首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 15 毫秒
1.
The Self‐Attention Network (SAN) has been proposed to describe the underlying neural mechanism of the self‐prioritization effect, yet the roles of the key nodes in the SAN—the left posterior superior temporal sulcus (LpSTS) and the dorsolateral prefrontal cortex (DLPFC)—still need to be clarified. One hundred and nine participants were randomly assigned into the LpSTS group, the DLPFC group, or the sham group. We used the transcranial magnetic stimulation (TMS) technique to selectively disrupt the functions of the corresponding targeted region, and observed its impacts on self‐prioritization effect based on the difference between the performance of the self‐matching task before and after the targeted stimulation. We analyzed both model‐free performance measures and HDDM‐based performance measures for the self‐matching task. The results showed that the inhibition of LpSTS could lead to reduced performance in processing self‐related stimuli, which establishes a causal role for the LpSTS in self‐related processing and provide direct evidence to support the SAN framework. However, the results of the DLPFC group from HDDM analysis were distinct from the results based on response efficiency. Our investigation further the understanding of the differentiated roles of key nodes in the SAN in supporting the self‐salience in information processing.  相似文献   

2.
The literature of neuroimaging meta‐analysis has been thriving for over a decade. A majority of them were coordinate‐based meta‐analyses, particularly the activation likelihood estimation (ALE) approach. A meta‐evaluation of these meta‐analyses was performed to qualitatively evaluate their design and reporting standards. The publications listed from the BrainMap website were screened. Six hundred and three ALE papers published during 2010–2019 were included and analysed. For reporting standards, most of the ALE papers reported their total number of Papers involved and mentioned the inclusion/exclusion criteria on Paper selection. However, most papers did not describe how data redundancy was avoided when multiple related Experiments were reported within one paper. The most prevalent repeated‐measures correction methods were voxel‐level FDR (54.4%) and cluster‐level FWE (33.8%), with the latter quickly replacing the former since 2016. For study characteristics, sample size in terms of number of Papers included per ALE paper and number of Experiments per analysis seemed to be stable over the decade. One‐fifth of the surveyed ALE papers failed to meet the recommendation of having >17 Experiments per analysis. For data sharing, most of them did not provide input and output data. In conclusion, the field has matured well in terms of rising dominance of cluster‐level FWE correction, and slightly improved reporting on elimination of data redundancy and providing input data. The provision of Data and Code availability statements and flow chart of literature screening process, as well as data submission to BrainMap, should be more encouraged.  相似文献   

3.
The human superior temporal sulcus (STS) has been suggested to be involved in gaze processing, but temporal data regarding this issue are lacking. We investigated this topic by combining fMRI and MEG in four normal subjects. Photographs of faces with either averted or straight eye gazes were presented and subjects passively viewed the stimuli. First, we analyzed the brain areas involved using fMRI. A group analysis revealed activation of the STS for averted compared to straight gazes, which was confirmed in all subjects. We then measured brain activity using MEG, and conducted a 3D spatial filter analysis. The STS showed higher activity in response to averted versus straight gazes during the 150–200 ms period, peaking at around 170 ms, after stimulus onset. In contrast, the fusiform gyrus, which was detected by the main effect of stimulus presentations in fMRI analysis, exhibited comparable activity across straight and averted gazes at about 170 ms. These results indicate involvement of the human STS in rapid processing of the eye gaze of another individual.  相似文献   

4.
Social cognition is the collection of cognitive processes required to understand and interact with others. The term ‘social brain’ refers to the network of brain regions that underlies these processes. Recent evidence suggests that a number of social cognitive functions continue to develop during adolescence, resulting in age differences in tasks that assess cognitive domains including face processing, mental state inference and responding to peer influence and social evaluation. Concurrently, functional and structural magnetic resonance imaging (MRI) studies show differences between adolescent and adult groups within parts of the social brain. Understanding the relationship between these neural and behavioural observations is a challenge. This review discusses current research findings on adolescent social cognitive development and its functional MRI correlates, then integrates and interprets these findings in the context of hypothesised developmental neurocognitive and neurophysiological mechanisms.  相似文献   

