首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Du H  Yang W  Chen L  Shi M  Seewoo V  Wang J  Lin A  Liu Z  Qiu W 《Oncology reports》2012,27(1):143-150
In spite of an initially promising anti-tumor activity, oxaliplatin-based combinatorial treatments can eventually result in a tumor resistance response. In this study we aimed to understand the role of autophagy in HCC cell resistance to oxaliplatin and to discuss its potential therapeutic implication. We found that exposure to oxaliplatin induced a significant increase in LC3 lipidation and subsequent LC3 puncta formation. While the proliferation of HCC cells was inhibited upon oxaliplatin exposure, inhibition of autophagy by ATG7 interference and chloroquine pre-treatment further increased the sensitivity to chemotherapy. Meanwhile, the oxaliplatin-induced apoptotic cell death was significantly enhanced. These results suggest that autophagy may function importantly in HepG2 cell resistance to oxaliplatin. Intriguingly, the resistance could be recovered apparently by inhibition of autophagy. This also points to the potential therapy for hepatoma by perturbing autophagy.  相似文献   

2.
Hou Q  Tang X  Liu H  Tang J  Yang Y  Jing X  Xiao Q  Wang W  Gou X  Wang Z 《Cancer science》2011,102(7):1287-1292
The isoquinoline plant alkaloid berberine has anti-tumor effects on a variety of carcinoma cells, mainly through inhibition of cell proliferation, apoptosis induction and cell cycle arrest. However, the mechanisms underlying its role in tumor progression are unknown. In the present study, we investigated the molecular mechanisms involved in berberine-induced cell death in human hepatoma carcinoma cell (HCC) lines HepG2 and SMMC7721. Our results showed that berberine inhibited tumor cell viability in a dose- and time-dependent manner, and induced cell death via apoptosis and autophagy. Moreover, berberine treatment significantly inhibited CD147 expression by HCC cells in a dose-dependent manner. Overexpression of CD147 protein markedly reduced berberine-induced cell death. Our data provide the first experimental evidence that berberine induces cell death in HCC cells via downregulation of CD147 and suggest a new mechanism to explain its anti-tumor effects.  相似文献   

3.
Baicalein is a purified flavonoid extracted from the roots of Scutellaria baicalensis or Scutellaria radix. Although previous studies have suggested that Baicalein possesses an in vitro anti-hepatocellular carcinoma activity, its in vivo effects and mechanisms of action are still not completely understood. In this study, Baicalein at concentrations of 40-120 μM exhibited significant cytotoxicity to three hepatocellular carcinoma (HCC) cell lines but marginal cytotoxicity to a normal liver cell line in vitro. Compared to a standard chemotherapy drug, 5-fluorouracil (5-FU), Baicalein had greater effect on HCC cells but less toxicity on normal liver cells. Treatment with Baicalein dramatically reduced mitochondrial transmembrane potential, and activated caspase-9 and caspase-3. Blockade of Baicalein-induced apoptosis with a pan-caspase inhibitor partially attenuated Baicalein-induced growth inhibition in HCC. Baicalein treatment significantly inhibited tumor growth of HCC xenografts in mice. Induction of apoptosis was demonstrated in Baicalein-treated xenograft tumors by the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. Furthermore, Baicalein treatment dramatically decreased the levels of phosphorylation of MEK1, ERK1/2 and Bad in vitro and in vivo. Overexpression of human MEK1 partially blocked Baicalein-induced growth inhibition. Consequently, these findings suggest that Baicalein preferentially inhibits HCC tumor growth through inhibition of MEK-ERK signaling and by inducing intrinsic apoptosis.  相似文献   

