首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A decreased central dopaminergic and/or noradrenergic transmission is believed to be involved in the pathophysiology of depression. It is known that dopamine (DA) neurons in the ventral tegmental area (VTA) and norepinephrine (NE) neurons in the locus ceruleus (LC) are autoregulated by somatodendritic D(2)-like and alpha(2)-adrenoceptors, respectively. Complementing these autoreceptor-mediated inhibitory feedbacks, anatomical and functional studies have established a role for noradrenergic inputs in regulating dopaminergic activity, and reciprocally. In the present study, a microiontophoretic approach was used to characterize the postsynaptic catecholamine heteroreceptors involved in such regulations. In the VTA, the application of DA and NE significantly reduced the firing activity of DA neurons. In addition to a role for D(2)-like receptors in the inhibitory effects of both catecholamines, it was demonstrated that the alpha(2)-adrenoceptor antagonist idazoxan dampened the DA- and NE-induced attenuations of DA neuronal activity, indicating that both of these receptors are involved in the responsiveness of VTA DA neurons to catecholamines. In the LC, the effectiveness of iontophoretically applied NE and DA to suppress NE neuronal firing was blocked by idazoxan but not by the D(2)-like receptor antagonist raclopride, which suggested that only alpha(2)-adrenoceptors were involved. In the dorsal hippocampus, a forebrain region having a sparse dopaminergic innervation but receiving a dense noradrenergic input, the suppressant effects of DA and NE on pyramidal neurons were attenuated by idazoxan but not by raclopride. The suppressant effect of DA was prolonged by administration of the selective NE reuptake inhibitor desipramine and, to lesser extent, of the selective DA reuptake inhibitor 1-(2-[bis(4-fluorophenyl)methoxy]ethyl)-4-(3-phenylpropyl)-piperazine (GBR12909), suggesting that both the NE and DA transporters were involved in DA uptake in the hippocampus. These findings might help in designing new antidepressant strategies aimed at enhancing DA and NE neurotransmission.  相似文献   

2.
An in vitro experimental midbrain slice preparation is described which allows simultaneous extracellular recordings of the (spontaneous) electrical activity of dopamine neurons in the rat substantia nigra (SN) and the ventral tegmental area (VTA). Under identical in vitro circumstances the mean firing frequency of the SN dopamine neurons was higher than that of the VTA dopamine neurons (2.1 vs. 1.4Hz). With this slice preparation, modulation of the electrical activity of SN and VTA dopamine neurons by (new) drugs can be quickly determined. Experiments with the selective D2 receptor agonist quinpirole and the selective D2 receptor antagonist (-)-sulpiride indicated that dopamine neurons in the SN and VTA hardly differ in their pharmacological properties for the D2-like (auto)receptor. (-)-Sulpiride and to a lesser extent risperidone induced a small increase in firing rate in SN and VTA neurons, which was reversible upon wash-out. Olanzapine-induced increase in firing rate was persistent in SN and VTA neurons, whereas the clozapine-induced increase in firing rate was only completely recovered upon wash-out in SN neurons. The difference in firing rates of SN and VTA dopamine neurons could have consequences for the effectiveness of dopaminergic drugs acting at the D2-like dopamine (auto)receptor on these neurons.  相似文献   

3.
A whole-cell patch-clamp study was performed to investigate the modulatory role of dopamine (DA), its ionic mechanisms and their developmental changes in the GABAergic synaptic transmission onto cholinergic interneurones in the rat striatal slices. Inhibitory postsynaptic currents (IPSCs) were evoked by focal stimulation. Bath application of DA inhibited the IPSCs in a concentration-dependent manner with an IC50 value of 10 microM. Pharmacological studies with DA receptor agonists and antagonists suggest the involvement of D2-like receptors. DA reduced the frequency of miniature inhibitory postsynaptic currents without affecting their amplitude distribution. Analyses using selective blockers for N-, or P/Q type Ca2+ channels could estimate the contribution of each Ca2+ channel subtype to the GABAergic transmission. DA had no longer affected the IPSCs after the effect of an N-type channel blocker, omega-conotoxin (omega-CgTX) had reached its steady state. The inhibitory effects of omega-CgTX and DA or a D2-like receptor agonist decreased in parallel during postnatal 12-60 days. DA's action was occluded by omega-CgTX throughout these developmental stages. These results suggest that activation of presynaptic D2-like receptors selectively blocks N-type Ca2+ channels, thereby inhibiting GABA release, and that contribution of N-type channels and D2-like receptor-mediated presynaptic inhibition decrease in parallel with development.  相似文献   

