首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chondrocytes are known to dedifferentiate when cultured in monolayer culture, which may compromise the efficacy of cartilage repair systems in which cells are expanded by repeat passage in monolayer prior to implantation. We tested the hypothesis that repeat passage in alginate beads can provide sufficient expansion of cells, while producing cells with enhanced chondrocytic phenotype. Bovine articular chondrocytes were seeded in 2% alginate beads or in monolayer. 4 passages at 7-day intervals were performed. Values of 9.1 days for monolayer expansion and 12.5 days for alginate expansion were estimated for a 10-fold increase in cell number. For assessment of chondrocytic and fibroblastic phenotype, expanded cells were seeded in alginate beads or on glass coverslips and cultured for 7 days. On subsequent seeding in alginate, cells which had previously been subcultured in alginate showed higher levels of both DNA and GAG synthesis than cells passaged in monolayer. Furthermore, the alginate-passaged cells retained a chondrocytic phenotype, indicated by synthesis of type II collagen and chondroitin-6-sulphate, while cells passaged in monolayer synthesised type I collagen, indicating a fibroblastic phenotype. In conclusion, expansion of cells for autologous cartilage repair systems, using subculture within alginate beads, provides a potentially attractive alternative to monolayer expansion.  相似文献   

2.
Chondrocytes are known to dedifferentiate when cultured in monolayer culture, which may compromise the efficacy of cartilage repair systems in which cells are expanded by repeat passage in monolayer prior to implantation. We tested the hypothesis that repeat passage in alginate beads can provide sufficient expansion of cells, while producing cells with enhanced chondrocytic phenotype. Bovine articular chondrocytes were seeded in 2% alginate beads or in monolayer. 4 passages at 7-day intervals were performed. Values of 9.1 days for monolayer expansion and 12.5 days for alginate expansion were estimated for a 10-fold increase in cell number. For assessment of chondrocytic and fibroblastic phenotype, expanded cells were seeded in alginate beads or on glass coverslips and cultured for 7 days. On subsequent seeding in alginate, cells which had previously been subcultured in alginate showed higher levels of both DNA and GAG synthesis than cells passaged in monolayer. Furthermore, the alginate-passaged cells retained a chondrocytic phenotype, indicated by synthesis of type II collagen and chondroitin-6-sulphate, while cells passaged in monolayer synthesised type I collagen, indicating a fibroblastic phenotype. In conclusion, expansion of cells for autologous cartilage repair systems, using subculture within alginate beads, provides a potentially attractive alternative to monolayer expansion.  相似文献   

3.
Chondrocytes are known to dedifferentiate when cultured in monolayer culture, which may compromise the efficacy of cartilage repair systems in which cells are expanded by repeat passage in monolayer prior to implantation. We tested the hypothesis that repeat passage in alginate beads can provide sufficient expansion of cells, while producing cells with enhanced chondrocytic phenotype. Bovine articular chondrocytes were seeded in 2% alginate beads or in monolayer. 4 passages at 7-day intervals were performed. Values of 9.1 days for monolayer expansion and 12.5 days for alginate expansion were estimated for a 10-fold increase in cell number. For assessment of chondrocytic and fibroblastic phenotype, expanded cells were seeded in alginate beads or on glass coverslips and cultured for 7 days. On subsequent seeding in alginate, cells which had previously been subcultured in alginate showed higher levels of both DNA and GAG synthesis than cells passaged in monolayer. Furthermore, the alginate-passaged cells retained a chondrocytic phenotype, indicated by synthesis of type II collagen and chondroitin-6-sulphate, while cells passaged inmonolayer synthesised type I collagen, indicating a fibroblastic phenotype. In conclusion, expansion of cells for autologous cartilage repair systems, using subculture within alginate beads, provides a potentially attractive alternative to monolayer expansion.  相似文献   

