首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alterations in the gut microbiome have been associated with changes in bone mass and microstructure, but the effects of the microbiome on bone biomechanical properties are not known. Here we examined bone strength under two conditions of altered microbiota: (1) an inbred mouse strain known to develop an altered gut microbiome due to deficits in the immune system (the Toll‐like receptor 5–deficient mouse [TLR5KO]); and (2) disruption of the gut microbiota (ΔMicrobiota) through chronic treatment with selected antibiotics (ampicillin and neomycin). The bone phenotypes of TLR5KO and WT (C57Bl/6) mice were examined after disruption of the microbiota from 4 weeks to 16 weeks of age as well as without treatment (n = 7 to 16/group, 39 animals total). Femur bending strength was less in ΔMicrobiota mice than in untreated animals and the reduction in strength was not fully explained by differences in bone cross‐sectional geometry, implicating impaired bone tissue material properties. Small differences in whole‐bone bending strength were observed between WT and TLR5KO mice after accounting for differences in bone morphology. No differences in trabecular bone volume fraction were associated with genotype or disruption of gut microbiota. Treatment altered the gut microbiota by depleting organisms from the phyla Bacteroidetes and enriching for Proteobacteria, as determined from sequencing of fecal 16S rRNA genes. Differences in splenic immune cell populations were also observed; B and T cell populations were depleted in TLR5KO mice and in ΔMicrobiota mice (p < 0.001), suggesting an association between alterations in bone tissue material properties and immune cell populations. We conclude that alterations in the gut microbiota for extended periods during growth may lead to impaired whole‐bone mechanical properties in ways that are not explained by bone geometry. © 2017 American Society for Bone and Mineral Research.  相似文献   

2.
To examine the functional role of membrane-bound SLF, we evaluated the growing skeletons of WT and SLF mutant (Sl/Sl(d)) mice that do not produce this protein using DXA, bone histomorphometry, cell culture, and flow cytometry. Deletion of membrane-bound SLF delays bone growth, decreases bone mass and BMD, impairs osteoblast function, and increases osteoclast surface in young mice. INTRODUCTION: Mutations at the murine steel locus lead to a defect in the development of hematopoietic stem cells, mast cells, and germ cells. Two isoforms of steel factor (SLF), soluble and membrane-associated, have been reported. Soluble SLF increases osteoclast formation and activity in cell culture. The effects of deletion of membrane-bound SLF on bone metabolism in mice have yet to be determined and are the subject of this study. MATERIALS AND METHODS: Five-, 7-, and 12-week-old male and 5-week-old female WCB6F1/J-Kitl(Sl)/Kitl(Sl-d) (Sl/Sl(d)) mice and wildtype (WT) littermates were used. BMD and bone mass, growth, architecture, and turnover were evaluated by DXA (males and females) and histomorphometry (males only). Primary osteoblasts isolated from humeri of 5-week-old male WT and Sl/Sl(d) mice were used to determine osteoblast function, and bone marrow cells from tibias and femurs of these mice were analyzed to determine cell surface expression of osteoclast precursors. RESULTS AND CONCLUSIONS: Young Sl/Sl(d) mice grew more slowly, had a reduced bone mass, and had shorter bones than WT littermates. Male mutants had significantly decreased whole body BMD in all age groups, largely because of a reduction in BMC. Tibial cross-sectional, cortical, and marrow area of cortical bone and cancellous bone volume was reduced in the mutants at all ages. The osteopenia in Sl/Sl(d) was caused by increased osteoclast surface at all ages and decreased osteoblast surface at 5 weeks of age. [(3)H]thymidine incorporation studies showed that proliferation of osteoblasts derived from mutant mice was significantly suppressed (56%). Moreover, a decrease in mineralization was observed in Sl/Sl(d) osteoblast culture. Fluorescence-activated cell sorting analysis of bone marrow cells from Sl/Sl(d) mice revealed a 65% increase in the percentage of c-Fms(+)CD11b(+)RANK(+) cells compared with WT controls. These findings suggest that membrane-bound SLF/c-Kit signaling plays a role in the regulation of peak bone mass.  相似文献   