4.
Liu Y  Poon RT  Shao W  Sun X  Chen H  Kok TW  Fan ST 《Cancer letters》2007,248(1):32-40
Epidermal growth factor receptor (EGFR) is highly expressed in many human tumors including hepatocellular carcinoma (HCC). Therefore, inhibition of EGF receptors could be a potential target for anticancer therapy. In this study, we investigated the effects of two EGFR tyrosine kinase inhibitors, PD153035 and its analogue 4-[[3-chloro-4-fluorophenyl]amino]-6,7-dimethoxyquinazoline hydrochloride (ANAPD) on human HCC cell lines by cell proliferation assay, flow cytometry and Western blot. Our results demonstrated that both EGFR inhibitors inhibited tumor cell growth in a dose-dependent manner, but ANAPD was more potent than PD153035. These specific inhibitors not only blocked EGF-stimulated EGFR autophosphorylation but also targeted EGFR signaling including MAPK and Akt pathways. Furthermore, EGFR inhibitors induced a delay in cell cycle progression and a G(1) arrest together with a partial G(2)/M block. EGFR inhibitors also induced tumor cells to undergo apoptosis. In conclusion, this study demonstrated that both PD153035 and ANAPD inhibit tumor cell growth in HCC through inhibition of EGFR signaling pathway, and ANAPD is a more potent inhibitor than PD153035. This suggested that blockage of EGF receptors may provide an effective therapeutic approach for human HCC and ANAPD could be a potential drug candidate for the treatment of HCC.  相似文献   

5.
The multikinase inhibitor sorafenib is the first oral agent to show activity against human hepatocellular carcinoma (HCC). Apoptosis has been shown to be induced in HCC by several agents, including sorafenib as well as by the naturally occurring K vitamins (VKs). As few nontoxic agents have activity against HCC growth, we evaluated the activity of sorafenib and VKs, both independently and together on the growth of HCC cells in vitro and in vivo. We found that when VK was combined with sorafenib, the concentration of sorafenib required for growth inhibition was substantially reduced. Conversely, VK enhanced sorafenib effects in several HCC cell lines on growth inhibition. Growth could be inhibited at doses of VK plus sorafenib that were ineffective with either agent alone, using vitamins K1, K2 and K5. Combination of VK1 plus sorafenib induced apoptosis on FACS, TUNEL staining and caspase activation. Phospho-extracellular signal-regulated kinase (ERK) levels were decreased as was myeloid cell leukemia sequence 1 (Mcl-1), an ERK target. Sorafenib alone inhibited growth of transplantable HCC in vivo. At subeffective sorafenib doses in vivo, addition of VK1 caused major tumor regression, with decreased phospho-ERK and Mcl-1 staining. Thus, combination of VK1 plus sorafenib strongly induced growth inhibition and apoptosis in rodent and human HCC and inhibited the RAF/mitogen-activated protein kinase kinase/ERK pathway. VK1 alone activated PKA, a mediator of inhibitory Raf phosphorylation. Thus, each agent can antagonize Raf: sorafenib as a direct inhibitor and VK1 through inhibitory Raf phosphorylation. As both agents are available for human use, the combination has potential for improving sorafenib effects in HCC.  相似文献   

6.
Activation of p53 can induce apoptosis, cell cycle arrest, and cell senescence, although some evidence has suggested that p53 could promote cell survival. However, whether p53 plays a positive role in cancer cell survival to chemotherapy remains unknown. In this study, we show that inhibition of p53 enhanced apoptosis and increased chemosensitivity to 5-fluorouracil (5-FU) in nutrient-deprived hepatocarcinoma cells (HCC). Meanwhile, nutrient-deprivation-induced autophagy was inhibited by pifithrin-α or small interfering RNA targeting p53. The expression of p53 was not increased when HCC were incubated under nutrient-deprived conditions. This indicates that the basal level of p53 is important to autophagy activation in nutrient-deprived HCC cells. Furthermore, combining p53 inhibition and nutrient deprivation or 5-FU treatment resulted in a marked increase in reactive oxygen species generation and mitochondrial damage. Antioxidants reduced nutrient deprivation or 5-FU-induced cell death of HCC after p53 inhibition. Our results suggest that p53 contributes to cell survival and chemoresistance in HCC under nutrient-deprived conditions by modulating autophagy activation.  相似文献   