5.
There is a long history of attempts to disentangle different visual processing mechanisms for physically different motion cues. However, underlying neural correlates and separability of networks are still under debate. We aimed to refine the current understanding by studying differential vulnerabilities when normal neural functioning is challenged. We investigated effects of ageing and extrastriate brain lesions on detection thresholds for motion defined by either luminance- or contrast modulations, known as first- and second-order motion. Both approaches focus on extrastriate processing changes and combine distributed as well as more focal constraints. Our ageing sample comprised 102 subjects covering an age range from 20 to 82 years. Threshold signal-to-noise ratios for detection approximately doubled across the age range for both motion types. Results suggest that ageing affects perception of both motion types to an equivalent degree and thus support overlapping processing resources. Underlying neural substrates were further qualified by testing perceptual performance of 18 patients with focal cortical brain lesions. We determined selective first-order motion deficits in three patients, selective second-order motion deficits in only one patient, and deficits for both motion types in three patients. Lesion analysis yielded support for common functional substrates in higher cortical regions. Functionally specific substrates remained ambiguous, but tended to cover earlier visual areas. We conclude that observed vulnerabilities of first- and second-order motion perception provide limited evidence for functional specialization at early extrastriate stages, but emphasize shared processing pathways at higher cortical levels.  相似文献   

6.
The growing demand for precise and reliable biomarkers in psychiatry is fueling research interest in the hope that identifying quantifiable indicators will improve diagnoses and treatment planning across a range of mental health conditions. The individual properties of brain networks at rest have been highlighted as a possible source for such biomarkers, with the added advantage that they are relatively straightforward to obtain. However, an important prerequisite for their consideration is their reproducibility. While the reliability of resting‐state (RS) measurements has often been studied at standard field strengths, they have rarely been investigated using ultrahigh‐field (UHF) magnetic resonance imaging (MRI) systems. We investigated the intersession stability of four functional MRI RS parameters—amplitude of low‐frequency fluctuations (ALFF) and fractional ALFF (fALFF; representing the spontaneous brain activity), regional homogeneity (ReHo; measure of local connectivity), and degree centrality (DC; measure of long‐range connectivity)—in three RS networks, previously shown to play an important role in several psychiatric diseases—the default mode network (DMN), the central executive network (CEN), and the salience network (SN). Our investigation at individual subject space revealed a strong stability for ALFF, ReHo, and DC in all three networks, and a moderate level of stability in fALFF. Furthermore, the internetwork connectivity between each network pair was strongly stable between CEN/SN and moderately stable between DMN/SN and DMN/SN. The high degree of reliability and reproducibility in capturing the properties of the three major RS networks by means of UHF‐MRI points to its applicability as a potentially useful tool in the search for disease‐relevant biomarkers.  相似文献   

7.
Stressful life events (SLEs) in adulthood are a risk factor for various disorders such as depression, cancer or infections. Part of this risk is mediated through pathways altering brain physiology and structure. There is a lack of longitudinal studies examining associations between SLEs and brain structural changes. High‐resolution structural magnetic resonance imaging data of 212 healthy subjects were acquired at baseline and after 2 years. Voxel‐based morphometry was used to identify associations between SLEs using the Life Events Questionnaire and grey matter volume (GMV) changes during the 2‐year period in an ROI approach. Furthermore, we assessed adverse childhood experiences as a possible moderator of SLEs‐GMV change associations. SLEs were negatively associated with GMV changes in the left medial prefrontal cortex. This association was stronger when subjects had experienced adverse childhood experiences. The medial prefrontal cortex has previously been associated with stress‐related disorders. The present findings represent a potential neural basis of the diathesis‐stress model of various disorders.  相似文献   

8.
Although lesion studies over the past several decades have focused on functional dissociations in posterior parietal cortex (PPC) during arithmetic, no consistent view has emerged of its differential involvement in addition, subtraction, multiplication, and division. To circumvent problems with poor anatomical localization, we examined functional overlap and dissociations in cytoarchitectonically defined subdivisions of the intraparietal sulcus (IPS), superior parietal lobule (SPL) and angular gyrus (AG), across these four operations. Compared to a number identification control task, all operations except addition, showed a consistent profile of left posterior IPS activation and deactivation in the right posterior AG. Multiplication and subtraction differed significantly in right, but not left, IPS and AG activity, challenging the view that the left AG differentially subserves retrieval during multiplication. Although addition and multiplication both rely on retrieval, multiplication evoked significantly greater activation in right posterior IPS, as well as the prefrontal cortex, lingual and fusiform gyri, demonstrating that addition and multiplication engage different brain processes. Comparison of PPC responses to the two pairs of inverse operations: division versus multiplication and subtraction versus addition revealed greater activation of left lateral SPL during division, suggesting that processing inverse relations is operation specific. Our findings demonstrate that individual IPS, SPL and AG subdivisions are differentially modulated by the four arithmetic operations and they point to significant functional heterogeneity and individual differences in activation and deactivation within the PPC. Critically, these effects are related to retrieval, calculation and inversion, the three key cognitive processes that are differentially engaged by arithmetic operations. Our findings point to distribute representation of these processes in the human PPC and also help explain why lesion and previous imaging studies have yielded inconsistent findings.  相似文献   