3.
Umbilical cord blood (UCB) has been used as an alternative source of haematopoietic progenitors for transplantation presenting advantages over bone marrow (BM) that are related with known shortages of newborns' immune system at adaptive and innate levels. Using flow cytometry, we studied the expression of Toll-like receptors (TLRs) and chemokine receptors (CKRs) and the production of pro-inflammatory cytokines by monocytes and CD14(-/low)/CD16(+)DCs from peripheral blood (PB; n=10), and umbilical cord blood (UCB; n=10). CKRs and cytokines were studied before and after stimulation of cells with LPS plus IFN-gamma. We also identified the two populations in normal bone marrow samples (BM; n=5). BM presented lower frequencies of both studied populations when compared to UCB and PB. CD14(-/low)/CD16(+)DCs presented a pattern of TLR expression different from mature monocytes reflecting distinct functions for these two populations. UCB cells presented reduced expression of TLR-4 and lower capability to produce cytokines prior stimulation. The populations studied presented different patterns of CKR expression reflecting distinct migratory pathways. Moreover, UCB cells presented higher expressions of CXCR4 and CCR7 that may be involved in immune system maturation and stem cell homing. Monocytes and CD14(-/low)/CD16(+)DCs present functional and phenotypical characteristics that may contribute to the lower incidence and severity of GVHD.  相似文献   

4.
CD55 is a glycosylphosphatidylinositol (GPI)-anchored protein that regulates complement-mediated and innate and adaptive immune responses. Although CD55 is expressed in various cell types in the bone marrow, its role in bone has not been investigated. In the current study, trabecular bone volume measured by μCT in the femurs of CD55KO female mice was increased compared to wild type (WT). Paradoxically, osteoclast number was increased in CD55KO with no differences in osteoblast parameters. Osteoclasts from CD55KO mice exhibited abnormal actin-ring formation and reduced bone-resorbing activity. Moreover, macrophage colony-stimulating factor (M-CSF) and receptor activator of NF-κB ligand (RANKL) treatment failed to activate Rac guanosine triphosphatase (GTPase) in CD55KO bone marrow macrophage (BMM) cells. In addition, apoptotic caspases activity was enhanced in CD55KO, which led to the poor survival of mature osteoclasts. Our results imply that CD55KO mice have increased bone mass due to defective osteoclast resorbing activity resulting from reduced Rac activity in osteoclasts. We conclude that CD55 plays an important role in the survival and bone-resorption activity of osteoclasts through regulation of Rac activity. © 2019 American Society for Bone and Mineral Research.  相似文献   

5.
Wang W  He B  Shi W  Liang X  Ma J  Shan Z  Hu Z  Danesh FR 《Kidney international》2012,81(10):1002-1014
Scavenger receptor A (SR-A) is a key transmembrane receptor in the endocytosis of lipids and contributes to the pathogenesis of atherosclerosis. To assess its role in hyperlipidemic chronic kidney disease, wild-type and SR-A-deficient (knockout) mice underwent uninephrectomy followed by either normal or high-fat diet. After 16 weeks of diet intervention, hyperlipidemic wild-type mice presented characteristic features of progressive nephropathy: albuminuria, renal fibrosis, and overexpression of transforming growth factor (TGF)-β1/Smad. These changes were markedly diminished in hyperlipidemic knockout mice and attributed to reduced renal lipid retention, oxidative stress, and CD11c(+) cell infiltration. In vitro, overexpression of SR-A augmented monocyte chemoattractant protein-1 release and TGF-β1/Smad activation in HK-2 cells exposed to oxidized low-density lipoprotein. SR-A knockdown prevented lipid-induced cell injury. Moreover, wild-type to knockout bone marrow transplantation resulted in renal fibrosis in uninephrectomized mice following 16 weeks of the high-fat diet. In contrast, knockout to wild-type bone marrow transplantation led to markedly reduced albuminuria, CD11c(+) cell infiltration, and renal fibrosis compared to wild-type to SR-A knockout or wild-type to wild-type bone marrow transplanted mice, without difference in plasma lipid levels. Thus, SR-A on circulating leukocytes rather than resident renal cells predominantly mediates lipid-induced kidney injury.  相似文献   