4.
Dopamine (DA)-containing neurons of the ventral tegmental area (VTA) provide dopaminergic input to the nucleus accumbens and to the prefrontal cortex within the mesolimbic pathway. In the present study, we combined electrophysiological recordings and microdialysis techniques to investigate the function of transient receptor potential vanilloid 1 (TRPV1) channel in the VTA. In brain slices, application of the TRPV1 receptor agonist capsaicin increased the firing rate of rat dopamine neurons and in a proportion of tested cells (44%) it also induced a bursting behavior. The effects of capsaicin were concentration dependent. The increase in neuronal firing was dependent on enhanced glutamatergic transmission since it was blocked by the superfusion of the ionotropic glutamate antagonists, CNQX and AP5. Interestingly, microinjection of capsaicin into the VTA and noxious tail stimulation transiently enhanced dopamine release into the nucleus accumbens. Both the in vitro and in vivo effects were mediated by TRPV1 activation in the VTA since they were reduced by co-perfusion of the selective TRPV1 receptor antagonist iodoresineferatoxin. Our data suggest a novel role for TRPV1 channels in the mesencephalon of rat, namely activation of the DA system following a peripheral noxious stimulation.  相似文献   

5.
Michaeli A  Yaka R 《Neuropharmacology》2011,61(1-2):234-244
Electrical activity of ventral tegmental area (VTA) dopamine (DA) neurons is immediately inhibited following in?vivo administration of cocaine and other DA-related drugs. While various forms of synaptic modulation were demonstrated in the VTA following exposure to DA-related drugs, comprehensive understanding of their ability to inhibit the activity of DA neurons, however, is still lacking. In this study, using whole-cell patch-clamp recordings from rat brain slices, a novel form of synaptic modulation induced by DA-related drugs was isolated. DA exposure was shown to cause potentiation of γ-amino-butyric acid (GABA) receptor type A (GABA(A)R)-mediated evoked inhibitory postsynaptic currents (eIPSCs), recorded from VTA DA neurons, under conditions of potassium channels blockade. The potentiation of these eIPSCs lasted for more than twenty minutes, could be mimicked by activation of D2-like but not D1-like DA receptors, and was accompanied by an increase in the frequency of GABA(A)R-mediated spontaneous miniature inhibitory postsynaptic currents (mIPSCs). Furthermore, exposure to inhibitors of DA transporter (DAT) led to potentiation of GABA(A) currents in a manner similar to the DA-mediated potentiation. Finally, a prolonged presence of l-NAME, an inhibitor of nitric-oxide (NO) signaling was found to conceal the potentiation of GABA(A) currents induced by the DA-related drugs. Taken together, this study demonstrates a new modulatory form of VTA GABA(A) neurotransmission mediated by DA-related drugs. These results also suggest better understanding of the initial inhibitory action of DA-related drugs on the activity of DA neurons in the VTA.  相似文献   