7.
Increased expression of vimentin in carcinomas correlates with parameters of malignant potential such as tumor grade and tumor metastasis. Peroxisome proliferator-activated receptor gamma (PPARgamma) has been intensively evaluated as a potential target for the inhibition of cell growth and metastasis in cancer cells. In the present study, we examined whether PPARgamma is a possible target molecule for the prevention of cell growth and invasion by treatment with agonists (troglitazone, rosiglitazone) and antagonists (T0070907, GW9662) in four different hepatocellular carcinoma (HCC) cell lines. We also evaluated the effects of the PPARgamma agonists and antagonists on tumor cell migration and invasion. The expression level of PPARgamma protein was higher in the sarcomatoid SH-J1 and poorly differentiated HLE cell lines than that in the well-differentiated HCC cell lines (HepG2 and Huh-7). Expression of vimentin was high in the SH-J1 HCC cell line and minimally detected in the HLE cell line. Treatment with low doses of the PPARgamma antagonists inhibited cell growth and colony formation of all four of the HCC cell lines. Vimentin in the high-grade HCC cells was cleaved by the treatment with the PPARgamma antagonists. Furthermore, treatment with the PPARgamma antagonists also strongly inhibited migration and invasion of the SH-J1 and HLE cells. However, treatment with low doses of the agonists had no effect on vimentin expression, migration, and invasion of the high-grade HCC cells but cell growth was inhibited by treatment with high concentrations of the agonists. Our results indicate that treatment with a PPARgamma antagonist may prevent cell growth and invasion of high-grade HCC cells. Our findings also suggest that PPARgamma antagonists inhibit cell growth and invasion through vimentin disarrangement in high-grade HCC.  相似文献   

8.
Liu Z  Lv YJ  Song YP  Li XH  Du YN  Wang CH  Hu LK 《Oncology reports》2012,28(3):985-991
As constituents of lysosomes, lysosomal membrane proteins play important roles in lysosome-related autophagy and apoptosis. In a recent proteomic study of lysosomal proteins, we identified transmembrane protein 192 (TMEM192) as a novel lysosomal membrane protein candidate. Using specific anti-TMEM192 antibody and lysosomal markers, the lysosomal localization of TMEM192 was determined by immunofluorescence. TMEM192 shows a wide expression pattern in mouse tissues. Interestingly, TMEM192 was found to be highly expressed in tumor cell lines, while it was not expressed or was detected at low levels in normal cell lines. By knockdown of TMEM192 expression using specific siRNAs, we found that TMEM192-deficient HepG2 hepatoma cells show growth inhibition and increased apoptosis. Autophagy was shown to be activated through detection of LC3II expression. Increased apoptosis was inhibited by blocking the expression of the key autophagy gene Atg7 in TMEM192-deficient HepG2 cells. The results suggest that TMEM192 is important for tumor cell growth and proliferation. TMEM192 deficiency can induce autophagy in tumor cells, and can further activate apoptosis by the mitochondrial pathway through autophagy. TMEM192 promotion of autophagy may be a new route for tumor therapy.  相似文献   

9.
Human hepatocellular carcinoma (HCC) has a high rate of tumor recurrence and metastasis, resulting in shortened survival time. The function of alpha-fetoprotein (AFP) as a regulatory factor in the growth of HCC cells has been well defined. The aim of this study was to investigate the use of a novel AFP-specific single-chain variable fragment that blocked AFP and inhibited HCC cell growth. The results indicated that the anti-AFP single-chain variable fragment (scFv) induced growth inhibition of AFP-expressing HCC cell lines in vitro through induction of G1 cell cycle arrest and apoptosis. The mechanism of apoptosis probably involved with blocking AFP internalization and regulation of the PTEN/PI3K/Akt signaling network. Moreover, the anti-AFP-scFv also effectively sensitized the HepG2 cells to paclitaxel (PTX) at a lower concentration. The combination effect of PTX and anti-AFP-scFv displayed a synergistic effect on HepG2 cells both in vitro and in vivo. Our results demonstrated that targeting AFP by specific antibodies has potential immunotherapeutic efficacy in human HCC.  相似文献   

10.
自噬在肿瘤治疗中扮演着双重角色.多数化疗药物能够通过激活内质网应激来诱导肿瘤细胞自噬,过度激活的自噬能够造成肿瘤细胞凋亡,发挥抗肿瘤作用.自噬对肿瘤细胞又具有保护作用,它能够通过对破损细胞器的降解再利用,维持肿瘤细胞活性,降低对化学药物的敏感性.因此,促进或抑制自噬的调节剂联合化疗药物在肿瘤治疗中将具有发展潜力.  相似文献   