6.
Infusions of donor bone marrow derived cells (DBMC) continue to be tested in clinical protocols intended to induce specific immunologic tolerance of solid organ transplants based on the observations that donor-specific tolerance is induced this way in animal models. We studied the immunological effects of human DBMC infusions in renal transplantation using modifications in lymphoproliferation (MLR) and cytotoxicity (CML) assays. The salient observations and tentative conclusions are summarized in this review. Among many types of organs transplanted using DBMC at this center, it was found that the cadaver renal recipients (CAD) had significantly decreased chronic rejection and higher graft survival when compared to equivalent non-infused controls. DBMC infusion was also associated with a marginal and non-specific immune depression. It was also observed that the number of chimeric donor cells gradually increased in the iliac crest bone marrow compartment with a concomitant decrease in the peripheral blood and that the increase was more rapid in living-related donor (LRD)-kidney/DBMC recipients in spite of a lower number of DBMC infused (<25%) than in the CAD-kidney/DBMC group. In the LRD recipients with residual anti-donor responses, purified chimeric cells of either donor or recipient inhibited recipient immune responses to the donor significantly more strongly than the freshly obtained bone marrow from the specific donor or volunteer suggesting an active regulatory role for chimeric cells. A number of (non-chimeric) subpopulations of bone marrow cells including CD34(+) stem cells and the CD34(-) early progeny like CD38(+), CD2(+), CD5(+) and CD1(+) lymphoid cells as well as CD33(+) (but CD15(-)) myeloid cells down-regulated the MLR and CML responses of allogeneic PBMC stimulated with (autologous) donor spleen cells. These regulatory effects appeared to be refractory to the action of commonly used immunosuppressive drugs and occurred during the early phase of the immune response through cell-cell interactions. Most of these DBMC sub-populations had stimulatory capabilities, albeit markedly lower than donor spleen cells, but only through the indirect antigen presentation pathway. When co-cultured with allogeneic stimulators, purified CD34(+) cells were found to give rise both to CD3(-) TCRalphabeta(+), as well as CD3(+) TCRalphabeta(+) cells and, thereby, responded in MLR to allogeneic stimulation (but did not generate cytotoxic effector cells). Also, a number of DBMC subpopulations inhibited the CML and to a lesser extent the MLR, of autologous post-thymic responding T cells stimulated with allogeneic irradiated cells, mediated through soluble factors. Finally, non-chimeric DBMC also inhibited the proliferative and cytotoxic responses of autologous T cells to EBV antigens, inducing T suppressor cells, which in turn could inhibit autologous anti-EBV CTL generation and B cell anti-CMV antibody production. These studies all suggested a strong inhibitory property of a number of DBMC sub-populations in vitro and in vivo with the notion that they promote unresponsiveness.  相似文献   