6.
Adaptation of putative dopaminergic (pDA) neurons in the ventral tegmental area (VTA) to drugs of abuse may alter information processing related to reward and reinforcement and is an important factor in the development of addiction. We have demonstrated that prolonged increases in the concentration of dopamine (DA) result in a time-dependent decrease in sensitivity of pDA neurons to DA, which we termed DA inhibition reversal (DIR). In this study, we used extracellular recordings to examine factors mediating DIR. A 40 min administration of DA (2.5–10 μM), but not the DA D2 receptor agonist quinpirole (50–200 nM), resulted in inhibition of neuronal firing followed by DIR. In the presence of 100 nM cocaine, inhibition followed by DIR was seen with much lower DA concentrations. Reversal of quinpirole inhibition could be induced by an activator of protein kinase C, but not of protein kinase A. Inhibitors of protein kinase C or phospholipase C blocked the development of DIR. Disruption of intracellular calcium release also prevented DIR. Reduction of extracellular calcium or inhibition of store-operated calcium entry blocked DIR, but the L-type calcium channel blocker nifedipine did not. DIR was age-dependent and not seen in pDA VTA neurons from rat pups younger than 15 days postnatally. Our data indicate that DIR is mediated by protein kinase C, and implicate a conventional protein kinase C. This characterization of DIR gives insight into the regulation of autoinhibition of pDA VTA neurons, and the resulting long-term alteration in information processing related to reward and reinforcement.  相似文献   

7.
Two isoforms of the dopamine (DA) D2 receptor are generated from the same gene by alternative splicing, D2L and D2S. To identify which isoform is involved in the autoregulation of midbrain DA neuron activity, intracellular electrophysiological recordings were performed from substantia nigra and ventral tegmental area neurons of mice lacking either D2L(D2L-/-) or both D2L and D2S receptors (D2-/-). In midbrain DA neurons from wild-type mice, DA and quinpirole, a DA D2-like receptor agonist, produced a significant somatic membrane hyperpolarization, which led to a reversible inhibition of firing activity. Interestingly, this effect was fully abolished in D2-/- neurons but still present in D2L-/- DA neurons. These data clearly show that D2S receptors are the main somatodendritic autoreceptors of central DA neurons. Thus, pharmacological compounds able to interfere selectively with presynaptic D2S receptors might constitute effective therapeutic strategies in neuropsychiatric disorders, by causing negligible side-effects.  相似文献   

8.
The atypical antipsychotic bifeprunox is a partial dopamine D(2) and 5-HT(1A) receptor agonist. Using in-vivo electrophysiological and behavioural paradigms in the rat, the effects of bifeprunox and aripiprazole were assessed on ventral tegmental area (VTA) dopamine and dorsal raphe serotonin (5-HT) cell activity and on foot shock-induced ultrasonic vocalisation (USV). In VTA, bifeprunox and aripiprazole decreased (by 20-50%) firing of dopamine neurons. Interestingly, bursting activity was markedly reduced (by 70-100%), bursting being associated with a larger synaptic dopamine release than single spike firing. Both ligands reduced inhibition of firing rate induced by the full dopamine receptor agonist apomorphine, whereas the D(2) receptor antagonist haloperidol prevented these inhibitory effects, confirming partial D(2)-like agonistic properties. On 5-HT neurons, bifeprunox was more potent than aripiprazole to suppress firing activity. The 5-HT(1A) receptor antagonist WAY-100,635 prevented their effects. In the USV test of anxiolytic-like activity, bifeprunox had higher potency than aripiprazole to reduce vocalisations. Both WAY-100,635 and haloperidol reversed the effects of both agonists. The present in-vivo study shows that bifeprunox is a potent partial D(2)-like and 5-HT(1A) receptor agonist reducing preferentially the phasic activity of dopamine neurons. Thus, bifeprunox would be expected to be an effective compound against positive and negative symptoms of schizophrenia.  相似文献   