11.
Induction of apoptosis in hepatocellular carcinoma cell lines by emodin.   总被引:9,自引:0,他引:9  
Previous experiments have shown that emodin is highly active in suppressing the proliferation of several tumor cell lines. However, it is not clear that emodin can induce growth inhibition of hepatoma cells. We have found that emodin induces apoptotic responses in the human hepatocellular carcinoma cell lines (HCC) Mahlavu, PLC/PRF/5 and HepG2. The addition of emodin to these three cell lines led to inhibition of growth in a time- and dose-dependent manner. Emodin generated reactive oxygen species (ROS) in these cells which brought about a reduction of the intracellular mitochondrial transmembrane potential (DeltaPsim), followed by the activation of caspase-9 and caspase-3, leading to DNA fragmentation and apoptosis. Our findings demonstrate that ROS and the resulting oxidative stress play a pivotal role in apoptosis. Preincubation of hepatoma cell lines with the hydrogen peroxide-scavenging enzyme, catalase (CAT) and cyclosporin A (CsA), partially inhibited apoptosis. These results demonstrate that enhancement of generation of ROS, DeltaPsim disruption and caspase activation may be involved in the apoptotic pathway induced by emodin.  相似文献   

12.
Cyclooxygenase (COX)-2 is expressed in hepatocellular carcinomas (HCCs) and HCC cell lines. COX-2 inhibition strongly suppresses growth of HCC cells in vitro by inducing apoptosis and reducing proliferation. Here, we evaluate the in vivo effects and mechanism of COX-2 inhibition of human HCC cell line derived xenotransplanted tumors in nude mice. Firstly, nude mice were treated with a COX-2 specific inhibitor (meloxicam) or a non-specific inhibitor (sulindac) starting 5 days prior to tumor cell injection. After 35 days mice were killed and tumors were analyzed morphologically and assayed for proliferation (Ki67), apoptosis (M30) and COX-2 expression. Secondly, mice were treated with meloxicam or sulindac after tumors had reached a diameter of at least 0.2 cm. COX-2 expression was maintained in implant tumors at levels comparable with parental cells. Selective COX-2 inhibition led to a significant reduction of tumor growth and weight. COX-2 inhibition had a significant anti-proliferative and pro-apoptotic effect on tumor cells. These results demonstrate that under experimental conditions selective COX-2 inhibition suppresses solid HCC growth in vivo and, therefore may have preventive and therapeutic potential for human HCCs.  相似文献   

13.
14.
Multikinase inhibitor sorafenib inhibits proliferation and angiogenesis of tumors by suppressing the Raf/MEK/ERK signaling pathway and VEGF receptor tyrosine kinase. It significantly prolongs median survival of patients with advanced hepatocellular carcinoma (HCC) but the response is disease-stabilizing and cytostatic rather than one of tumor regression. To examine the mechanisms underlying the relative resistance in HCC, we investigated the role of autophagy, an evolutionarily conserved self-digestion pathway, in hepatoma cells in vitro and in vivo. Sorafenib treatment led to accumulation of autophagosomes as evidenced by conversion from LC3-I to LC3-II observed by immunoblot in Huh7, HLF and PLC/PRF/5 cells. This induction was due to activation of autophagic flux, as there was further increase in LC3-II expression upon treatment with lysosomal inhibitors, clear decline of the autophagy substrate p62, and an mRFP-GFP-LC3 fluorescence change in sorafenib-treated hepatoma cells. Sorafenib inhibited the mammalian target of rapamycin complex 1 and its inhibition led to accumulation of LC3-II. Pharmacological inhibition of autophagic flux by chloroquine increased apoptosis and decreased cell viability in hepatoma cells. siRNA-mediated knockdown of the ATG7 gene also sensitized hepatoma cells to sorafenib. Finally, sorafenib induced autophagy in Huh7 xenograft tumors in nude mice and coadministration with chloroquine significantly suppressed tumor growth compared with sorafenib alone. In conclusion, sorafenib administration induced autophagosome formation and enhanced autophagic activity, which conferred a survival advantage to hepatoma cells. Concomitant inhibition of autophagy may be an attractive strategy for unlocking the antitumor potential of sorafenib in HCC.  相似文献   

