首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sterility is required as stated by compendial requirements and registration authorities worldwide for an injectable drug carrier system. In this study, injectable nanospheres and nanocapsules prepared from amphiphilic beta-cyclodextrin, beta-CDC6, were assessed for their in vitro properties such as particle size distribution, zeta potential, nanoparticle yield (%), drug entrapment efficiency and in vitro drug release profiles. Different sterilization techniques such as gamma irradiation and autoclaving were evaluated for their feasibility regarding the maintenance of the above mentioned nanoparticle properties after sterilization. It was found that amount these techniques, sterilization with gamma irradiation seemed to be the most appropriate technique with no effect on particle size, drug loading and drug release properties. Gamma irradiation causes some chemical changes on beta-CDC6 observed as changes in zeta potential but this does not lead to any significant changes for nanoparticle properties. Autoclaving caused massive aggregation for the nanoparticles followed by precipitation, which led to the conclusion that excessive heat disrupted nanoparticle integrity. Sterile filtration was not feasible since nanoparticle sizes were larger than the filter pore size and the yield after sterilization was very low. Thus, it can be concluded that blank and drug loaded beta-CDC6 nanospheres and nanocapsules are capable of being sterilized by gamma irradiation.  相似文献   

2.
The feasibility of applying biodegradable polybutylcyanoacrylate (PBCA) nanoparticulate delivery systems (NDSs) for the controlled release of paclitaxel was investigated. Paclitaxel-loaded and unloaded PBCA-NDSs containing various surfactants (dextran 70, cholesterol, polyvinyl alcohol and lecithin) were prepared by anionic polymerization. The effects of surfactant (1% w/v), surfactant combination (1% w/v each), and surfactant concentration (0.05, 1.0 and 2.5% w/v) on PBCA-NDSs were evaluated and characterized by particle size, zeta potential, entrapment efficiency, and in-vitro paclitaxel release kinetics. The physicochemical characteristics of PBCA-NDSs incorporated with various surfactants were significantly improved compared with PBCA-NDS without any surfactant, by decreasing particle size at least 3-fold as well as by increasing the zeta potential up to 18-fold to minimize the agglomeration of nanoparticles. Moreover, PBCA-NDSs incorporated with various surfactants demonstrated higher entrapment efficiency of paclitaxel. Results from the in-vitro release kinetic studies indicated that a more controlled biphasic zero-order release pattern of paclitaxel was observed for PBCA-NDSs incorporated with various surfactants. Compared with dextran 70 and polyvinyl alcohol, the naturally occurring lipids, lecithin and cholesterol, indicated greater advantages in improving the physicochemical properties of PBCA-NDSs, in terms of smaller particle size, higher zeta potential and better drug entrapment efficiency, and better controlled release of paclitaxel, in terms of lower release rate and prolonged action from PBCA-NDSs.  相似文献   

3.
Paclitaxel is a potent anticancer agent with limited bioavailability due to side-effects associated with solubilizer used in its commercial formulation and the tendency of the drug to precipitate in aqueous media. In this study, paclitaxel was encapsulated in amphiphilic cyclodextrin nanoparticles. Safety of blank nanoparticles was compared against commercial vehicle cremophor:ethanol (50:50 v/v) by hemolysis and cytotoxicity experiments. Data revealed that nanoparticles caused significantly less hemolysis. Results were confirmed with SEM imaging of erythrocytes treated with nanospheres, nanocapsules or commercial vehicle. Cytotoxicity of the blank carriers was evaluated against L929 cells. A vast difference between the cytotoxicity of nanoparticles and cremophor:ethanol mixture was observed. Physical stability of paclitaxel in nanoparticles was assessed for 1 month with repeated particle size and zeta potential measurements and AFM imaging. Recrystallization of paclitaxel, very typical in diluted aqueous solutions of the drug, did not take place when the drug is bound to cyclodextrin nanoparticles. Anticancer efficacy of paclitaxel-loaded nanoparticles was evaluated in comparison to paclitaxel in cremophor vehicle against MCF-7 cells. Cyclodextrin nanoparticle caused a slightly higher anticancer effect than cremophor:ethanol vehicle. Thus, amphiphilic cyclodextrin nanoparticles emerged as promising alternative formulations for injectable paclitaxel administration with low toxicity and equivalent efficacy.  相似文献   

