首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Evidence for a general role of phospholipase D in signal transduction is accumulating. In the present study, the activity of the enzyme was investigated in heart tissue under basal conditions and after addition of phorbol esters or aluminum fluoride (AlF inf4 sup– ; 10 mM NaF plus 10 M AlCl3). Atria of rats and chickens were incubated with [3H]-myristic acid in order to label preferentially phosphatidylcholine. Under basal conditions, the tissues generated choline and phosphatidic acid (PtdOH), the primary catalytic products of phospholipase D. When 0.5 or 2.0% ethanol was present, [3H]-phosphatidyl-ethanol (PETH) was rapidly formed at the expense of [3H]-PtdOH. This transphosphatidylation reaction is specific for phospholipase D activity. The basal formation of PETH was not inhibited by a Ca2+-free, EGTA-containing medium. - The phorbol ester 4-phorbol-12,13-dibutyrate (PDB), which is known to activate protein kinase C, enhanced the net formation of choline, whereas the inactive 4-phorbol-13-acetate (PAc) was ineffective. PDB (0.2 M), in contrast to PAc, also increased the formation of [3H]-PtdOH and, in the presence of ethanol, of [3H]-PETH. The PDB-evoked formation of PETH occurred again at the expense of PtdOH. Treshold and maximum effective concentrations of PDB were 10 nM and 0.2–0.6 M, respectively. The effects of PDB on either choline efflux and generation of PETH showed the same Cat+-dependency, i.e., both effects were blocked by a Ca2+-free, EGTA-containing medium, but not by a Ca2+-free medium without EGTA. In protein kinase C-deficient tissue which was prepared by pretreatment with 0.61 M PDB for 27 h, PDB failed to enhance the formation of PtdOH and PETH. - A1F4–, a known activator of G-proteins, increased not only the tissue content of inositol phosphates, but also markedly enhanced choline efflux and formation of [3H]-PtdOH and PETH. In conclusion, in mammalian and avian atria a high phospholipase D activity was found even under basal conditions. The enzyme was stimulated by protein kinase C and presumably by a G protein.Abbreviations IP inositol phosphate - DAG diacylglycerol - PL phospholipase - PtdOH phosphatidic acid - PETH phosphatidylethanol - PDB 4-phorbol-12,13-dibutyrate - PAc 4-phorbol-13-acetate - AlF inf4 sup– aluminum fluoride - DMSO dimethylsulfoxide Correspondence to K. Löffelholz at the above address  相似文献   

2.
The effects of phorbol esters on serotonin release were examined in an attempt to investigate the role of protein kinase C in the regulation of serotonin release. Rat brain parietal cortical slices were incubated with [3H]5-HT in the presence of pargyline in order to label the serotonin stores. Potassium stimulated (30 s) release and spontaneous [3H]5-HT efflux were examined in slices during superfusion with Krebs-Ringer solution containing chlorimipramine. Repeated K+ stimulations elicited reproducible responses with release ratios of approximately 1.0. Introduction of phorbol 12-myristate, 13-acetate (PMA) or phorbol 12,13-dibutyrate (PDBu) 20 min prior to S2, or S3 resulted in dose-related increases in [3H]5-HT or [3H]NE release. PMA was slightly more potent (93% increase) than PDBu in potentiating K+-stimulated [3H]5-HT release. Phorbol and 4 alpha-phorbol 12,13-didecanoate (4 alpha PDD) which do not activate protein kinase C did not alter serotonin release. In contrast, basal [3H]5-HT and [3H]NE release were altered to a far lesser extent which was not always dose related. The response to the phorbol esters was reversible, Ca2+-dependent and reached maximal effect after 20 min of superfusion. The putative protein kinase C inhibitor, 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H-7) inhibited K+-induced [3H]5-HT release significantly (11%) but did not alter basal efflux. The PMA facilitation of serotonin release was, however, markedly prevented by the enzyme inhibitor. The effect of PMA on release was found not to be directly mediated through the prejunctional serotonin autoreceptors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
An alternative in vivo assay, based on growth inhibition of yeast expressing an individual mammalian protein kinase C (PKC) isoform (proportional to the degree of PKC activation), was used to characterize the activities of phorbol-12-myristate-13-acetate (PMA) and its analogues on classical (alpha and betaI), novel (delta and eta) and atypical (zeta) PKC isoforms. Effects of PMA, 4alpha-PMA, phorbol-12-myristate-13-acetate-4-O-methyl-ether (MPMA), phorbol-12-monomyristate (PMM), phorbol-12,13-diacetate (PDA), phorbol-13-monoacetate (PA), phorbol-12,13-dibutyrate (PDB), phorbol-12,13-didecanoate (PDD) and 12-deoxyphorbol-13-phenylacetate-20-acetate (dPPA), on growth of yeast expressing individual PKC isoforms was determined. PMA-induced growth inhibition on all isoforms tested (except on PKC-zeta). PDD and PDB presented an efficacy similar to PMA; the other PMA-analogues presented lower efficacies. MPMA and 4alpha-PMA stimulated growth of yeast expressing classical PKCs and reduced the PMA-induced growth inhibition, effects similar to those exhibited by the PKC inhibitors chelerythrine and R-2,6-diamino-N-[[1-(1-oxotridecyl)-2-piperidinyl]methyl]-hexanamide dihydrochloride (NPC 15437). This study reveals that phorbol esters differ on their potency to activate a given PKC isoform, and presents their isoform-selectivity. Furthermore, MPMA and 4alpha-PMA caused effects similar to those expected from PKC inhibition.  相似文献   