4.
BACKGROUND: After serial passages in monolayer, chondrocytes dedifferentiate into a fibroblast-like phenotype. Our objective was to determine if culture in alginate affects the phenotype of dedifferentiated human nasal septal chondrocytes. STUDY DESIGN: Human nasal septal chondrocytes were seeded at low density and passaged in monolayer culture. At passages (P) 1, 2, and 3 a portion of cells were cultured in alginate. Collagen, glycosaminoglycan (GAG), and DNA production were assessed. RESULTS: Chondrocytes in alginate proliferated less yet produced higher levels of GAG and collagen than those in monolayer culture. Alginate encapsulated P1 chondrocytes stained strongly for GAG and collagen type II, and minimally for collagen type I. Monolayer cells at P0 and P1 stained positively for collagen type II. All monolayer passages stained positive for collagen type I with minimal GAG staining. CONCLUSIONS: Compared with monolayer culture, alginate stimulates deposition of GAG and collagen type II, and supports the chondrocyte phenotype through P1, but does not promote redifferentiation.  相似文献   

5.
Domm C  Fay J  Schünke M  Kurz B 《Der Orthop?de》2000,29(2):91-99
One of the goals in the field of tissue engineering is the development of artificial cartilage for the treatment of cartilage defects. Therefore autologous chondrocytes are seeded on different artificial matrices to test their possible use as implants (resorption, antigenicity, toxicity and their integration in the tissue). One of the main problems in these experiments is that usually the amount of available chondrocytes is too low for treating large-scale defects or for comparing different matrices. An in-vitro-multiplication of the cells is needed which causes the chondrocytes to dedifferentiate and become fibroblast-like. Therefore parameters which induce a redifferentiation are of great interest. The objective of this study was to determine the influence of intermittent hydrostatic pressure and low oxygen partial pressure on the redifferentiation of dedifferentiated bovine articular chondrocytes in monolayer and three-dimensional alginate bead culture. The redifferentiation process was monitored by immunocytochemical detection of newly synthesized collagen type II. The viability of the cells was determined by the trypanblue exclusion test. The chondrocytes were dedifferentiated by a two week culture in plastic flasks with an oxygen level of 20%. After this they were subcultured in monolayer or three-dimensional alginate culture and subjected to three different stimuli for three weeks in order to redifferentiate: 1.) 20% O2 (= 20.26 kPa PO2) + 5% CO2 + 75% N2; 2.) 5% O2 (= 5.07 kPa PO2) + 5% CO2 + 90% N2; 3.) 5% O2 (= 5.07 kPa PO2) + 5% CO2 + 90% N2 + 8 h/d of intermittent hydrostatic pressure (frequency: 3 bar absolute for 30 min and 1 bar absolute for 2 min). In the monolayer there was no detectable collagen type II found by immunocytochemistry under either of the three culture conditions. Therefore a redifferentiation of dedifferentiated chondrocytes was not possible in monolayer cultures with the tested parameters. In the three-dimensional alginate culture there was no immunocytochemical staining of collagen type II found in the beads cultured with 20% oxygen. With 5% oxygen we found a strong collagen type II-production by chondrocytes throughout the whole bead. The intermittent hydrostatic pressure combined with 5% oxygen lead to a decreased collagen type II-production compared to cells subjected to 5% oxygen only. Also chondrocytes closer to the edge of these beads were more often immunopositive and seemed to produce more immunoreactive collagen type II. The viability of the chondrocytes in the alginate culture was close to 90% after three weeks. Our experiments showed that oxygen partial pressure is an important parameter in the cultivation of articular chondrocytes. Reduced partial oxygen pressure promoted or induced the redifferentiation of dedifferentiated chondrocytes in alginate culture.  相似文献   

6.
Chondrocytes that were isolated from adult human articular cartilage changed phenotype during monolayer tissue culture, as characterized by a fibroblastic morphology and cellular proliferation. Increased proliferation was accompanied by downregulation of the cartilage-specific extracellular matrix proteoglycan, aggrecan, by cessation of type-II collagen expression, and by upregulation of type-I collagen and versican. This phenomenon observed in monolayer was reversible after the transfer of cells to a suspension culture system. The transfer of chondrocytes to suspension culture in alginate beads resulted in the rapid upregulation of aggrecan and type-II collagen and the downregulation of expression of versican and type-I collagen. Type-X collagen and osteopontin, markers of chondrocyte hypertrophy and commitment to endochondral ossification, were not expressed by adult articular chondrocytes cultured in alginate, even after 5 months. In contrast, type-X collagen was expressed within 2 weeks in a population of cells derived from a fetal growth plate. The inability of adult articular chondrocytes to express markers of chondrocyte hypertrophy has underscored the fundamental distinction between the differentiation pathways that lead to articular cartilage or to bone. Adult articular chondrocytes expressed only hyaline articular cartilage markers without evidence of hypertrophy.  相似文献   