9.
Zhang D  Yang S  Yang C  Jin G  Zhen X 《Psychopharmacology》2008,199(4):625-635
RATIONALE: Sex differences in cocaine abuse have been well documented. However, the underlying mechanism remains unclear. OBJECTIVES: To explore the potential role of ovarian hormones in the regulation of dopamine (DA) neuron firing activity in ventral tegmental area (VTA) induced by acute cocaine in intact female or ovariectomized (OVX) rats. RESULTS: The basal firing activity of VTA DA neurons was changed in a manner phase-locked to the estrous cycle: being highest in estrus and lowest in proestrus. Acute cocaine produced greater inhibition (P < 0.05) on the firing of VTA DA neurons during proestrus than during estrus. The inhibitory effect was completely blocked by OVX and restored by replacement of 17-beta-estradiol or, to a less extent, by replacement of progesterone. In addition, we also detected female hormone-associated changes in slow oscillation in VTA DA neurons. The results indicate that ovarian hormones, particularly estrogen, not only synergize with the inhibitory effect of cocaine on VTA DA neuron activity but also play an essential role in maintaining the sensitivity of DA neurons to cocaine-mediated inhibition on firing. Moreover, pretreatment of estrogen receptor (ER) antagonist raloxifene or a selective ERalpha antagonist Y134 largely attenuated the cocaine-inhibited DA neuron firing. We also found that cocaine-induced locomotor activity was estrous cycle dependent; 17-beta-estradiol but not progesterone replacement restored the cocaine-induced locomotor activity in OVX rats. CONCLUSION: The present results demonstrated that ovarian hormones, particularly estrogen, produce profound effect on VTA DA neuron activity, which, in turn, may contribute to the sex differences in response to psychostimulants.  相似文献   

10.
The Ca(2+) sensitizer levosimendan (LEV) improves myocardial contractility by enhancing the sensitivity of the contractile apparatus to Ca(2+). In addition, LEV promotes Ca(2+) entry through L-type channels in human cardiac myocytes. In this study, which was performed using microdialysis, infusion of LEV at 0.25 microM for 160 min increased dopamine (DA) concentrations (up to fivefold baseline) in dialysates from the striatum of freely moving rats. Ca(2+) omission from the perfusion fluid abolished baseline DA release and greatly decreased LEV-induced DA release. Reintroduction of Ca(2+) in the perfusion fluid restored LEV-induced DA release. Chelation of intracellular Ca(2+) by co-infusing 1,2-bis (o-amino-phenoxy)ethane-N,N,N',N'-tetraacetic acid tetra (acetoxymethyl) ester (BAPTA-AM, 0.2 mM) did not affect basal DA release and scarcely affected LEV-induced increases in dialysate DA. In addition, co-infusion of the L-type (Ca(v) 1.1-1.3) voltage-sensitive Ca(2+)-channel inhibitor nifedipine failed to inhibit LEV-induced increases in dialysate DA, which, in contrast, was inhibited by co-infusion of the N-type (Ca(v) 2.2) voltage-sensitive Ca(2+)-channel inhibitor omega-conotoxin GVIA. We conclude that LEV promotes striatal extracellular Ca(2+) entry through N-type Ca(2+) channels with a consequent increase in DA release.  相似文献   

11.
We have recently reported that tyramine acts on putative presynaptic trace amine receptors to inhibit glycinergic transmission in substantia gelatinosa (SG) neurons of the rat trigeminal subnucleus caudalis. However, it is still unknown how tyramine elicits presynaptic inhibition of glycine release. In the present study, therefore, we investigated cellular mechanisms underlying the tyramine-induced inhibition of glycinergic transmission in SG neurons using a conventional whole-cell patch clamp technique. Tyramine (100 μM) reversibly and repetitively decreased the amplitude of action potential-dependent glycinergic inhibitory postsynaptic currents (IPSCs), and increased the paired-pulse ratio. Pharmacological data suggest that the tyramine-induced decrease in glycinergic IPSCs was not mediated by the modulation of adenylyl cyclase, protein kinase A and C, or G-protein coupled inwardly rectifying K(+) channels. On the other hand, glycinergic IPSCs were mainly mediated by the Ca(2+) influx passing through presynaptic N-type and P/Q-type Ca(2+) channels. The tyramine-induced decrease in glycinergic IPSCs was completely blocked by ω-conotoxin GVIA, an N-type Ca(2+) channel blocker, but not ω-agatoxin IVA, a P/Q-type Ca(2+) channel blocker. The results suggest that tyramine acts presynaptically to decrease action potential-dependent glycine release onto SG neurons via the selective inhibition of presynaptic N-type Ca(2+) channels. This tyramine-induced inhibition of glycinergic transmission in SG neurons might affect the process of orofacial nociceptive signals.  相似文献   