4.
Ischemia-like brain damage was induced in cats by selective injection of 4 beta-phorbol-12 beta-myristate-13 alpha-acetate (PMA) into the left carotid artery. PMA-injection provoked significant decreases in platelet and neutrophil counts due to their intravascular aggregation. Platelet and neutrophil aggregates caused brain edema with accumulation of sodium fluorescein in the cerebrospinal fluid and ipsilateral derangement of the cerebral energy state in the parietal cortex. Neurotropin administration decreased the changes in platelet and neutrophil counts and prevented the developments of both brain edema and cerebral energy failure.  相似文献   

5.
Summary The resting efflux of choline from perfused chicken hearts varied from 0.4 to 2.6 nmol/g min, but was constant for at least 80 min in the individual experiments. The rate of choline efflux was found to be equal to the rate of choline formation in the heart, which, from the following reasons, was essentially due to hydrolysis of choline phospholipids. (1) Cardiac content of choline phospholipids (7,200 nmol/g) was much higher than that of acetylcholine (5.5 nmol/g). (2) Resting release of acetylcholine was 0.016 nmol/g min and, after inhibition of cholinesterase, only about 0.1 nmol/g min.Resting efflux of choline was reduced by mepacrine, a phospholipase A2 inhibitor, by perfusion with a Ca2+-free Tyrode's solution containing EGTA and by the combination mepacrine plus Ca2+-free/EGTA solution. In all experiments the reduced choline efflux levelled off within 10 min at about 50%. Omission or elevation of Mg2+ from 1.05 to 10.5 mmol/l had no effect. Resting efflux was increased to 150% by oleic acid (as sodium salt; 2×10–5 mol/l) which is known to activate phospholipase D. Likewise muscarinic agonists (carbachol and acetylcholine) caused facilitation of the efflux of endogenous choline that was blocked by 3×10–7 mol/l atropine. This effect was not reduced, but even slightly enhanced, by mepacrine and by infusion of EGTA in a modified Tyrode's solution (Ca2+-free, 10.5 mmol/l Mg2+).It is concluded that the resting efflux of choline from the heart is essentially due to hydrolysis of choline phospholipids, that half of the efflux is insensitive to mepacrine and is Ca2+-independent (excluding an involvement of phospholipase A2). Moreover, this Ca2+-independent efflux is facilitated by muscarinic agonists, possibly through an effect on phospholipase D activity.Supported by the Deutsche ForschungsgemeinschaftSome of the results are part of the Ph. D. thesis of J. Sandmann  相似文献   