4.
In this work, an amphiphilic polymeric prodrug Cis-3-(9H-purin-6-ylthio)-acrylic acid-graft-carboxymethyl chitosan (PTA-g-CMCS) was designed and synthesized. In aqueous solution, this grafted polymer can self-assemble into spherical micelles with a size ranging from 104 to 285nm and zeta potential ranging from -12.3 to -20.1mV. For the release study, less than 24% of 6-Mercaptopurine (6-MP) was released from PTA-g-CMCS1 in the media containing 2 and 100μM glutathione (GSH), whereas 37%, 54% and 75% of 6-MP was released from the media with GSH of 1, 2 and 10mM, respectively. Besides, pH and drug content of the polymeric prodrug only presented slight influence on the 6-MP release. MTT assay demonstrated that this system had higher inhibition ratio on HL-60 cells (human promyelocytic leukemia cells) in the presence of GSH and lower cytotoxicity on mouse fibroblast cell line (L929). Therefore, this nano-sized system is glutathione-dependent, and it can be employed as a potential carrier for the controlled release of 6-MP.  相似文献   

5.
Xin Li  Ning Pang  Ji Li  Xianrong Qi 《中国药学》2017,26(7):521-527
Drug delivery by nanocarriers requires characterizations of suitable particle size, high drug loading and safety. In this work, we prepared an amphiphilic dendrimer modified PEG-PLA mixed nanoparticles (NPs) by a double emulsion-solvent evaporation (DESE) method. The particle size and drug encapsulation efficacy (EE) were compared to evaluate and optimize the preparation parameters. The mixed NPs had average size ranging from (102±1) nm to (137±5) nm, and the zeta potential turned to positive with incorporation of the amphiphilic dendrimer. The NPs showed different EE of docetaxel (DTX) and paclitaxel (PTX) with higher affinity to more lipophilic PTX. The blank mixed NPs showed little cytotoxicity, and the DTX-loaded NPs could effectively facilitate the antiproliferation activity on PC-3 cells. The NPs could be used as an effective drug delivery system, and its anti-tumor effect is worthy of further study.  相似文献   

6.
The objective of this study was to investigate the effect of formulation parameters (i.e. polymer molecular weight and homogenization speed) on various physicochemical and biological properties of cationic nanoparticles. Cationic nanoparticles were prepared using different molecular weights of poly(DL-lactide-co-glycolide) (PLGA) and poly(DL-lactic acid) (PLA) by double emulsion solvent evaporation at two different homogenization speeds, and were characterized in terms of size, surface charge, morphology, loading efficiency, plasmid release, plasmid integrity, cytotoxicity, and transfection efficiency. Cationic surfactant, cetyltrimethylammonium bromide (CTAB), was used to provide positive charge on the surface of nanoparticles. Reporter plasmid gWIZ Beta-gal was loaded on the surface of nanoparticles by incubation. Use of higher homogenization speed and lower molecular weight polymer led to a decrease in mean particle size, increase in zeta potential, increase in plasmid loading efficiency, and a decrease in burst release. The nanoparticles displayed good morphology as evident from scanning electron micrographs. In vitro cytotoxicity study by MTT assay showed a low toxicity. Structural integrity of the pDNA released from nanoparticles was maintained. Transfecting human embryonic kidney (HEK293) cells with nanoparticles prepared from low molecular weight PLGA and PLA resulted in an increased expression of beta-galactosidase as compared to those prepared from high molecular weight polymer. Our results demonstrate that the PLGA and PLA cationic nanoparticles can be used to achieve prolonged release of pDNA, and the plasmid release rate and transfection efficiency are dependent on the formulation variables.  相似文献   

7.
The present investigation aimed at improving the ocular bioavailability of gatifloxacin by prolonging its residence time in the eye and reducing problems associated with the drug re-crystallization after application through incorporation into cationic polymeric nanoparticles. Gatifloxacin-loaded nanoparticles were prepared via the nanoprecipitation and double emulsion techniques. A 50:50 Eudragit® RL and RS mixture was used as cationic polymer with other formulation parameters varied. Prepared nanoparticles were evaluated for size, zeta potential, and drug loading. An optimized formulation was selected and further characterized for in vitro drug release, cytotoxicity, and antimicrobial activity. The double emulsion method produced larger nanoparticles than the nanoprecipitation method (410?nm and 68?nm, respectively). Surfactant choice also affected particle size and zeta potential with Tween 80 producing smaller-sized particles with higher zeta potential than PVA. However, the zeta potential was positive at all experimental conditions investigated. The optimal formulation produced by double emulsion technique and has achieved 46% drug loading. This formulation had optimal physicochemical properties with acceptable cytotoxicity results, and very prolonged release rate. The particles antimicrobial activities of the selected formulation have been tested against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus and showed prolonged antimicrobial effect for gatifloxacin.  相似文献   