12.
Calcium channel subtypes mediating central synaptic transmission   总被引:1,自引:0,他引:1  
It is well established that neurotransmitter release is triggered by Ca2+ entry into the presynaptic terminals through voltage-dependent Ca2+ channels. In the mammalian central nervous system, multiple types of Ca2+ channels including N-type, P/Q-type and other types mediate fast synaptic transmission. Electrophysiological studies using type-specific antagonists for Ca2+ channels have estimated the relative contribution of N-, P/Q- and other types of Ca2+ channels in excitatory and inhibitory synaptic transmission in the hippocampus, cerebellum, spinal cord, brain stem, and striatum. A recent study has demonstrated that activation of presynaptic dopamine D2-like receptors selectively block N-type Ca2+ channels to reduce GABA release onto cholinergic interneurons in the rat striatum. In addition, it has been recently clarified that the contribution of N-type Ca2+ channels to synaptic transmission is restricted to the early postnatal period at synapses in auditory brain stem, cerebellum, or thalamus. Advanced morphological studies are necessary for the further understanding of the subcellular localization of each subtype of Ca2+ channels and receptors modulating the transmitter release through Ca2+ channel activity in relation to the release sites in the presynaptic terminals.  相似文献   

13.
The alpha2 adrenoceptor (alpha2R) agonist clonidine is used as a treatment for heroin addiction. Substantial evidence indicates that dopaminergic and noradrenergic systems have key roles in opiate dependence and withdrawal but the possible interactions between these two pathways remain unclear. The objective of this study was to establish the effects of clonidine pretreatment on ventral tegmental area dopaminergic (VTA DA) neuronal activity during morphine withdrawal. Responses of VTA DA neurons to withdrawal precipitated by naltrexone were characterized in anesthetized rats using extracellular recordings. As expected, withdrawal produced a marked inhibition of VTA DA neuronal activity. However, pretreatment with clonidine prevented this inhibition induced by withdrawal, and instead produced a long-lasting activation of firing rate (+50%) and burst firing (+19%). In contrast, pretreatment with a more selective alpha2R agonist, UK14304, did not prevent the inhibition of VTA DA neuron activity during withdrawal. We tested whether the high affinity of clonidine for imidazoline-1 receptors (I1Rs) was responsible for the difference between these two alpha2R agonists. In morphine-dependent rats pretreated with rilmenidine (mixed alpha2R/I1R agonist), precipitation of withdrawal elicited a 22% increase of VTA DA impulse activity. The action of clonidine on I1Rs was studied by coadministering clonidine with RX821002, a specific alpha2R antagonist. Pretreatment with RX821002 plus clonidine prevented the inhibition of VTA DA activity during withdrawal but failed to produce excitation. These results indicate that the pharmacological effects of clonidine on VTA DA neurons during morphine withdrawal is related to actions on I1Rs as well as alpha2Rs.  相似文献   

14.
Modafinil is a well-tolerated medication for excessive sleepiness, attention-deficit disorder, cocaine dependence and as an adjunct to antidepressants with low propensity for abuse. We investigated the modafinil action on identified dopaminergic and GABAergic neurons in the ventral tegmental area (VTA) and substantia nigra (SN) of rat brain slices. Modafinil (20 microM) inhibited the firing of dopaminergic, but not GABAergic neurons. This inhibition was maintained in the presence of tetrodotoxin and was accompanied by hyperpolarization. Sulpiride (10 microM), a D2-receptor antagonist, but not prazosine (20 microM, an alpha1-adrenoreceptor blocker) abolished the modafinil action. Inhibition of dopamine reuptake with a low dose of nomifensine (1 microM) reduced the firing of DA neurons in a sulpiride-dependent manner and blunted the effect of modafinil. On acutely isolated neurons, modafinil evoked D2-receptor-mediated outward currents in tyrosine-hydroxylase positive cells, identified by single-cell RT-PCR, which reversed polarity near the K(+) equilibrium potential and were unchanged in the presence of nomifensine. Thus modafinil directly inhibits DA neurons through D2 receptors.  相似文献   