6.
1. The effects of phorbol esters on canine Purkinje fibers were examined using conventional microelectrode techniques. 2. 12-O-Tetradecanoylphorbol-13-acetate (TPA) and 4-beta-phorbol-12,13-dibutyrate (PDB), which are specific activators of protein kinase C (PKC), decreased the action potential amplitude and the maximum rate of depolarization (Vmax) at 3 x 10(-7) M or higher. These phorbol esters had little effect on the resting potential. 3. PDB (1-3 x 10(-7) M) also reduced the contractile force, accompanied with initial increase (in 5 out of 8 experiments), whereas TPA did not decrease it to any significant extent. 4. An inactive analog of phorbol esters, 4-alpha-phorbol-12,13-didecanoate (PDD), decreased the action potential amplitude and Vmax, and slightly increased the action potential duration. However, PDD failed to produce any inotropic effect. 5. Post-rest potentiation of the contractile force after a rest from stimulation for 30 sec was inhibited in the presence of 3-10 x 10(-7) M TPA or 3 x 10(-7) M PDB. 6. Isoproterenol 10(-7) M augmented the action of PDB 3 x 10(-7) M. 7. These results suggest that activation of PKC may modulate myocardial Ca2+ homeostasis and influence the excitation-contraction process.  相似文献   

7.
The effects of protein kinase C (PKC) activation on inositol lipid signaling were examined. Using the turkey erythrocyte model of receptor-regulated phosphoinositide hydrolysis, we developed a membrane reconstitution assay to study directly the effects of activation of PKC on the activities of Galpha(11), independent of potential effects on the receptor or on PLC-beta. Membranes isolated from erythrocytes pretreated with 4beta-phorbol-12beta-myristate-13alpha-acetate (PMA) exhibited a decreased capacity for Galpha(11)-mediated activation of purified, reconstituted PLC-beta1. This inhibitory effect was dependent on both the time and concentration of PMA incubation and occurred as a decrease in the efficacy of GTPgammaS for activation of PLC-beta1, both in the presence and absence of agonist; no change in the apparent affinity for the guanine nucleotide occurred. Similar inhibitory effects were observed after treatment with the PKC activator phorbol-12,13-dibutyrate but not after treatment with an inactive phorbol ester. The inhibitory effects of PMA were prevented by coaddition of the PKC inhibitor bisindolylmaleimide. Although the effects of PKC could be localized to the membrane, no phosphorylation of Galpha(11) occurred either in vitro in the presence of purified PKC or in intact erythrocytes after PMA treatment. These results support the hypothesis that a signaling protein other than Galpha(11) is the target for PKC and that PKC-promoted phosphorylation of this protein results in a phosphorylation-dependent suppression of Galpha(11)-mediated PLC-beta1 activation.  相似文献   

8.
Administration of phorbol 12-myristate,13-acetate (PMA, 10 fmol-10 nmol) or phorbol 12,13-dibutyrate (PDB, 0.2-495 nmol) (i.c.v.) to mice induced: hindlimb scratching, tremor, myoclonic jerks, hyperlocomotion, clonic seizure, followed by death or recovery. CD50 values for clonic seizures for PMA and PDB were 1.0 pmol and 1.2 nmol. 4-alpha-Phorbol (68-686 nmol) was inactive. The effects of PDB (24-247 nmol) were reduced by pretreatment with staurosporine (30 nmol, i.c.v.). Protein kinase C activators are potent convulsants in vivo.  相似文献   