7.
Wang X  Qi Z  Wei H  Tian Z  Sun R 《Transplant immunology》2012,26(2-3):156-162
Humanized mice are crucially important for preclinical studies. However, the development and potential function of human B cells in chimeras remain unclear. Here, we describe the study of human B cells in NOD/LtSzPrkdcscid/J (NOD/SCID) mice. In this study, we transplanted 1.0×10(5) human CD34(+) cells from umbilical cord blood (UCB) into NOD/SCID mice after pretreatment with anti-asialo GM1 antiserum and sublethal irradiation. Human CD45(+) cells were detected in the peripheral blood of the recipient mice from 6 weeks after transplantation. CD19(+) B cells accounted for the greater part of the CD45(+) cells in the human UCB-chimeric mice, but their maturational stages differed in different organs. Most of the bone marrow (BM) CD19(+) cells were immature IgM(-)IgD(-)CD24(hi)CD38(hi) B cells, whereas the mature CD5(+)IgM(+)IgD(+)CD24(int)CD38(int)CD19(+) B cells were predominantly present in the spleen and peripheral blood. Human immunoglobulin (Ig) M was detected in mouse plasma. The human B cells also secreted human interleukin-10 after stimulation with LPS in vitro. These results show that human CD34(+) cells can differentiate into human B cells in NOD/SCID mice, with development and functions that are similar to those of B cell subsets in humans. The transplantation of human CD34(+) cells into NOD/SCID mice may provide a useful tool to study the development and function of human B cells.  相似文献   

8.
Hematopoietic stem cells (HSCs) are derived from endothelium in the aortic-gonado-mesonephric (AGM) region during embryogenesis. But little is known about whether endothelial progenitor cells (EPCs) retain hematopoiesis potential after birth. In this study, we isolated adult EPCs from the bone marrow of C57BL/6 mice and identified them with an endothelial functional assay and by the CD31(+) CD133(+) CD45(-/dim) VEGFR2(+) phenotype. EPCs isolated from green fluorescence protein (GFP) transgenic C57BL/6 mice were cotransfused with bone marrow cells from wild-type C57BL/6 mice into lethally irradiated BABL/c mice. One month after transplantation, granulocytes (25.73 ± 5.43%) and lymphocytes (12.68 ± 3.26%) in peripheral blood showed GFP(+), referred to as donor EPC-derived blood cells. After an additional month, the percentage of GFP(+) granulocytes decreased to (3.69 ± 1.43%), whereas the percentage of GFP(+) lymphocytes showed no significant difference. Most of the GFP(+) elements showed a diffuse distribution in the spleen; but some were present as aggregates forming lymphoid nodules. GFP(+) endothelial cells were observed in the liver sinusoids, intestinal villi, and lung of recipient mice. These results indicated that adult EPCs not only took part in vasculogenesis, but also retained hematopoietic ability.  相似文献   

9.
CD74 is a type II transmembrane protein that can act as a receptor for macrophage migration inhibitory factor (MIF) and plays a role in MIF‐regulated responses. We reported that MIF inhibited osteoclast formation and MIF knockout (KO) mice had decreased bone mass. We therefore examined if CD74 was involved in the ability of MIF to alter osteoclastogenesis in cultured bone marrow (BM) from wild‐type (WT) and CD74‐deficient (KO) male mice. We also measured the bone phenotype of CD74 KO male mice. Bone mass in the femur of 8‐week‐old mice was measured by micro–computed tomography and histomorphometry. Bone marrow cells from CD74 KO mice formed 15% more osteoclast‐like cells (OCLs) with macrophage colony‐stimulating factor (M‐CSF) and receptor activator of NF‐κB ligand (RANKL) (both at 30 ng/mL) compared to WT. Addition of MIF to WT cultures inhibited OCL formation by 16% but had no effect on CD74KO cultures. The number of colony forming unit granulocyte‐macrophage (CFU‐GM) in the bone marrow of CD74 KO mice was 26% greater than in WT controls. Trabecular bone volume (TBV) in the femurs of CD74 KO male mice was decreased by 26% compared to WT. In addition, cortical area and thickness were decreased by 14% and 11%, respectively. Histomorphometric analysis demonstrated that tartrate‐resistant acid phosphatase (TRAP)(+) osteoclast number and area were significantly increased in CD74 KO by 35% and 43%, respectively compared to WT. Finally, we examined the effect of MIF on RANKL‐induced‐signaling pathways in bone marrow macrophage (BMM) cultures. MIF treatment decreased RANKL‐induced nuclear factor of activated T cells, cytoplasmic 1 (NFATc1) and c‐Fos protein in BMM cultures by 70% and 41%, respectively. Our data demonstrate that CD74 is required for MIF to affect in vitro osteoclastogenesis. Further, the bone phenotype of CD74 KO mice is similar to that of MIF KO mice. MIF treatment of WT cultures suppressed RANKL‐induced activator protein 1 (AP‐1) expression, which resulted in decreased osteoclast differentiation in vitro. We propose that CD74 plays a critical role in the MIF inhibition of osteoclastogenesis. © 2013 American Society for Bone and Mineral Research.  相似文献   