15.
Chronic cocaine administration leads to catecholamine reuptake inhibition which enhances reward and motivational behaviors. Ventral Tegmental Area dopaminergic (VTA DA) neuronal firing is associated with changes in reward predictive signals. Acute cocaine injections inhibit putative VTA DA cell firing in vertebrates. Parthenolide, a compound isolated from the feverfew plant (Tanacetum parthenium), has been shown to substantially inhibit cocaine's locomotion effects in a planarian animal model (Pagán et al., 2008). Here we investigated the effects of parthenolide on the spontaneous firing activity of putative VTA DA neurons in anesthetized male rats (250-300g). Single-unit recordings were analyzed after intravenous (i.v.) parthenolide administration followed by 1mg/kg i.v. cocaine injection. Results showed that parthenolide at 0.125 mg/kg and 0.250mg/kg significantly blocked cocaine's inhibitory effect on DA neuronal firing rate and bursting activity (p< 0.05, two way ANOVA). We propose that parthenolide might inhibit cocaine's effects on VTA DA neurons via its interaction with a common binding site at monoamine transporters. It is suggested that parthenolide could have a potential use as an overdose antidote or therapeutic agent to cocaine intoxication.  相似文献   

16.
Previous work demonstrates the fundamental role of the firing pattern, specifically the burst firing mode of midbrain dopamine (DA) neurons in the regulation of DA release. Spontaneous burst firing has been shown to be dependent upon NMDA receptor activation of the DA cells. In addition to NMDA receptors, previous studies have reported that also GABA(B) receptors modulate the firing pattern of DA neurons in the substantia nigra. In the present electrophysiological study the role of GABA(B) receptors in the modulation of the firing pattern of DA neurons in the ventral tegmental area (VTA) in anaesthetised Sprague-Dawley rats was analysed. Systemic administration of the selective and potent GABA(B) receptor agonist baclofen dose-dependently reduced firing rate and burst firing in VTA DA neurons. An increase in the regularity of DA cell firing was also observed. All these effects were effectively antagonized by administration of the selective GABA(B) antagonist CGP 35348 (100 mg/kg or 200 mg/kg, i.v.). Administration of CGP 35348 (400 mg/kg, i.v.) per se was associated with a long-lasting increase in burst firing activity. The effects of systemic administration of baclofen, alone or in combination with CGP 35348, on the firing rate were largely mimicked by local microiontophoretic application of the drugs onto the DA neurons.Our findings indicate that central GABA(B) receptors may contribute to control of the burst firing mode of VTA DA neurons. Physiologically, activation of GABA(B) receptors may subserve a dampening function on VTA DA cell excitability which may counterbalance NMDA receptor-mediated excitation.  相似文献   

17.
5-HT(1A) receptor agonists increase the activity of dopamine (DA) neurons in the ventral tegmental area (VTA) and DA release in medial prefrontal cortex (mPFC). The mPFC is enriched in 5-HT(1A) receptors and projects to the VTA, where mesocortical dopaminergic neurons originate. We examined whether 5-HT(1A) receptor activation can modulate the activity of mPFC pyramidal neurons projecting to VTA. These were identified by antidromic stimulation from the VTA and were recorded extracellularly in anesthetized rats. The selective 5-HT(1A) agonist BAY x 3,702 (10-80 microg/kg i.v.) increased the firing rate in 14/19 neurons (283 +/- 79%) and reduced the activity of 5/19 neurons (22 +/- 11%), resulting in an overall 2.2-fold increase of the firing rate. Both effects were blocked by the selective 5-HT(1A) antagonist WAY-100635. These results suggest that the increase in dopaminergic activity produced by 5-HT(1A) receptor activation can be driven by an increase in the activity of projection neurons in mPFC.  相似文献   