9.
1. The effects of various protein kinase C (PKC) activators on the stimulation-induced (S-I) release of noradrenaline and dopamine was studied in rat cortical slices pre-incubated with [3H]-noradrenaline or [3H]-dopamine. The aim was to investigate a possible structure-activity relationship for these agents on transmitter release. 2. 4 beta-Phorbol 12,13-dibutyrate (4 beta PDB, 0.1-3.0 microM), enhanced S-I noradrenaline and dopamine release in a concentration-dependent manner whereas the structurally related inactive isomer 4 alpha-phorbol 12, 13-dibutyrate (4 alpha PDB, 0.1-3.0 microM) and phorbol 13-acetate (PA, 0.1-3.0microM) were without effect on noradrednaline release. Another group of phorbol 12, 13-diesters containing a common 13-ester substituent (phorbol 12, 13-diacetate, PDA, 0.1-3.0 microM; phorbol 12-myristate 13-acetate, PMA, 0.1-3.0 microM; phorbol 12-methylaminobenzoate 13-acetate, PMBA, 0.03-3.0 microM) also enhanced S-I noradrenaline and dopamine release in a concentration-dependent manner with PMA being the least potent. 3. The 12-deoxyphorbol 13-substituted monoesters, 12-deoxyphorbol 13-acetate (dPA, 0.1-3.0 microM), 12-deoxyphorbol 13-angelate (dPAng, 0.1-3.0 microM), 12-deoxyphorbol 13-isobutyrate (dPiB, 0.03-3.0 microM) and 12-deoxyphorbol 13-phenylacetate (dPPhen, 0.1-3.0 microM) enhanced S-I noradrenaline and dopamine release in a concentration-dependent manner. In contrast, 12-deoxyphorbol 13-tetradecanoate (dPT, 0.1-3.0 microM) was without effect. 4. The involvement of PKC in mediating the effects of the various phorbol esters was further investigated. PKC was down-regulated by 20 h exposure of the cortical slices to 4 beta-phorbol 12,13-dibutyrate (1 microM). In this case the facilitatory effect of 4 beta PDB and dPA was abolished whilst that of dPAng was significantly attenuated. This indicates that these agents were acting selectively at PKC. In support of this the PKC inhibitors, polymyxin B (21 microM) and bisindolylmaleimide I (3 microM), attenuated the facilitatory effect of 4 beta PDB and dPAng although that of dPA was not significantly altered. 5. The effects of these agents on transmitter release were not correlated with their in vitro affinity and isozyme selectivity for PKC. Short chain substituted mono- and diesters of phorbol were more potent enhancers of action-potential evoked noradrenaline and dopamine release than the long chain esters. Interestingly, these former agents are the least potent or non effective (e.g. dPA, PDA) tumour promoters. We suggest that the reason for the poor effects of lipophilic long chain phorbol esters (PMA, dPT) on transmitter release is that they are sequestered in the plasmalemma and do not access the cell cytoplasm where the PKC may be located.  相似文献   

10.
Summary The efflux of acetylcholine, of radioactively labelled acetylcholine and choline, into the venous effluent of the perfused chicken heart was studied to determine the kinetics of both interstitial washout and hydrolysis of acetylcholine.Stimulation of both cervical vagus nerves (e.g., for 5 s at 40 Hz) caused a release of acetylcholine, which appeared partially unhydrolyzed in the venous effluent, and reduced force of contraction and heart rate. For comparison labelled acetylcholine or choline was infused for 5 s into the heart and again the venous efflux of either substance was determined. It was found that the kinetics of efflux of acetylcholine or choline from the interstitial space were of first order. The mean half times were 16.2 s (after infusion of acetylcholine) and 17.9 s (after nerve stimulation) for acetylcholine and 17.9 s (after infusion of choline) for choline.In the interstitial space, radioactivity (sum of [3H]-acetylcholine and [3H]-choline formed from [3H]-acetylcholine) released by nerve stimulation declined mono-exponentially with a rate constant of 0.069 s–1 and a half time of 10 s (due to washout), whereas the concentration of unhydrolyzed [3H]-acetylcholine decreased in a multi-exponential fashion due to both washout and hydrolysis. The interstitial concentration of [3H]-acetylcholine reached the 50% level after 2.5 s.In conclusion, the long persistence of unhydrolyzed acetylcholine in the interstitial space of the heart appears to be due to an apparently low rate of hydrolysis. This, in turn, is responsible for the importance of diffusion and washout of acetylcholine from the interstitial space as significant factors of synaptic removal of acetylcholine. Moreover, the results support the notion that the sustained interstitial concentration of acetylcholine determines the long duration of cardiac responses to vagal stimulation.This work was supported by a grant from the Deutsche Forschungsgemeinschaft  相似文献   