8.
The objective of this study was to improve the efficacy of a natural compound tetrandrine against cancer by designing surfactant-free poly(lactic-co-glycolic acid) (PLGA) nanoparticles as drug carriers for tetrandrine. Nanoparticles were prepared from PLGA via the nano-precipitation method with or without the presence of surfactant poly(vinyl alcohol) (PVA) to encapsulate tetrandrine. Tetrandrine-loaded surfactant-free PLGA nanoparticles had an average particle size of 169.3?nm and morphology similar to the PLGA nanoparticles prepared using PVA as the surfactant. Tetrandrine-loaded surfactant-free PLGA nanoparticles could retard drug release in phosphate buffered saline (PBS) at pH 7.4 and the cumulative release of tetrandrine reached up to 68.33% over a period of 120?h. A549 cell line was used as the model cancer cells to investigate anticancer capability of tetrandrine-loaded surfactant-free PLGA nanoparticles via apoptosis assay, cytotoxicity and lysosome injury studies. The results showed that tetrandrine-loaded surfactant-free PLGA nanoparticles could effectively reduce cell viability and synergistically enhance tetrandrine-induced cell apoptosis.  相似文献   

9.
Targeted drug delivery systems are one of the most promising alternatives for the cancer therapy. Rapid developments on nanomedicine facilitated the creation of novel nanotherapeutics by using different nanomaterials. Especially polymer based nanoparticles are convenient for this purpose. In this study; a natural polymer (poly(3-hydroxybutyrate-co-3-hydroxyhexanoate), PHBHHX) was used as a base matrix for the production of a novel nanotherapeutic including antineoplastic agent, Etoposide and attached folic acid as a ligand on the nanoparticles. Modified solvent evaporation technique was used for the production of PHBHHX nanoparticles and the average size of the obtained PHBHHX nanoparticles were observed in the range of 180 nm and 1.5 μm by the change in experimental conditions (i.e., homogenization rate, surfactant concentration and polymer/solvent ratio). By the increase in homogenization rate and surfactant concentration, size of the nanoparticles was decreased, while the size was increased by the increase in polymer/solvent ratio. Drug loading ratio was also found to be highly affected by polymer/drug ratio. Surface charge of the prepared nanoparticles was also investigated by zeta potential measurements. In the cytotoxicity tests; Etoposide loaded and folic acid attached PHBHHX nanoparticles were observed as more effective on HeLa cells than Etoposide loaded PHBHHX nanoparticles without attached folic acid. The cytotoxicity of folic acid conjugated PHBHHX nanoparticles to cancer cells was found to be much higher than that of normal fibroblast cells, demonstrating that the folate conjugated nanoparticles has the ability to selectively target to cancer cells. In addition, apoptotic/necrotic activities were evaluated for all formulations of the PHBHHX nanoparticles and parallel results with cytotoxicity tests were obtained. These studies demonstrate that the folic acid attached and Etoposide loaded PHBHHX nanoparticles seem as promising for the targeted cancer therapy.  相似文献   

10.
目的 考察壳寡糖/水杨酸纳米粒负载碱化阿霉素的可能性,评价制备而得的微粒给药系统理化性质及其体外释放行为。方法 以碳二亚胺为交联偶合剂合成壳寡糖/水杨酸接枝共聚物,三硝基苯磺酸法测定水杨酸接枝率。运用超声分散法制备壳寡糖/水杨酸空白纳米粒,芘荧光法测定纳米粒临界聚集浓度,动态光散射法测定微粒粒径和表面电位,MTT法考察空白纳米粒的细胞毒性。以碱化阿霉素为模型药物,透析法制备壳寡糖/水杨酸载药纳米粒,经透射电镜考察载药纳米粒的形态,对其体外释放行为进行了研究。结果 合成得到的壳寡糖分子量=9000/水杨酸理论投料量=50%的实际接枝率为16.92%,空白纳米粒的临界聚集浓度为867.0 μg/mL,空白纳米粒的粒径和表面Zeta电位分别为434.0 nm和48.6 mV,对人肝癌细胞Hep-G2的半数抑制浓度为1745μg/mL。在碱化阿霉素理论投药量为10%时壳寡糖/水杨酸载药纳米粒的实际载药量为8.52%,包封率为93.15%。;载药纳米粒的粒径和表面电位分别为214.2 nm和33.6 mV。体外释放结果表明药物的释放呈现pH敏感性;并主要以溶蚀的方式从载体内部释放出来。结论 壳寡糖/水杨酸接枝物可以有效包裹碱化阿霉素并成为粒径均一的纳米粒给药系统。载药纳米粒具有pH敏感和缓释作用。壳寡糖/水杨酸接枝物有望成为潜在的难溶性药物的载体材料。  相似文献   