7.
OBJECTIVE: To determine the influence of low oxygen tension on the redifferentiation and matrix production of dedifferentiated articular chondrocytes in monolayer and alginate bead culture. METHODS: Bovine articular chondrocytes were isolated enzymatically. After multiplication and dedifferentiation in a 2-week monolayer culture under 21% oxygen, the cells were subcultured in monolayer or alginate bead culture and subjected to 21% or 5% O(2)for 2 or 3 weeks in order to redifferentiate. Controls consisted of primary cultures in alginate. Matrix production was monitored immunocytochemically [collagen types I, II, IX, and GAGs (keratan sulfate, chondroitin-4- and -6-sulfate)] and collagen type II additionally assayed by Western blotting. Biosynthetic activity was measured by [(3)H]-proline incorporation and cell-viability by the trypan blue exclusion method. RESULTS: The cell number increased more than four-fold during dedifferentiation. Collagen type II was not produced by dedifferentiated chondrocytes under 5% or 21% oxygen in the monolayers or under 21% in alginate. However, dedifferentiated cells in alginate subjected to 5% oxygen exhibited a strong collagen type II expression indicating a redifferentiation. Additionally, collagen type IX and GAGs were also higher and [(3)H]-proline incorporation increased significantly. Primary cultures in alginate displayed a stronger collagen type II expression under 5% but no significant differences for other extracellular matrix components, or [(3)H]-proline incorporation. Viability was approximately 90% for all alginate cultures. CONCLUSION: A combination of alginate and high oxygen tension might not be suitable for redifferentiation or culturing of dedifferentiated chondrocytes. However, low oxygen tension promotes or induces a redifferentiation of dedifferentiated cells in alginate, stimulates their biosynthetic activity, and increases collagen type II production in primary alginate cultures.  相似文献   

8.
兔关节软骨细胞聚集培养的生物学性状观察   总被引:6,自引:0,他引:6  
Yu FY  Lu SB  Cui XM  Zhao B  Xu WJ  Yuan M  Sun MX  Zhang WT  Huang JX 《中华外科杂志》2006,44(12):848-851
目的 观察聚集培养软骨细胞生物学性状的变化,为软骨细胞移植建立合适的体外培养方法。方法2001年11月至2004年6月酶消化法分离成年兔关节软骨细胞,分别低密度单层培养和高密度聚集培养,组化及免疫组化法观察细胞表型变化。结果低密度培养时,前3代细胞增殖迅速,但很快去分化,3代以后增殖缓慢,细胞表型大部丢失;聚集培养时,软骨细胞去分化速度减缓;传3代后细胞聚集培养,细胞表型部分恢复。结论聚集培养利于维持软骨细胞表型,原代细胞聚集培养或传代培养后聚集培养是较好的获取大量优良软骨细胞的培养方式。  相似文献   

9.
Autologous chondrocyte implantation (ACI) relies on the implantation of in vitro expanded cells. The aim was to study the dedifferentiation of human articular chondrocytes under different cultivating conditions [days 0–10 in the primary culture (P0); passages in a monolayer from P0 to P3; monolayer vs. alginate and monolayer vs. alginate/agarose hydrogels] using real‐time PCR analysis. The relative gene expressions for collagen type I and II, aggrecan and versican were quantified and the corresponding differentiation indexes (Col2/Col1, Agr/Ver) were calculated. The values of both differentiation indexes decreased exponentially with time in the P0 monolayer culture, and continued with a significant decrease over the subsequent monolayer passages. On the contrary, the chondrocytes seeded in either of the hydrogels significantly increased the indexes compared to their parallel monolayer cultures. These results indicate that alginate and alginate/agarose hydrogels offer an appropriate environment for human articular chondrocytes to redifferentiate after being expanded in vitro. Therefore the three‐dimensional (3D) hydrogel chondrocyte cultures present not only surgical, but also biological advantage over the classic suspension–periosteum chondrocyte implantation. © 2008 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 26:847–853, 2008  相似文献   