11.
1. Although earlier studies with phorbol esters indicate that protein kinase C (PKC) may be an important regulator of Cl- current (Icl) in cardiac cells, there is a need for additional quantitative data and investigation of conflicting findings. Our objectives were to measure the magnitude, time course, and concentration-dependence of Icl activated in guinea-pig ventricular myocytes by phorbol 12-myristate 13-acetate (PMA), evaluate its PKC dependence, and examine its modification by external and internal ions. 2. The whole-cell patch clamp technique was used to apply short depolarizing and hyperpolarizing pulses to myocytes superfused with Na(+)-, K(+)-, Ca(2+)-free solution (36 degrees C) and dialysed with Cs+ solution. Stimulation of membrane currents by PMA (threshold < or = 1nM, EC50 approximately equal to 14 nM, maximal 40% increase with > or = 100 nM) plateaued within 6-10 min. 3. PMA-activated current was time-independent, and suppressed by l mM 9-anthracenecarboxylic acid (9-AC). Its reversal potential (Erev) was sensitive to changes in the Cl- gradient, and outward rectification of the current-voltage (I-V) relationship was more pronounced with 30 mM than 140 mM Cl- dialysate. 4. The relative permeability of PMA-activated channels estimated from Erev measurements was I- > Cl- > > aspartate. Channel activation was independent of external Na+. 5. PMA failed to activate Icl in myocytes pretreated with 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H-7) or dialysed with pCa 10.5 solution. Lack of response to 4 alpha-phorbol 12, 13-didecanoate (alpha PDD) was a further indication of mediation by PKC. 6. Icl induced by 2 microM forskolin was far larger than that induced by PMA, suggesting that endogenous protein kinase A is a much stronger Cl- channel activator than endogenous PKC in these myocytes. 7. The macroscopic properties of PMA-induced Icl appear to be indistinguishable from those of PKA-activated Icl. We discount stimulation of PKA by PMA as an explanation, and conclude that endogenous PKC may activate PKA-regulated Cl- channels in these myocytes.  相似文献   

12.
1. Endothelin-1 (ET-1) caused a concentration-dependent contraction of helical strips from rat thoracic aorta in the absence of extracellular Ca2+. The Ca(2+)-depleted muscle strips, prepared by three repeated applications of 10(-2) M caffeine or 10(-6) M noradrenaline in Ca(2+)-free buffer, were contracted by 10(-8) M ET-1 in the same manner as non-treated strips. 2. In the absence of extracellular Ca2+, 10(-7) M phorbol 12-myristate 13-acetate (PMA), an activator of protein kinase C, induced a small but sustained contraction of the rat thoracic aorta strips within 60 min. Preincubation of the strips with 10(-7) M PMA for 60 min in Ca(2+)-free buffer, did not affect the 10(-8) M ET-1-induced contraction, but decreased the 5 x 10(-8) M phorbol 12,13-dibutyrate (PDB)-, or the 10(-7) M PMA-induced contraction, and potentiated the contraction induced by 10(-8) M urotensin II. Preincubation with 10(-8) M ET-1 (which induced maximum contraction) for 25 min in Ca(2+)-free buffer did not change the subsequent contraction induced by PMA (10(-7) M) or urotensin II (10(-8) M) but gave a somewhat lower maximum tension than in non-treated strips. 3. Calyculin-A, a potent inhibitor of phosphatase, also induced a contraction of the Ca(2+)-depleted muscle strips in Ca(2+)-free buffer. Preincubation of the strips with ET-1 (10(-8) M) or PMA (10(-7) M) decreased the calyculin-A (3 x 10(-8) M)-induced contraction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
1. We have investigated the effects of pertussis toxin treatment on a variety of peripheral tissues in the rat. 2. Incubation with pertussis toxin (1 microgram ml-1) in vitro failed to alter the negative inotropic actions of acetylcholine in rat left atria. 3. Pretreatment with pertussis toxin (6 micrograms kg-1, i.v., 3-4 days) abolished the negative inotropic actions of acetylcholine in rat left atria. 4. Pretreatment with pertussis toxin (40 micrograms kg-1, i.v., 3-4 days) failed to alter the prejunctional inhibitory actions of the alpha 2-adrenoceptor agonist xylazine, either in terms of the isometric contraction to a single stimulus in rat vas deferens or in terms of stimulation-evoked overflow of tritium in atria pre-incubated with [3H]-noradrenaline. 5. Pretreatment with pertussis toxin (6 micrograms kg-1, i.v., 3-4 days) failed to affect, and pertussis toxin (40 micrograms kg-1, i.v., 3-4 days) potentiated endothelium-dependent relaxations of rat aorta to histamine and acetylcholine. 6. It seems unlikely that peripheral prejunctional actions of alpha 2-adrenoceptor agonists or endothelium-dependent relaxations of rat aorta involve pertussis toxin-sensitive G proteins.  相似文献   