10.
肠道菌群在人体中发挥着重要的作用,与人体的骨量减低及骨质疏松的发病相关。其可能通过自身代谢产物,影响宿主代谢及免疫系统等几方面来影响破骨细胞和成骨细胞的相对活性,从而影响骨代谢,甚至导致骨质疏松。本文将从上述几个方面对肠道菌群对骨代谢的影响进行综述。  相似文献   

11.
骨质疏松症是以骨量减少,骨组织结构退化进而极易导致骨质疏松性骨折的一类疾病。严重影响患者生活质量,同时也带来了极大的经济负担。近年来有关调节肠道菌群进而干预骨质疏松症的研究逐渐兴起。炎症性肠病是由肠道菌群失调引起的炎症免疫变态反应,而炎症性肠病与骨量丢失密切相关。近来有研究表明肠道菌群与肠道MicroRNA直接的相互作用可以治疗炎症性肠病。为此,我们提出设想,肠道菌群可能调节肠道MicroRNA具有治疗骨质疏松症潜力,现从肠道菌群与骨质疏松症;MicroRNA与骨质疏松症;肠道菌群与MicroRNA;炎症性肠病与骨质疏松症四方面展开综述,支持肠道菌群通过调节肠道MicroRNA治疗骨质疏松症的观点,为骨质疏松症治疗提供新思路。  相似文献   

12.
The intestinal tract is inhabited by a large and diverse community of bacteria collectively referred to as the gut microbiota. The intestinal microbiota is composed by 500‐1000 distinct species, and alterations in its composition are associated with a variety of diseases including obesity, diabetes, and inflammatory bowel disease (IBD). Importantly, microbiota transplantation from diseased patients or mice (IBD, metabolic syndrome, etc.) to germ‐free mice was found to be sufficient to transfer some aspects of disease phenotypes, indicating that altered microbiota is playing a direct role in those particular conditions. Moreover, it is now well admitted that the intestinal microbiota is involved in shaping and maturating the immune system, with for example the observation that germ‐free animals harbor a poorly developed intestinal immune system and that some single bacteria species, such as segmented filamentous bacteria (SFB), are sufficient to induce the expansion of Th17 cells (CD4+ T helper cells producing IL‐17). We will present herein an overview of the interactions occurring between the intestinal microbiota and the immune system, and we will discuss how a dietary‐induced disruption of the intestinal environment may influence transplantation outcomes.  相似文献   

13.
BACKGROUND: The aim of the study was to investigate the endothelialization of prostheses with bone marrow CD34(+) cells. METHODS: CD34(+) cells were isolated from the canine bone marrow by an immune magnetic cell sorting system and induced into endothelial cells (EC) with vascular endothelial growth factor. Cells were seeded to polytetrafluoroethylene prostheses, which were implanted into the abdominal aorta artery and inferior vena cava. RESULTS: The isolated cells derived from bone marrow were CD34(+) cells by flow cytometry, which could differentiate into EC when induced by vascular endothelial growth factor. The neointima on control prostheses was significantly thicker than that on prostheses seeded with EC at the anastomosis and the centre where the prosthesis interposed to aorta. All control prostheses (4/4) interposed to veins were occlusive and two seeded prostheses (2/8) interposed to veins were already occluded. The overall occlusion rate of prostheses interposed to veins in seeded prostheses and control prostheses were 25 and 100%, respectively. However, the neointima on seeded prostheses was significantly thicker in the vein than that in the aorta. CONCLUSION: Bone marrow CD34(+) cells can be induced into EC by vascular endothelial growth factor in vitro. Polytetrafluoroethylene prostheses seeded with CD34(+) cells have the ideal endothelialization and patency.  相似文献   

