3R)-cyclopentanedicarboxylic acid, a broad-spectrum metabotropic glutamate receptor agonist, was administered into the dorsal hippocampus after rats had acquired the task. Both of these agents significantly impaired radial maze performance, suggesting a functional importance of hippocampal metabotropic glutamate receptors in spatial working memory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号