14.
The effects of the co-carcinogenic phorbol ester, phorbol myristate acetate (PMA), on N-formyl-Met-Leu-Phe (FMLP)-induced human polymorphonuclear leukocyte chemokinesis and release of granular lysozyme and beta-glucuronidase were compared with those of the inactive phorbol didecanoate (PDD). Release of the enzymes was enhanced by PMA but was unaffected by PDD which also had no effect on chemokinesis. In contrast, FMLP-induced chemokinesis was completely suppressed by PMA in a dose-dependent fashion (ID50 = 3.5 nM). PMA also inhibited the FMLP-induced increase in cytoplasmic calcium level, measured by the fluorescent indicator quin-2. These and other results suggest that although the diacylglycerol/protein kinase C system is involved in the positive regulation of certain neutrophil functions (degranulation and superoxide generation), if it is very powerfully stimulated, as with PMA, it has inhibitory actions on other neutrophil properties such as motility.  相似文献   

15.
1. We investigated whether protein kinase C (PKC) activation stimulates Ca2+ entry in HEK 293 cells transfected with human TRPV4 cDNA and loaded with fura-2. 2. Phorbol 12-myristate 13-acetate (PMA), a PKC-activating phorbol ester, increased the intracellular Ca2+ concentration ([Ca2+]i) in a dose-dependent manner, with an EC50 value of 11.7 nm. Exposure to a hypotonic solution (HTS) after PMA further increased [Ca2+]i. Two other PKC-activating phorbol esters, phorbol 12,13-didecanoate (PDD) and phorbol 12,13-dibutyrate, also caused [Ca2+]i to increase. 3. The inactive isomer 4alpha-PMA was less effective and the peak [Ca2+]i increase was significantly smaller than that induced by PMA. In contrast, 4alpha-PDD produced a monophasic or biphasic [Ca2+]i increase with a different latency, while 4alpha-phorbol had no effect. 4. The PMA-induced [Ca2+]i increase was abolished by prior exposure to bisindolylmaleimide (BIM), a PKC-specific inhibitor, and suppressed by the nonspecific PKC inhibitor 1-(5-isoquinolinesulphonyl)-2-methylpiperazine. The [Ca2+]i increase induced by 4alpha-PMA, 4alpha-PDD or HTS was not significantly affected by BIM. 5. These results suggest that both PKC-dependent and -independent mechanisms are involved in the phorbol ester-induced activation of TRPV4, and the PKC-independent pathway is predominant in HTS-induced Ca2+ entry.  相似文献   