15.
PURPOSE: This is the first preclinical report evaluating a trimodal therapy consisting of irradiation, chemotherapy, and antiangiogenesis in the context of a multimodal anticancer strategy. The combination of the folate antimetabolite pemetrexed, SU5416, a receptor tyrosine kinase inhibitor of VEGFR2, and irradiation was investigated in human endothelial cells and tumor cell lines. METHODS AND MATERIALS: Primary isolated human umbilical vein endothelial cells (HUVEC), human dermal microvascular endothelial cells (HDMEC), and human glioblastoma (U87) and prostate cancer cells (PC3) were exposed to pemetrexed (2 h) alone and in combination with SU5416 (2 h). When combined with irradiation up to 8 Gy, fixed concentrations of pemetrexed (1.06 muM) and SU5416 (1.0 muM) were used. Proliferation and clonogenic assays were conducted with endothelial and tumor cells. The migration/invasion ability of endothelial cells and the ability to produce tubular structures were tested in Matrigel and tube formation assays. Apoptosis was measured by sub-G1 DNA and caspase-3 flow cytometry. To investigate underlying cell signaling, immunocytochemistry was used to detect Akt survival signaling involvement. RESULTS: Triple combination using only a low-toxicity drug exposure of pemetrexed and SU5416 results in greater response than each treatment alone or than each combination of two modalities in all tested endothelial and tumor cell models. Triple combination substantially inhibits proliferation, migration/invasion, tube formation, and clonogenic survival. Triple combination also induced the highest rate of apoptosis in HDMEC and HUVEC as indicated by sub-1 G1 and caspase-3 assessment. Interestingly, triple combination therapy also reduces proliferation and clonogenic survival significantly in U87 and PC3 tumor cell lines. SU5416 potently inhibited Akt phosphorylation which could be induced by radiation and radiochemotherapy in human endothelial cells. CONCLUSIONS: Our findings demonstrate the high antiendothelial/antitumoral efficacy of the concurrent administration of irradiation, chemotherapy, and angiogenesis inhibition in vitro. A potential explanation for the favorable combination would be that VEGF signaling inhibition downregulates Akt survival signaling upon activation by radiation and/or chemotherapy. The data also suggest that endothelial cell apoptosis may have an important role in the benefits of the presented therapy.  相似文献   

16.
Hepatocellular carcinoma (HCC) is one of the most common cancer-related causes of death, and conventional treatments offer unsatisfactory response. We have previously reported that kallistatin gene therapy suppressed the growth of HCC tumors by its anti-angiogenic activity, and meloxicam, a selective COX-2 inhibitor, inhibited proliferation and induced apoptosis of human HCC cells in vitro . The aim of this study was to determine whether combining kallistatin gene therapy and meloxicam could offer a better therapeutic effect to combat HCC in mice. A kallistatin expression plasmid was constructed and its expression was detected after intratumoral gene transfer. Both kallistatin gene therapy and meloxicam suppressed the growth of subcutaneous human HepG2 tumors established in BALB/c nude mice, and the combinational therapy showed a stronger effect in suppressing tumor growth, tumor angiogenesis and cell proliferation, and increasing cell apoptosis, than the respective monotherapies. Gene transfer of kallistatin inhibited tumor angiogenesis, and slightly inhibited cell proliferation and increased cell apoptosis in situ , but had no effect on expression of vascular endothelial growth factor, basic fibroblast growth factor, proliferating cell nuclear antigen, Bcl-2, Bax, or activation of caspase-3. Meloxicam therapy inhibited cell proliferation, induced cell apoptosis, reduced expression of proliferating cell nuclear antigen, increased activation of caspase-3, and upregulated Bax. Meloxicam also slightly inhibited tumor angiogenesis with no effect on the expression of vascular endothelial growth factor or basic fibroblast growth factor. Combining two novel anticancer agents, kallistatin targeting tumoral vascularization and meloxicam targeting cell proliferation and apoptosis, warrants investigation as a therapeutic strategy to combat HCC. ( Cancer Sci 2009)  相似文献   

17.
Chemotherapy, radiotherapy, and endocrinotherapy are documented to induce autophagy among breast cancer cells, but the role of autophagy in this disease has been attributed as cytoprotective as well as tumor‐suppressing. Thus we studied MDA‐MB‐231 and SK‐BR‐3 breast cancer cell lines treated with epirubicin (EPI) to assess autophagy and apoptosis. We found out that EPI induced apoptosis and autophagy in both cell lines. The lysosomal inhibitor bafilomycin A1 inhibited cellular autophagy and enhanced EPI‐triggered apoptosis, perhaps due to inhibition of autolysosome formation, which then inhibited autophagic effects of engulfing and clearing damaged mitochondria. This inhibition increased mitochondrial cytochrome C release which augmented epirubicin‐induced caspase‐dependent apoptosis and cytotoxicity. In addition, the lysosomal neutralizing agent ammonia chloride (AC), and Atg7 knockdown by siRNA, could inhibit epirubicin‐triggered autophagy, enhance cytotoxicity, and increase caspase‐9‐ and caspase‐3‐dependent apoptosis. Thus, autophagy plays a prosurvival role in EPI‐treated MDA‐MB‐231 and SK‐BR‐3 cells, and autophagy inhibition can potentially reverse this effect and increase the cytotoxicity of EPI.  相似文献   