18.
The reinforcing properties of psychostimulants depend critically on their effects on dopamine (DA) neurons in the ventral tegmental area (VTA). Using in vivo single unit recording in rats and spectral analysis, this study presents evidence for a new, non-DA-mediated effect of psychostimulants on VTA DA neurons. Thus, as previously observed with D-amphetamine, all psychostimulants tested, including cocaine, methamphetamine, and methylphenidate, had two opposing effects on firing rate of DA neurons: a DA-mediated inhibition and a non-DA-mediated excitation. The latter effect was normally masked by the DA-mediated inhibition and was revealed when the inhibition was blocked by a DA antagonist. Using spectral analysis, this study further showed that during psychostimulant-induced excitation, DA cells exhibited not only an increase in firing rate and bursting but also a low-frequency rhythmic oscillation (0.5-1.5 Hz) in their firing activity. The oscillatory response was unique to psychostimulants since it was not observed with the GABA(A) agonist muscimol, which also increased DA cell firing, and not mimicked by the nonpsychostimulant DA agonist L-dopa. Results further suggest that the effect requires activation of adrenergic alpha1 receptors and depends on intact forebrain inputs to DA neurons. Further understanding of this novel effect may provide important insights into both the mechanism of action of psychostimulants and the neuronal circuitry that controls the activity of DA neurons in the brain.  相似文献   

19.
Parkinson disease is characterized by selective degeneration of mesencephalic dopaminergic neurons, and endogenous dopamine may play a pivotal role in the degenerative processes. Using primary cultured mesencephalic neurons, we found that glutamate, an excitotoxin, caused selective dopaminergic neuronal death depending on endogenous dopamine content. Pramipexole, a dopamine D2/D3 receptor agonist used clinically in the treatment of Parkinson disease, did not affect glutamate-induced calcium influx but blocked dopaminergic neuronal death induced by glutamate. Pramipexole reduced dopamine content but did not change the levels of total or phosphorylated tyrosine hydroxylase, a rate-limiting enzyme in dopamine synthesis. The neuroprotective effect of pramipexole was independent of dopamine receptor stimulation because it was not abrogated by domperidone, a dopamine D2-type receptor antagonist. Moreover, both active S(-)- and inactive R(+)-enantiomers of pramipexole as a dopamine D2-like receptor agonist equally suppressed dopaminergic neuronal death. These results suggest that pramipexole protects dopaminergic neurons from glutamate neurotoxicity by the reduction of intracellular dopamine content, independently of dopamine D2-like receptor activation.  相似文献   

20.
The effects of the phosphatidylinositol 4-kinase inhibitor, phenylarsine oxide (PAO), on acetylcholine (ACh) release and on prejunctional Ca(2+) currents were studied at the frog neuromuscular junction using electrophysiological recording techniques. Application of PAO (30 microM) increased both spontaneous ACh release reflected as miniature end-plate potential (mepp) frequencies and evoked ACh release reflected as end-plate potential (epp) amplitudes with a similar time course. Following the initial increase in epp amplitudes produced by PAO, epps slowly declined and were eventually abolished after approximately 20 min. However, mepp frequencies remained elevated over this time period. PAO (30 microM) also inhibited the perineural voltage change associated with Ca(2+) currents through N-type Ca(2+) channels (prejunctional Ca(2+) currents) at motor nerve endings. Addition of British anti-lewisite (BAL, 1 mM), an inactivator of PAO, partially reversed both the inhibition of epps and the inhibition of the prejunctional Ca(2+) current. The effects of PAO on N-type Ca(2+) channels were investigated more directly using the whole cell patch clamp technique on acutely dissociated sympathetic neurons. Application of PAO (30 - 40 microM) to these neurons decreased the voltage-activated calcium currents through N-type Ca(2+) channels, an effect that was partially reversible by BAL. In combination, these results suggest that inhibition of neurotransmitter release by PAO occurs as a consequence of the inhibition of Ca(2+) entry via N-type calcium channels. The relationship between the effects of PAO on N-type Ca(2+) channels in motor nerve endings and in neuronal soma is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号