14.
Recently, we identified in normally type 1 diabetes-prone NOD/LtJ mice a spontaneous new leptin receptor (LEPR) mutation (designated Lepr(db-5J)) producing juvenile obesity, hyperglycemia, hyperinsulinemia, and hyperleptinemia. This early type 2 diabetes syndrome suppressed intra-islet insulitis and permitted spontaneous diabetes remission. No significant differences in plasma corticosterone, splenic CD4(+) or CD8(+) T-cell percentages, or functions of CD3(+) T-cells in vitro distinguished NOD wild-type from mutant mice. Yet splenocytes from hyperglycemic mutant donors failed to transfer type 1 diabetes into NOD.Rag1(-/-) recipients over a 13-week period, whereas wild-type donor cells did so. This correlated with significantly reduced (P < 0.01) frequencies of insulin and islet-specific glucose-6-phosphatase catalytic subunit-related protein-reactive CD8(+) T-effector clonotypes in mutant mice. Intra-islet insulitis was also significantly suppressed in lethally irradiated NOD-Lepr(db-5J)/Lt recipients reconstituted with wild-type bone marrow (P < 0.001). In contrast, type 1 diabetes eventually developed when mutant marrow was transplanted into irradiated wild-type recipients. Mitogen-induced T-cell blastogenesis was significantly suppressed when splenic T-cells from both NOD/Lt and NOD-Lepr(db-5J)/Lt donors were incubated with irradiated mutant peritoneal exudate cells (P < 0.005). In conclusion, metabolic disturbances elicited by a type 2 diabetes syndrome (insulin and/or leptin resistance, but not hypercorticism) appear to suppress type 1 diabetes development in NOD-Lepr(db-5J)/Lt by inhibiting activation of T-effector cells.  相似文献   

15.
16.
BACKGROUND: Treatment with anti-CD154 monoclonal antibody (mAb) plus a donor-specific transfusion (DST) of spleen cells prolongs skin allograft survival in mice through a mechanism involving deletion of host alloreactive CD8(+) T cells. It is unknown if other lymphohematopoietic cell populations can be used as a DST. METHODS: Murine recipients of allogeneic skin grafts on day 0 were either untreated or given a DST on day -7 plus 4 doses of anti-CD154 mAb on days -7, -4, 0, and +4. Deletion of CD8(+) alloreactive cells was measured using "synchimeric" CBA recipients, which circulate trace populations of TCR transgenic alloreactive CD8(+) T cells. RESULTS: Transfusion of splenocytes, thymocytes, lymph node cells, or buffy coat cells led to prolonged skin allograft survival in recipients treated with anti-CD154 mAb. In contrast, bone marrow DST failed to delete host alloreactive CD8(+) T cells and was associated with brief skin allograft survival. Transfusions consisting of bone marrow-derived dendritic cells or a mixture of splenocytes and bone marrow cells were also ineffective. CONCLUSIONS: Donor-specific transfusions of splenocytes, thymocytes, lymph node cells, or buffy coat cells can prolong skin allograft survival in recipients treated with costimulation blockade. Bone marrow cells fail to serve this function, in part by failing to delete host alloreactive CD8(+) T cells, and they may actively interfere with the function of a spleen cell DST. The data suggest that transplantation tolerance induction protocols that incorporate bone marrow cells to serve as a DST may not be effective.  相似文献   