18.
Yi T  Yi Z  Cho SG  Luo J  Pandey MK  Aggarwal BB  Liu M 《Cancer research》2008,68(6):1843-1850
Gambogic acid (GA), the main active compound of Gamboge hanburyi, has been previously reported to activate apoptosis in many types of cancer cell lines by targeting transferrin receptor and modulating nuclear factor-kappaB signaling pathway. Whether GA inhibits angiogenesis, which is crucial for cancer and other human diseases, remains unknown. Here, we found that GA significantly inhibited human umbilical vascular endothelial cell (HUVEC) proliferation, migration, invasion, tube formation, and microvessel growth at nanomolar concentration. In a xenograft prostate tumor model, we found that GA effectively inhibited tumor angiogenesis and suppressed tumor growth with low side effects using metronomic chemotherapy with GA. GA was more effective in activating apoptosis and inhibiting proliferation and migration in HUVECs than in human prostate cancer cells (PC3), suggesting GA might be a potential drug candidate in cancer therapy through angioprevention with low chemotoxicity. Furthermore, we showed that GA inhibited the activations of vascular endothelial growth factor receptor 2 and its downstream protein kinases, such as c-Src, focal adhesion kinase, and AKT. Together, these data suggest that GA inhibits angiogenesis and may be a viable drug candidate in antiangiogenesis and anticancer therapies.  相似文献   

19.
Yan X  Chua MS  Sun H  So S 《Cancer letters》2008,262(1):133-142
The over-expression of N-myc down-regulated gene 1 (NDRG1) in hepatocellular carcinoma (HCC) was previously reported to correlate with vascular invasion and patient survival. Our current study aims to elucidate its functions in HCC. We found that it lacked the tumorigenic ability to promote soft agar colony formation or serum-independent growth of NIH3T3 cells. We used specific small interfering RNA (siRNA) oligos to suppress the expression of NDRG1 in human HCC (Hep3B and HepG2) cell lines, and found that this significantly reduced cell proliferation and invasion, and induced apoptosis. Additionally, NDRG1-specific siRNA inhibited the HepG2 xenograft growth in nude mice. These results are consistent with our earlier clinical observations that NDRG1 is associated with more aggressive tumor behavior, and suggest that NDRG1 may be a potential therapeutic target for HCC.  相似文献   

20.
Bioactive compounds from edible plants have limited efficacy in treating advanced cancers, but they have potential to increase the efficacy of chemotherapy drugs in a combined treatment. An aqueous extract of berries of Pimenta dioica (Allspice) shows promise as one such candidate for combination therapy or chemoprevention. An aqueous extract of Allspice (AAE) was tested against human breast cancer (BrCa) cells in vitro and in vivo. AAE reduced the viability and clonogenic growth of several types of BrCa cells (IC50 ≤ 100 μg/ml) with limited toxicity in non-tumorigenic, quiescent cells (IC50 >200 μg/ml). AAE induced cytotoxicity in BrCa was inconsistent with apoptosis, but was associated with increased levels of autophagy markers LC3B and LC3B-positive puncta. Silencing the expression of autophagy related genes (ATGs) prevented AAE-induced cell death. Further, AAE caused inhibition of Akt/mTOR signaling, and showed enhanced cytotoxicity when combined with rapamycin, a chemotherapy drug and an inhibitor of mTOR signaling. Oral administration (gavage) of AAE into athymic mice implanted with MDA-MB231 tumors inhibited tumor growth slightly but not significantly (mean decrease ~ 14%, p ≥ 0.20) if mice were gavaged post-tumor implant. Tumor growth showed a significant delay (38%) in tumor palpability and growth rate (time to reach tumor volume ≥ 1,000 mm3) when mice were pre-dosed with AAE for two weeks. Analysis of tumor tissues showed increased levels of LC3B in AAE treated tumors, indicating elevated autophagic tumor cell death in vivo in treated mice. These results demonstrate antitumor and chemo-preventive activity of AAE against BrCa and potential for adjuvant to mTOR inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号