10.
去分化关节软骨细胞生物反应器培养反分化的实验研究   总被引:2,自引:0,他引:2  
目的 观察体外经传代培养去分化的成人关节软骨细胞,在生物反应器培养后生物学性状的变化,探索去分化软骨细胞反分化的手段,为软骨细胞移植修复关节软骨缺损建立合适的体外培养方法。方法 无菌条件下取成人关节软骨组织,Ⅱ型胶原酶消化法(0.2%,37C,3h)分离软骨细胞,分成两组:一组常规单层传代培养,另一组添加重组人的生长因子(1ng/ml转化生长因子β1+5ng/ml成纤维细胞生长因子2)体外培养传代大量扩增后,无微载体生物反应器内培养3周。血小板计数器行细胞计数,计算各代细胞倍增时间;细胞爬片和石蜡、冰冻切片进行HE、蕃红O、阿利新蓝染色,Ⅰ、Ⅱ型胶原和aggrecan免疫组织化学检测,观察细胞表型变化。结果 成人关节软骨细胞体外培养3代后迅速去分化,增殖缓慢。添加生长因子培养细胞去分化速度减缓;传10代,细胞扩增2000倍以上,部分去分化,但细胞扩增增殖能力仍很强;传20代软骨细胞表型基本丢失,但仍有增殖能力;置于生物反应器继续培养3周,细胞番红O染色强阳性、aggrecan和Ⅱ型胶原阳性,Ⅰ型胶原阴性,表型恢复良好。结论 软骨细胞在体外大量扩增后,在生物反应器培养,可恢复其表型,可望用于在体外培养时去分化软骨细胞的再分化。  相似文献   

11.
离心管培养软骨作为半月板移植替代物的可能性研究   总被引:2,自引:1,他引:1  
目的比较培养关节软骨和半月板软骨细胞的生物学特性,探讨培养软骨作为半月板移植替代物的可能性. 方法分别自3周龄大耳白兔关节软骨和半月板分离软骨细胞,行单层传代培养和离心管培养.将离心管培养形成的软骨和6周龄兔半月板行组织学和透射电镜观察,比较关节软骨细胞和半月板纤维软骨细胞的生长曲线.流式细胞术检测第2、4代关节软骨细胞和半月板纤维软骨细胞周期. 结果第4代关节软骨细胞呈去分化,似成纤维细胞.离心管关节软骨细胞培养能形成软骨,半月板纤维软骨细胞不能形成软骨.培养软骨和半月板的组织学及超微结构差异显著,培养软骨中软骨细胞5%呈现凋亡.第2、4代关节软骨细胞中亚二倍体细胞比例明显多于第2、4代半月板纤维软骨细胞(P<0.05). 结论半月板来源的软骨细胞经离心管培养不能形成软骨组织,关节软骨细胞离心培养形成软骨不能作为半月板的移植物,关节软骨和半月板软骨组织存在明显的区别.  相似文献   

12.
13.
Recent studies have demonstrated that human articular chondrocytes can express the gene for a contractile muscle actin, alpha-smooth muscle actin (SMA), in situ. One objective of this work was to evaluate the SMA-content of isolated human articular chondrocytes using Western blot analysis and to correlate the amount of SMA in the cells with passage number and the number of days in culture. A second objective was to determine if articular cartilage-derived cells expressing the gene for SMA in vitro also continue to express type II collagen. A final aim of the current study was to determine if SMA-containing cartilage-derived cells were capable of contracting a collagen glycosaminoglycan analog of extracellular matrix in vitro. Articular chondrocytes were isolated from 13 patients undergoing total joint arthroplasty. Cells were serially passaged through passage 7. Samples were allocated for Western blot analysis of SMA. Cells in monolayer culture were also stained immunohistochemically for SMA and type II collagen. Cells from passage 3 and 7 were seeded into a porous type I collagen-glycosaminoglycan matrix and the diameter of the scaffolds measured every other day for 21 days. Immunohistochemistry of the articular cartilage samples revealed SMA in the articular chondrocytes in situ with a greater percentage of cells staining positive in the superficial half (60 +/- 1.2%; mean +/- SEM) of the cartilage than in the basal half (28 +/- 1.3%). There was an increasing amount of SMA in the cells in monolayer culture with passage number and a meaningful correlation of the SMA content with the days in culture (linear regression analysis; R2 = 0.72). Double staining for SMA and type II collagen showed that type II collagen-expressing cells in monolayer could also express SMA. SMA-containing cells were found to contract the collagen glycosaminoglycan matrix, with the cells containing more SMA (passage 7 cells) displaying more matrix contraction than those with a lesser amount of SMA (passage 3 cells). The results indicate that control of the expression of SMA may be important when employing articular chondrocytes, expanded in monolayer culture, for implantation alone or in a cell-seeded matrix for cartilage repair procedures.  相似文献   