16.
1. The mouse AtT-20/D16-16 anterior pituitary tumour cell line was used as a model system for the study of phorbol 12-myristate 13-acetate (PMA)-mediated enhancement of calcium-evoked adrenocorticotrophin (ACTH) secretion. 2. PMA stimulated ACTH secretion from intact cells in a concentration-dependent manner. Other phorbol esters; phorbol 12,13-dibutyrate (PDBu) and phorbol 12,13-didecanoate (PDD) and diacylglycerol analogues; 1-oleoyl-2-acetyl-sn-glycerol (OAG) and 1,2-dioctanoyl-sn-glycerol (DOG) also stimulated ACTH release from intact AtT-20 cells. This would suggest that activation of protein kinase C (PKC) stimulates ACTH secretion from AtT-20 cells. 3. Calcium stimulated ACTH secretion from electrically-permeabilized cells over the concentration-range of 10(-7) M to 10(-5) M. PMA (10(-7) M) enhanced the amount of ACTH secreted at every concentration of calcium investigated. The PKC inhibitor, chelerythrine (10(-5) M) blocked the PMA (10(-7) M)-evoked enhancement of calcium (10(-5) M)-stimulated ACTH secretion but did not alter significantly the calcium (10(-5) M)-evoked secretion itself. This suggests that PKC modulates the secretory response to increases in intracellular calcium but does not mediate the effects of calcium. 4. Guanosine 5'-O-(3-thiotriphosphate) (GTP-gamma-S, 10(-5) M) stimulated ACTH secretion from permeabilized cells in the absence of calcium and was additive with calcium-evoked ACTH secretion up to a maximum value which could be achieved by calcium acting alone. This suggests that a GTP-binding protein mediates the secretory response to increases in the intracellular calcium.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
1. The ability of several phorbol ester protein kinase C (PKC) activators (phorbol 12, 13-dibutyrate, PDB; phorbol 12, 13-diacetate, PDA; and 12-deoxyphorbol 13-acetate, dPA) to down-regulate PKC was studied by assessing their effects on electrical stimulation-induced (S-I) noradrenaline release from rat brain cortical slices and phosphorylation of the PKC neural substrate B-50 in rat cortical synaptosomal membranes. 2. In cortical slices which were incubated for 20 h with vehicle, acute application of PDB, PDA and dPA (0.1 - 3.0 microM) enhanced the S-I noradrenaline release in a concentration-dependent manner to between 200 - 250% of control in each case. In slices incubated with PDB (1 microM for 20 h), subsequent acute application of PDB (0.1 - 3.0 microM) failed to enhance S-I release, indicating PKC down-regulation. However, in tissues incubated with PDA or dPA (3 microM) for 20 h, there was no reduction in the facilitatory effect of their respective phorbol esters or PDB (0.1 - 3.0 microM) when acutely applied, indicating that PKC was not down-regulated. This was confirmed using Western blot analysis which showed that PDB (1 microM for 20 h) but not PDA (3 microM for 20 h) caused a significant reduction in PKCalpha. 3. Incubation with PDB for 20 h, followed by acute application of PDB (3 microM) failed to increase phosphorylation of B-50 in synaptosomal membranes, indicating down-regulation. In contrast, tissues incubated with PDA or dPA for 20 h, acute application of their respective phorbol ester (10 microM) or PDB (3 microM) induced a significant increase in B-50 phosphorylation. 4. Acutely all three phorbol esters elevate noradrenaline release to about the same extent, yet PDA and dPA have lower affinities for PKC compared to PDB, suggesting unique neural effects for these agents. This inability to cause functional down-regulation of PKC extends their unusual neural properties. Their neural potency and lack of down-regulation may be related to their decreased lipophilicity compared to other phorbol esters. 5. We suggest that PKC down-regulation appears to be related to binding affinity, where agents with high affinity, irreversibly insert PKC into artificial membrane lipid and generate Ca(2+)-independent kinase activity which degrades and deplete PKC. We suggest that this mechanism may also underlie the ability of PDB to down-regulate PKC in nerve terminals, in contrast to PDA and dPA.  相似文献   