17.
Glucocorticoids (GCs) are potent immune-modulating drugs with significant side effects, including glucocorticoid-induced osteoporosis (GIO). GCs directly induce osteoblast and osteocyte apoptosis but also alter intestinal microbiota composition. Although the gut microbiota is known to contribute to the regulation of bone density, its role in GIO has never been examined. To test this, male C57/Bl6J mice were treated for 8 weeks with GC (prednisolone, GC-Tx) in the presence or absence of broad-spectrum antibiotic treatment (ABX) to deplete the microbiota. Long-term ABX prevented GC-Tx-induced trabecular bone loss, showing the requirement of gut microbiota for GIO. Treatment of GC-Tx mice with a probiotic (Lactobacillus reuteri [LR]) prevented trabecular bone loss. Microbiota analyses indicated that GC-Tx changed the abundance of Verrucomicobiales and Bacteriodales phyla and random forest analyses indicated significant differences in abundance of Porphyromonadaceae and Clostridiales operational taxonomic units (OTUs) between groups. Furthermore, transplantation of GC-Tx mouse fecal material into recipient naïve, untreated WT mice caused bone loss, supporting a functional role for microbiota in GIO. We also report that GC caused intestinal barrier breaks, as evidenced by increased serum endotoxin level (2.4-fold), that were prevented by LR and ABX treatments. Enhancement of barrier function with a mucus supplement prevented both GC-Tx–induced barrier leakage and trabecular GIO. In bone, treatment with ABX, LR or a mucus supplement reduced GC-Tx–induced osteoblast and osteocyte apoptosis. GC-Tx suppression of Wnt10b in bone was restored by the LR and high-molecular-weight polymer (MDY) treatments as well as microbiota depletion. Finally, we identified that bone-specific Wnt10b overexpression prevented GIO. Taken together, our data highlight the previously unappreciated involvement of the gut microbiota and intestinal barrier function in trabecular GIO pathogenesis (including Wnt10b suppression and osteoblast and osteocyte apoptosis) and identify the gut as a novel therapeutic target for preventing GIO. © 2019 American Society for Bone and Mineral Research.  相似文献   

18.
Runx2 is prerequisite for the osteoblastic differentiation in vivo. To elucidate Runx2 gene functions in adult bone metabolism, we conducted bone marrow ablation in Runx2 heterozygous knockout mice and found that aged (but not young) adult Runx2 heterozygous knockout mice have reduced new bone formation capacity after bone marrow ablation. We also found that bone marrow cells from aged Runx2 heterozygous knockout mice have reduced ALP(+) colony-forming potential in vitro. This indicates that full Runx2 dosage is needed for the maintenance of osteoblastic activity in adult mice. INTRODUCTION: Null mutation of the Runx2 gene results in total loss of osteoblast differentiation, and heterozygous Runx2 deficiency causes cleidocranial dysplasia in humans and mice. However, Runx2 gene functions in adult bone metabolism are not known. We therefore examined the effects of Runx2 gene function in adult mice with heterozygous loss of the Runx2 gene. MATERIALS AND METHODS: Bone marrow ablation was conducted in young adult (2.5 +/- 0.5 months old) or aged adult (7.5 +/- 0.5 months old) Runx2 heterozygous knockout mice and wildtype (WT) littermates. Cancellous bone regeneration was evaluated by 2D microCT. RESULTS: Although new bone formation was observed after bone marrow ablation in the operated bone marrow cavity of WT mice, such bone formation was significantly reduced in Runx2 heterozygous knockout mice. Interestingly, this effect was observed specifically in aged but not young adult mice. Runx2 heterozygous deficiency in aged mice significantly reduced the number of alkaline phosphatase (ALP)(+) cell colonies in the bone marrow cell cultures, indicating a reduction in the numbers of osteoprogenitor cells. Such effects of heterozygous Runx2 deficiency on osteoblasts in vitro was specific to the cells from aged adult mice, and it was not observed in the cultures of marrow cells from young adult mice. CONCLUSION: These results indicate that full gene dosage of Runx2 is required for cancellous bone formation after bone marrow ablation in adult mice.  相似文献   