14.
Dedifferentiated human articular chondrocytes exhibited a wide variation in their capacity to proliferate and redifferentiate in an alginate suspension culture system. The greatest extent of proliferation and redifferentiation was seen to be dependent on the formation of clonal populations of chondrocytes and correlated inversely with the initial cell seeding density. Redifferentiating chondrocytes seeded at low density (1 x 10(4) cells/ml alginate) compared with chondrocytes that were seeded at high density (1 x 10(6) cells/ml alginate) showed a nearly 3-fold higher median increase in cell number. a 19-fold greater level of type-II collagen mRNA expression, a 4-fold greater level of aggrecan mRNA expression, and a 6-fold greater level of sulfated glycosaminoglycan deposition at 4 weeks of culture. Matrix molecules from low-density cultures were assembled into chondrocyte-encapsulated, spherical extracellular matrices that were readily visualized in sections from 12-week cultures stained with antibodies against types I and II collagen and aggrecan. Ultrastructural analysis of 12-week low-density cultures confirmed the presence of thin collagen fibrils throughout the matrix.  相似文献   

15.
OBJECTIVES: Cartilage grafts for reconstructive surgery may someday be created from harvested autologous chondrocytes that are expanded and seeded onto biodegradable scaffolds in vitro. This study sought to quantify the biochemical composition of neocartilage engineered from human septal chondrocytes and to examine the effects of cell multiplication in monolayer culture on the ultimate composition of the neocartilage. METHODS: Human septal chondrocytes from 10 donors were either seeded immediately after harvest (passage 0 [P(0)]) onto polyglycolic acid (PGA) scaffolds or underwent multiplication in monolayer culture before scaffold seeding at passage 1 (P(1)) and passage 2 (P(2)). Cell/scaffold constructs were grown in vitro for 7, 14, and 28 days. Neocartilage constructs underwent histologic analysis for matrix sulfated glycosaminoglycan (S-GAG) and type II collagen as well as quantitative assessment of cellularity (Hoescht 33258 assay), S-GAG content (dimethylmethylene blue assay), and collagen content (hydroxyproline assay). RESULTS: Histologic sections of constructs seeded with P(0) cells stained strongly for S-GAG and type II collagen, whereas decreased staining for both matrix components was observed in constructs derived from P(1) and P(2) cells. Cellularity, S-GAG content, and total collagen content of constructs increased significantly from day 7 to day 28. S-GAG accumulation in P(0) constructs was higher than in either P(1) (P < 0.05) or P(2) (P < 0.01) constructs, whereas cellularity and total collagen content showed no difference between passages. CONCLUSION: Neocartilage created from chondrocytes that have undergone serial passages in monolayer culture exhibited decreased matrix S-GAG and type II collagen, indicative of cellular dedifferentiation. SIGNIFICANCE: The alterations of matrix composition produced by dedifferentiated chondrocytes may limit the mechanical stability of neocartilage constructs.  相似文献   