11.
目的:制备两亲性壳聚糖N-辛基-N,O-羧甲基壳聚糖包覆紫杉醇脂质体(PTX-LP-OCC),并考察其理化性质及体外释放行为。方法:采用基于乙醇的前体脂质体法制备紫杉醇脂质体并以OCC包覆,并以普通脂质体(PTX-LP)为对照,测定其包封率、粒径大小、电位,观测其形态及稳定性,然后采用全体液平衡反向透析法研究体外释放行为。结果:紫杉醇脂质体包封率为89.5%,粒径为236.5 nm,Zeta电位为-31.4 mV,多糖包覆修饰后药物包封率无显著变化,粒径及Zeta电位显著增加,脂质体稳定性显著提高,药物释放呈缓释特征,且突释显著降低。结论:两亲性壳聚糖包覆脂质体是一个有前景的抗肿瘤药物递送载体  相似文献   

12.
Poly(butylcyanoacrylate) nanoparticles were prepared by dispersion polymerization (DP) and emulsion polymerization (EP) of n-butyl cyanoacrylate monomer. The particles were characterized by infrared spectroscopy, differential scanning calorimetry, X-ray diffractometry and transmission electron microscopy. Particle properties such as size and zeta potential were determined for nanoparticles prepared by DP and EP techniques and compared. EP technique resulted in a low particle size compared to the DP. A high zeta potential was observed for nanoparticles prepared by the DP method. Incorporation of methotrexate resulted in a decrease in zeta potential in both types of nanoparticles, the decrease being greater in DP nanoparticles. Effect of experimental variables such as monomer concentration, polymerization time and temperature on drug entrapment and particle size was studied. Both types of nanoparticles showed an increase in drug entrapment with increased monomer concentrations. Variable polymerization time did not influence the drug entrapment of EP nanoparticles. Polymerization at 60 +/- 2 degrees C resulted in a decrease of drug entrapment and a great increase in the particle size of both types of nanoparticles. In vitro drug release studies showed a comparatively high release of methotrexate from DP nanoparticles suggesting the channelizing effect of dextran chains incorporated into nanoparticles during polymerization. Though the release profiles of nanoparticles appeared similar, a significant difference in release rates was found for DP and EP nanoparticles in 0.1 mol L(-1) HCl and pH 7.4 phosphate buffer (p < 0.01). Drug release data indicate that the release of methotrexate from DP and EP nanoparticles followed Fickian diffusion in 0.1 mol L(-1) HCl, while the mechanism was found anomalous in pH 7.4 phosphate buffer. An effort was also made to critically correlate the properties of nanoparticles synthesized by the above two techniques, and emphasize the importance of these characteristics in targeted drug delivery.  相似文献   

13.
目的 讨论白及多糖作为药物递送载体的可行性。方法 制备疏水性胆甾醇琥珀酰基白及多糖(CHSB)后,以紫杉醇(PTX)为模型药物,采用透析法制备载药纳米粒子,然后在透射电镜(TEM)下观察其形态;用动态光散射仪(DLS)检测其粒径、粒径分布和Zeta电位;用高效液相色谱法(HPLC)测定其包封率和载药量,并考察其体外释放情况;采用差示量热扫描法(DSC)确证药物在载药纳米粒子中的存在形式;采用MTT法考察纳米粒子的体外抗肿瘤活性,用荧光标记法观察肝癌细胞QGY-7703对纳米粒子的摄取情况。结果 制备的纳米粒呈规则球形,粒度分布均匀,药物包载于纳米粒内部,载药量和包封率在一定范围受CHSB的影响,载药纳米粒对肝癌细胞的杀伤性强于游离药物,在细胞内可观察到罗丹明B标记的纳米粒呈现的荧光。结论 CHSB作为难溶性药物载体具有较高的可行性,因此可作为一种极具潜力的纳米载体材料。  相似文献   