19.
Bone marrow (BM) cells are reported to contribute to the process of regeneration following myocardial infarction. The present study examined two independent clonal studies to determine the origin of bone marrow (BM)-derived cardiomyocytes. First, we transplanted single CD34(-)c-kit(+)Sca-1(+)lineage(-) side population cells (hematopoietic stem cells) from enhanced green fluorescent protein (EGFP)-transgenic mice into lethally irradiated mice, induced myocardial infarction, and treated them with G-CSF to mobilize stem cells. At 8 weeks, we could not find any EGFP(+) cardiomyocytes. In contrast, more than 5000 EGFP(+) cardiomyocytes were observed in whole BM cell-transplanted mice, suggesting that they were derived from non-hematopoietic cells. Next, clonally purified mesenchymal stem cells (MSC) that expressed EGFP in the cardiomyocyte-specific manner were transplanted directly into BM of lethally irradiated mice, and similar experiment was performed. EGFP(+) actinin(+) cells were observed in the ischemic myocardium, indicating that MSC had been mobilized and differentiated into cardiomyocytes. Together, these results suggest that the origin of the BM-derived cardiomyocytes is MSC.  相似文献   

20.
IL-7 is produced by stromal cells in bone marrow and is a major regulator of B and T lymphopoiesis. It is also a direct inhibitor of osteoclastogenesis in vitro. In this study we show that IL-7-deficient mice have increased OC and decreased trabecular bone volume compared with WT mice but mimic WT mice in the amount of trabecular but not cortical bone lost after ovariectomy. INTRODUCTION: Interleukin (IL)-7 is a potent regulator of lymphocyte development, which has significant effects on bone. Bone marrow cell cultures from IL-7 deficient (IL-7KO) mice produced significantly more TRACP(+) osteoclasts (OCs) than did cells from wildtype (WT) mice. A previous study found that treatment of mice with a neutralizing antibody to IL-7 blocked ovariectomy (OVX)-induced bone loss. We examined if differences exist between the bones of WT and IL-7KO mice and if OVX altered bone mass in IL-7KO mice. MATERIALS AND METHODS: Studies were in 2-month-old sham-operated (SHAM) and OVX female mice that were killed 4 weeks after surgery. IL-7KO mice and WT controls were in a C57BL/6 background. Both vertebrae (L(1)) and femora were evaluated by DXA, muCT, and histomorphometry. IL-7KO mice were confirmed as IL-7 deficient by their almost total lack of mature B cells in their bone marrow. RESULTS: There was significantly less trabecular bone volume in the vertebrae of IL-7KO mice than in WT mice. In addition, IL-7KO mice had significantly decreased (p < 0.05) trabecular number (13%) and increased trabecular spacing (15%). OVX decreased vertebral trabecular bone volume (TBV) by 21% (p < 0.05) in WT mice and by 22% (p < 0.05) in IL-7KO mice compared with SHAM. IL-7KO SHAM mice also had significantly less (30%) TBV (TA/TTA) in their femurs, as measured histomorphometrically, than did WT SHAM mice. Femurs from IL-7KO SHAM mice had significantly increased percent OC surface (23%) compared with WT SHAM. As in the vertebrae, OVX significantly decreased femoral TBV in both WT and IL-7KO mice by similar amounts (47% and 48%, respectively, p < 0.05 for both) compared with SHAM. However, OVX decreased cortical bone mass in WT but not in IL-7KO bones. We also examined bone marrow cells from WT and IL-7KO mice. Bone marrow cells from IL-7KO animals showed a significant increase in the number of TRACP(+) osteoclast-like cells (OCLs), which formed in cultures that were stimulated with macrophage-colony stimulating factor (M-CSF) and RANKL (both at 30 ng/ml). However, there was no significant difference in the number of OCLs that formed in B lymphocyte-depleted (B220(-)) bone marrow cell cultures from WT and IL-7KO mice. CONCLUSIONS: IL-7 deficiency in mice caused increased OC number in bone and decreased bone mass. OVX-induced bone loss in IL-7-deficient mice was selective and occurred in trabecular but not cortical bone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号