16.
This article describes the modulation, by extracellular collagen, of DNA and proteoglycan synthesis in articular chondrocytes stimulated with transforming growth factor-β1, Type-I and type-II collagen, heat denatured type-II collagen, and bovine serum albumin were each incorporated into alginate in increasing concentrations. Bovine articular chondrocytes were isolated and were resuspended in the alginate, yielding alginate beads with final extracellular protein concentrations of 0-1.5% (wt/vol) for the collagens and 0-2.5% (wt/vol) for bovine serum albumin. Cultures of beads were maintained for 7 days in basal Dulbecco's modified Eagle medium or in medium supplemented with 10 ng/ml transforming growth factor-β1. Subsequently, the synthesis of DNA and proteoglycan was measured by radiolabel-incorporation methods with [35S]sulfate and [3H]thymidine, and the values were normalized to the DNA content. Transforming growth factor-β1 stimulated the synthesis of both DNA and proteoglycan in a bimodal fashion. The presence of extracellular type-II collagen increased the rate of DNA and proteoglycan synthesis in a dose-dependent fashion in cultures stimulated by transforming growth factor-β1, whereas heat-inactivated type-II collagen abrogated the effects observed with type-II collagen for synthesis of both DNA and proteoglycan. In contrast, the presence of extracellular type-I collagen caused a dose-dependent inhibition of synthesis of both DNA and proteoglycan in cultures stimulated with transforming growth factor-β1. Extracellular bovine serum albumin brought about a limited increase in synthesis rates, presumably by blocking nonspecific cytokine binding. These results suggest that type-II collagen has a specific role in chondrocyte regulation and serves to mediate the response of chondrocytes to transforming growth factor-β1.  相似文献   

17.
During monolayer culture, articular chondrocytes dedifferentiate into fibroblast‐like cells. The mechanisms underlying this process are poorly understood. We sought to further characterize dedifferentiation by identifying an extended panel of genes that distinguish articular cartilage from dedifferentiated chondrocytes. Thirty‐nine candidate marker‐genes were identified from previous studies on articular‐cartilage gene‐expression. Real‐time PCR was used to evaluate the mRNA levels for these candidates in calf articular cartilage and dedifferentiated articular chondrocytes. Twenty‐two of the candidate marker genes exhibited at least a two‐fold difference in gene expression in the two cell types. Twelve of these genes had at least a ten‐fold difference in gene expression. Tenascin C (TNC), type I collagen (COL1A1), and hypoxia‐inducible factor 1 alpha (HIF1α) showed the highest relative expression levels in dedifferentiated chonodrocytes. Type II collagen (COL2A1), type XI collagen (COL11A2), and superficial zone protein (SZP) showed the highest relative expression levels in articular cartilage. In contrast to previous findings, fibromodulin mRNA, and protein levels were higher in dedifferentiated chondrocytes. Compared to smaller subsets of markers, this panel of 12 highly differentially expressed genes may more precisely distinguish articular cartilage from dedifferentiated chondrocytes. Since many of the genes up‐regulated in dedifferentiated chondrocytes are also expressed during cartilage development, dedifferentiated chondrocytes may possess features of cartilage precursor cells. © 2011 Orthopaedic Research Society Published by Wiley Periodicals, Inc. J Orthop Res 30:234–245, 2012  相似文献   

18.
19.
OBJECTIVE: For autologous chondrocyte transplantation (ACT) chondrocytes are expanded in vitro. During expansion these cells may dedifferentiate. This change in phenotype is characterized by a raised expression of type I collagen and a decrease in type II collagen expression. Since high expression of type II collagen is of central importance for the properties of hyaline cartilage, we investigated if the growth factor bone morphogenetic protein-2 (BMP-2) may modulate the chondrogenic phenotype in monolayer cell cultures and in three-dimensional culture systems. DESIGN: Chondrocytes from articular knee cartilage of 11 individuals (average age: 39.8 years) with no history of joint disease were isolated and seeded either in monolayer cultures or embedded in alginate beads in presence or absence of human recombinant BMP-2 (hr-BMP-2). Then, cells were harvested and analysis of the chondrogenic phenotype was performed using quantitative RT-PCR, immunocytochemistry and ELISA. RESULTS: Addition of BMP-2 to chondrocytes expanded in two-dimensional (2D) cultures during the first subculture (P1) had no effect on mRNA amounts encoding type II collagen and interleukin-1beta (IL-1beta). In contrast, seeding chondrocytes in three-dimensional (3D) alginate cultures raised type II collagen expression significantly and addition of BMP-2 enhanced this effect. CONCLUSIONS: We conclude that chondrocytes during expansion for ACT may benefit from BMP-2 activation only when seeded in an appropriate 3D culture system.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号