首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The alpha subunit of E. coli RNAP plays an important role in the recognition of many promoters by binding to the A+T-rich UP element, a DNA sequence located upstream of the recognition elements for the sigma subunit, the -35 and -10 hexamers. We examined DNA-RNAP interactions using high resolution interference and protection footprinting methods and using the minor groove-binding drug distamycin. Our results suggest that alpha interacts with bases in the DNA minor groove and with the DNA backbone along the minor groove, but that UP element major groove surfaces do not make a significant contribution to alpha binding. On the basis of these and previous results, we propose a model in which alpha contacts UP element DNA through amino acid residues located in a pair of helix-hairpin-helix motifs. Furthermore, our experiments extend existing information about recognition of the core promoter by sigma(70) by identifying functional groups in the major grooves of the -35 and -10 hexamers in which modifications interfere with RNAP binding. These studies greatly improve the resolution of our picture of the promoter-RNAP interaction.  相似文献   

3.
4.
The M1-family aminopeptidase PfA-M1 catalyzes the last step in the catabolism of human hemoglobin to amino acids in the Plasmodium falciparum food vacuole. In this study, the structural features of the substrate that promote efficient PfA-M1-catalyzed peptide bond hydrolysis were analyzed. X-Ala and Ala-X dipeptide substrates were employed to characterize the specificities of the enzyme's S1 and S1' subsites. Both subsites exhibited a preference for basic and hydrophobic sidechains over polar and acidic sidechains. The relative specificity of the S1 subsite was similar over the pH range 5.5-7.5. Substrate P1 and P1' residues affected both K(m) and k(cat), revealing that sidechain-subsite interactions not only drive the formation of the Michaelis complex but also influence the rates of ensuing chemical steps. Only a small fraction of the available binding energy was exploited in interactions between substrate sidechains and the S1 and S1' subsites, which indicates a modest level of complementarity. There was no correlation between S1 and S1' specificities and amino acid abundance in hemoglobin. Interactions between PfA-M1 and the backbone atoms of the P1' and P2' residues as well as the P2' sidechain further contributed to the catalytic efficiency of substrate hydrolysis. By demonstrating the engagement of multiple, broad-specificity subsites in PfA-M1, these studies provide insight into how this enzyme is able to efficiently generate amino acids from highly sequence-diverse di- and oligopeptides in the food vacuole.  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号