14.
目的:制备柚皮素壳聚糖纳米粒,初步探讨其对人肺腺癌细胞A549的细胞毒性和细胞摄取。方法:以壳聚糖和鱼精蛋白作为载体材料,采用离子胶凝法制备柚皮素壳聚糖纳米粒,透射电镜(TEM)观察其形态,马尔文激光粒度仪测定其粒径、分散度(PDI)和Zeta电位,离心法测定其包封率和载药量,采用恒温振荡水浴法对柚皮素壳聚糖纳米粒进行体外释放度研究,最后采用人肺癌细胞系A549细胞进行了细胞毒性、细胞摄取研究。结果:柚皮素壳聚糖纳米粒为球形或类球形粒子,结构完整,大小均一、球形度好,分散均匀,PDI、粒径、Zeta电位和包封率分别为0.268,139 nm、+15.7 mV和83.34%,柚皮素壳聚糖纳米粒体外释放呈缓释,24 h累积释放量达到了80%以上,体外释药过程用Higuchi方程拟合较好。MTT试验显示不同浓度的壳聚糖纳米粒和细胞作用72 h后,细胞活力均大于95%,本文所制备的壳聚糖纳米粒无细胞毒性。细胞摄取试验表明载FITC的壳聚糖纳米粒和A549细胞作用3 h后,可明显看到大量带绿色荧光的纳米粒穿过细胞膜进入细胞。结论:离子凝胶法成功制得粒径较小的柚皮素壳聚糖纳米粒,具有缓释性好,毒性小,壳聚糖纳米粒摄取率较高,可大大提高药物的利用率,具有广泛的应用前景。  相似文献   

15.
目的:制备蓝萼甲素固体脂质纳米粒,并对其理化性质进行研究。方法:用乳化-溶剂挥发法制得蓝萼甲素固体脂质纳米粒,并对其粒径、形态、表面电位、包封率、体外释药性质等进行研究。结果:所得蓝萼甲素固体脂质纳米粒的粒径分布均匀,平均粒径为(190±10·3)nm,Zeta电位为—31·2mV,平均包封率为(50·45±0·804)%;药物体外释放符合Higuchi线性方程,具有显著缓释作用。结论:固体脂质纳米粒可作为蓝萼甲素新型缓释给药系统。  相似文献   

16.
Paclitaxel, an antimicrotubular agent used in the treatment of ovarian and breast cancer, was encapsulated in nanoparticles of poly(DL-lactide-co-glycolide) and poly(ε-caprolactone) polymers using the double emulsion-solvent evaporation technique. The morphology, size distribution, drug encapsulation efficiency, thermal degradation and in-vitro drug release profile were characterized. High-performance liquid chromatography was used to determine the drug encapsulation efficiency and in-vitro drug release profile. MCF-7 breast cancer cells were used to evaluate the cytotoxicity (MTT assay), the cellular uptake and the cell cycle. The particle size was in the range of 200-400 nm. Poly(lactide-co-glycolide) nanoparticles showed more effective cellular uptake compared with those of poly(ε-caprolactone). Unloaded nanoparticles were found to be cytocompatible on MCF-7 cells and paclitaxel formulations showed efficacy in killing MCF-7 cells. Paclitaxel-loaded nanoparticles induced the release of the drug-blocking cells in the G2/M phase. Paclitaxel-loaded nanoparticles may be considered a promising drug delivery system in the evaluation of an in-vivo model.  相似文献   

17.
Amphiphilic beta-cyclodextrins were formulated as nanospheres and characterised by particle size, zeta potential and TEM following freeze-fracture. The nanospheres were loaded with progesterone with different loading techniques involving the spontaneous formation of nanospheres from pre-formed inclusion complexes of amphiphilic beta-cyclodextrins modified on the primary or secondary face with progesterone. Inclusion complexes were characterised with various techniques including Differential Scanning Calorimetry (DSC), Fast Atom Bombardment Mass Spectrometry (FAB MS) and 1H NMR spectroscopy; and progesterone was believed to be partially included in the CD cavity. Loading properties of conventionally-loaded nanospheres were compared with those prepared directly from pre-formed inclusion complexes and loading technique was found to enhance associated drug percentage significantly (P<0.05). Although both amphiphilic beta-cyclodextrins (6-N-CAPRO-beta-CD and beta-CDC6) were capable of high progesterone loading, beta-CDC6 displayed slightly higher entrapment efficiency due to the possible higher affinity of progesterone to the 14 alkyl chains surrounding this molecule resulting in higher drug adsorption to particle surface. Progesterone was released within a period of 1 h from all formulations. Progesterone-loaded amphiphilic beta-CD nanospheres were proved to be a promising non-surfactant injectable delivery system providing high-quantity of water-insoluble progesterone rapidly within 1 h.  相似文献   