18.
Phorbol esters such as phorbol myristate acetate (PMA) and phorbol dibutyrate (PDBU) are generally considered to have similar effects through a similar mechanism, i.e. protein kinase C (PKC) activation. We recently suggested that this was not the case in human neutrophils. To identify further differences between the two phorbol esters, we compared their priming effects on fMet-Leu-Phe-induced superoxide anion (O2-) production, cytosolic PKC activity and binding of fMet-Leu-Phe. Priming could be initiated with a low (0.2 nM) concentration of both PDBU and PMA. Their effects on the pattern of fMet-Leu-Phe-induced superoxide production were similar in both Ca2(+)-containing and Ca2(+)-free medium. PDBU, like PMA, abolished the Ca2+ dependency of fMet-Leu-Phe-induced O2- production in a dose-dependent manner. In cytochalasin B-treated cells and in the presence of Ca2+, priming with PDBU or PMA did not alter the enhancing effect of cytochalasin B on fMet-Leu-Phe-induced O2- production. In Ca2(+)-free medium, priming abolished the Ca2+ dependency of fMet-Leu-Phe stimulation in cytochalasin B-treated cells. Cytochalasin B, however, enhanced the effect of PMA but not that of PDBU. Priming with PDBU was not associated under any experimental conditions with a decrease in cytosolic PKC activity, or an increase in PKM activity before or after fMet-Leu-Phe stimulation. Furthermore, priming effects were abolished by cell washing but not by H-7 or staurosporine, which are potent PKC inhibitors. PDBU, in contrast to PMA, increased fMet-Leu-Phe binding to PMNs through a decrease in the dissociation constant and induced degranulation of specific granules as measured by the release of vitamin B12 binding protein. These findings show that the priming effects of PDBU differ in certain respects from those of PMA, namely with regard to its synergism with cytochalasin B and the expression of fMet-Leu-Phe receptors. In addition, priming concentrations of PDBU, like PMA, did not alter cytosolic PKC activity in fMet-Leu-Phe-stimulated neutrophils.  相似文献   

19.
The aim of the research was to characterize muscarinic receptors of bovine ciliary muscle and to investigate the desensitization process. The role of protein kinase C was analyzed. The results show that muscarinic receptors of bovine ciliary muscle have the pharmacological characteristics of the M3 subtype. Acute exposure to phorbol esters (1 μM phorbol 12,13-dibutyrate, PDB, or 0.1 μM phorbol 12-myristate 13-acetate, PMA, for 15 and 5 min, respectively) resulted in antagonism of muscarinic receptor-mediated contraction. Long-term pretreatment (18 h) with PMA to down-regulate protein kinase C resulted in potentiation of carbachol-induced contraction, reduction of agonist-induced desensitization and loss of phorbol ester-induced desensitization. Staurosporine (3 μM) and H7 [1-(5-isoquinolinesulfonyl)-2-methyl-piperazine] (1 μM), protein kinase C inhibitors, produced a significant potentiation of the contractile effect of carbachol, reduced the desensitization produced by repeated addition of carbachol and suppressed that induced by phorbol esters. In vitro incubation with carbachol, PDB or PMA did not cause any modification of the binding of labeled [3H]quinuclidinyl benzilate. In vitro incubation with PDB and PMA produced, as expected, a significant translocation of protein kinase C from the cytosol to the membrane. The incubation of the ciliary muscle with carbachol, using the protocol of exposure that induced maximal desensitization of contractile responses, produced a significant redistribution of the enzyme from the cytosol to the membrane. These findings suggest that agonist-induced modulation of functional cholinergic sensitivity in ciliary muscle is correlated, at least partially, to the translocation of protein kinase C from the cytosol to the membrane. The desensitization by phorbol esters is completely due to protein kinase C activation; during the desensitization process, direct modification of the density and affinity of muscarinic receptors is not involved.  相似文献   

20.
Endplate preparations of the left rat hemidiaphragm were incubated with [3H]choline to label neuronal acetylcholine stores. Elevation of the concentration (13.5-135 mmol/l) of extracellular potassium chloride (KCl) stimulated the release of [3H]acetylcholine in a concentration-dependent manner. KCl (27 mmol/l) still caused a significant efflux of [3H]acetylcholine in a Ca(2+)-free medium. Inhibitors of cholinesterase (physostigmine, diisopropylfluorophosphate) suppressed by 80% this Ca(2+)-independent efflux of [3H]acetylcholine. Vesamicol (10 mumol/l), the blocker of the vesicular acetylcholine carrier, also suppressed the stimulated, Ca(2+)-independent efflux of [3H]acetylcholine. The inhibitory effect of physostigmine was not prevented by muscarine or nicotine receptor antagonists, but the inhibitory effect was lost when the stimulus strength was increased (81 mmol/l KCl). The present experiments showed cholinesterase inhibition to suppress a Ca(2+)-independent efflux of [3H]acetylcholine, probably by interference with a membrane-bound acetylcholine carrier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号