9.
Genetic and hormonal factors have been suggested to influence human sexual orientation. Previous studied proposed brain differences related to sexual orientation and that these follow cross‐sex shifted patterns. However, the neurobiological correlates of sexual orientation and how genetic factors relate to brain structural variation remains largely unexplored. Using the largest neuroimaging‐genetics dataset available on same‐sex sexual behavior (SSB) (n = 18,645), we employed a data‐driven multivariate classification algorithm (PLS) on magnetic resonance imaging data from two imaging modalities to extract brain covariance patterns related to sex. Through analyses of latent variables, we tested for SSB‐related cross‐sex shifts in such patterns. Using genotype data, polygenic scores reflecting the genetic predisposition for SSB were computed and tested for associations with neuroimaging outcomes. Patterns important for classifying between males and females were less pronounced in non‐heterosexuals. Predominantly in non‐heterosexual females, multivariate brain patterns as represented by latent variables were shifted toward the opposite sex. Complementary univariate analyses revealed region specific SSB‐related differences in both males and females. Polygenic scores for SSB were associated with volume of lateral occipital and temporo‐occipital cortices. The present large‐scale study demonstrates multivariate neuroanatomical correlates of SSB, and tentatively suggests that genetic factors related to SSB may contribute to structural variation in certain brain structures. These findings support a neurobiological basis to the differences in human sexuality.  相似文献   

10.
Measures of cue reactivity provide a means of studying and understanding addictive behavior. We wanted to examine the relationship between different cue reactivity measures, such as attentional bias and subjective craving, and functional brain responses toward smoking-related cues in smokers. We used eye-tracking measurements, a questionnaire for smoking urges-brief and functional magnetic resonance imaging to assess the responses to smoking-related and neutral visual cues from 25 male smokers after 36 h of smoking abstinence. Regression analyses were conducted to determine the correlation between cue-evoked brain responses and the attentional bias to smoking-related cues. The eye gaze dwell time percentage was longer in response to smoking-related cues than neutral cues, indicating significant differences in attentional bias towards smoking-related cues. The attentional bias to smoking-related cues correlated with subjective craving ratings (r=0.660, p<0.001). The dorsolateral prefrontal cortex, the putamen, the posterior cingulate cortex and the primary motor cortex were associated with the attentional bias to smoking-related cues, whereas the orbitofrontal cortex, the insula and the superior temporal gyrus were associated with smoking-related cue-induced craving and smoking urges. These results suggest that attentional mechanisms in combination with motivational and reward-related mechanisms play a role in smoking-related cue reactivity. We confirmed a positive correlation between different smoking-related cue reactivities, such as attentional bias and subjective craving, and functional brain responses in various individuals. Further studies in this field might contribute to a better individualized understanding of addictive behavior.  相似文献   

11.

Background

The previous resting perfusion or task-based studies have provided evidence of functional changes in the brains of patients with late-life depression (LLD). Little is known, so far, about the changes in the spontaneous brain activity in LLD during the resting state. The aim of this study was to investigate the spontaneous neural activity in first-episode, treatment-naive patients with LLD by using resting-state functional magnetic resonance imaging (fMRI).

Methods

A novel analytical method, coherence-based regional homogeneity (Cohe-ReHo), was used to assess regional spontaneous neural activity during the resting state in 15 first-episode, treatment-naive patients with LLD and 15 age- and gender-matched healthy controls.

Results

Compared to the healthy controls, the LLD group showed significantly decreased Cohe-ReHo in left caudate nucleus, right anterior cingulate gyrus, left dorsolateral prefrontal cortex, right angular gyrus, bilateral medial prefrontal cortex, and right precuneus, while significantly increased Cohe-ReHo in left cerebellum posterior lobe, left superior temporal gyrus, bilateral supplementary motor area, and right postcentral gyrus (p < 0.005, corrected for multiple comparisons).

Conclusions

These findings indicated abnormal spontaneous neural activity was distributed extensively in first-episode, treatment-naive patients with LLD during the resting state. Our results might supply a novel way to look into the underlying pathophysiology mechanisms of patients with LLD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号