18.
Solid lipid nanoparticles (SLNs) have gained attention as a colloidal drug carrier, particularly for drugs with limited solubility. The poor aqueous solubility of all-trans retinoic acid (ATRA) has been a limiting factor in its clinical use. This study was undertaken to overcome the solubility limitation of ATRA by loading in SLNs. The physicochemical characteristics of ATRA-loaded SLNs were investigated by particle size analysis, zeta potential measurement, thermal analysis and HPLC determination of ATRA content. The mean particle size of ATRA-loaded SLNs could be reduced (1) by mixing EggPC and Tween 80 as a surfactant and (2) by increasing the total surfactant amount. The smallest mean particle size of SLNs was obtained with 50 mg/g surfactant mixture composed of 54:46% (w/w) EggPC:Tween 80 (154.9 nm). The zeta potential of SLNs could be increased by mixing EggPC, Tween 80 and DSPE-PEG in the surfactant mixture. The zeta potential of SLNs prepared with 50 mg/g surfactant mixture composed of 48:6:46% (w/w) of EggPC:DSPE-PEG:Tween 80 was -38.18 mV. ATRA could be loaded at 2.4% (percentage of lipid matrix) on these SLNs without impairing their physical stability. After freeze-drying, the mean particle size and polydispersity index of ATRA-loaded SLNs were only slightly increased (181.8 vs. 265.2 nm, 0.173 vs. 0.200). Furthermore, no significant change was observed in the SLN-loaded concentration of ATRA and the zeta potential of SLNs after freeze-drying. Taken together, SLN formulation of ATRA with similar characteristics to those of parenteral emulsions could be obtained even after freeze-drying.  相似文献   

19.
Polymeric liposomes (PEG/RGD-MPLs), composed of amphiphilic polymer octadecyl-quaternized modified poly (γ-glutamic acid) (OQPGA), PEGylated OQPGA, RGD peptide grafted OQPGA and magnetic nanoparticles, was prepared successfully. These PEG/RGD-MPLs could be used as a multifunctional platform for targeted drug delivery. The results showed that PEG/RGD-MPLs were multilamellar spheres with nano-size (50-70 nm) and positive surface charge (28-42 mV). Compared with magnetic conventional liposomes (MCLs), PEG/RGD-MPLs exhibited sufficient size and zeta potential stability, low initial burst release and less magnetic nanoparticles leakage. The cell uptake results suggested that the PEG/RGD-MPLs (with RGD and magnetic particles) exhibited more drug cellular uptake than non RGD and non magnetism carriers in MCF-7 cells. MTT assay revealed that PEG/RGD-MPLs showed lower in vitro cytotoxicity to GES-1cells at ≤ 100 μg/mL. These data indicated that the multifunctional PEG/RGD-MPLs may be an alternative formulation for drug delivery system.  相似文献   

20.
The aim of this work was to design injectable nanocarriers for drug delivery based on PCL-PEO amphiphilic block copolymers with linear ABA triblock and 4-armed (BA)(4) star-diblock architectures (A=PEO, B=PCL). The copolymers were obtained by coupling of a monofunctional -COOH end-capped PEO (M(n)=2.0kDa) with linear or 4-armed star-shaped PCL macromers bearing -OH terminal groups and were characterized by (1)H NMR spectroscopy and size exclusion chromatography. DSC and X-ray diffraction experiments showed that separate crystalline phases of PCL and PEO are present in bulk copolymers. Nanoparticles were produced by nanoprecipitation (NP) and by a new melting-sonication procedure (MS) without the use of toxic solvents, and characterized for size, polydispersity, zeta potential and core-shell structure. Nanoparticles were loaded with all-trans-retinoic acid (atRA) as a model drug and their release features assessed. Results demonstrate that both techniques allow the formation of PEO-coated nanoparticles with a hydrodynamic diameter that is larger for nanoparticles prepared by MS. atRA is released from nanoparticles at controlled rates depending on size, loading and, more important, preparation technique, being release rate faster for MS nanoparticles. Some biorelevant properties of the carrier such as complement activation were finally explored to predict their circulation time after intravenous injection. It is demonstrated that nanoparticles prepared by MS do not activate complement and are of great interest for future in vivo applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号