首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Long-term synaptic modification depends on the relative timing of individual pre- and postsynaptic spikes, but the rules governing the effects of multispike bursts remain to be fully understood. In particular, some studies suggest that the spike timing dependence of synaptic modification breaks down with high-frequency bursts. In this study, we characterized the effects of pre- and postsynaptic bursts on long-term modification of layer 2/3 synapses in visual cortical slices from young rats. We found that, while pairing-induced synaptic modification depends on the burst frequency, this dependence can be explained in terms of the timing of individual pre- and postsynaptic spikes. Later spikes in each burst are less effective in synaptic modification, but spike efficacy is regulated differently in pre- and postsynaptic bursts. Presynaptically, spike efficacy is progressively weakened, in parallel with short-term synaptic depression. Postsynaptically, spike efficacy is suppressed to a lesser extent, and it depends on postsynaptic potassium channel activation. Such timing-dependent interaction among multiple spikes can account for synaptic modifications induced by a variety of spike trains, including the frequency-dependent transition from depression to potentiation induced by a postsynaptic burst preceding a presynaptic burst.  相似文献   

2.
Synaptic transmission in the neocortex is dynamic, such that the magnitude of the postsynaptic response changes with the history of the presynaptic activity. Therefore each response carries information about the temporal structure of the preceding presynaptic input spike train. We quantitatively analyze the information about previous interspike intervals, contained in single responses of dynamic synapses, using methods from information theory applied to experimentally based deterministic and probabilistic phenomenological models of depressing and facilitating synapses. We show that for any given dynamic synapse, there exists an optimal frequency of presynaptic spike firing for which the information content is maximal; simple relations between this optimal frequency and the synaptic parameters are derived. Depressing neocortical synapses are optimized for coding temporal information at low firing rates of 0.5-5 Hz, typical to the spontaneous activity of cortical neurons, and carry significant information about the timing of up to four preceding presynaptic spikes. Facilitating synapses, however, are optimized to code information at higher presynaptic rates of 9-70 Hz and can represent the timing of over eight presynaptic spikes.  相似文献   

3.
Gerber G  Zhong J  Youn D  Randic M 《Neuroscience》2000,100(2):393-406
The effects of group II and group III metabotropic glutamate receptor agonists on synaptic responses evoked by primary afferent stimulation in the dorsal horn, but mostly substantia gelatinosa, neurons were studied in the spinal cord slice preparation using conventional intracellular recording technique. Bath application of a potent metabotropic glutamate receptor 2- and 3-selective agonist (2S,1'R,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl) glycine reversibly suppressed monosynaptic and polysynaptic excitatory postsynaptic potentials evoked by A primary afferent fibers stimulation, the effect likely mediated by mGlu3 receptor subtype. This suppressing effect of (2S,1'R,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl) glycine on primary afferent neurotransmission was dose dependent and reduced by (S)-alpha-ethylglutamate, a group II metabotropic glutamate receptor antagonist. (2S,1'R,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl) glycine suppressed excitatory postsynaptic potentials without inducing detectable changes of postsynaptic membrane potential and neuronal input resistance in dorsal horn neurons. The paired-pulse depression at excitatory synapses between primary afferent fibers and dorsal horn neurons was reduced by (2S,1'R,2'R,3'R)-2-(2', 3'-dicarboxycyclopropyl) glycine application, suggesting a presynaptic site of action. The selective group III metabotropic glutamate receptor agonist (S)-2-amino-4-phosphonobutanoate also depressed A afferent fibers-evoked monosynaptic and polysynaptic excitatory postsynaptic potentials in a dose-dependent and reversible manner. The concentration-dependence of (S)-2-amino-4-phosphonobutanoate-mediated depression was most consistent with activation of mGlu receptor subtypes 4 and 7. However, on the basis of anatomical distribution of mGlu 4 and 7 subtypes, it is also possible that the (S)-2-amino-4-phosphonobatanoate effect is due to interaction with mGlu 7 receptor alone. (RS)-alpha-cyclopropyl-4-phosphonophenylglycine a preferential antagonist at group III metabotropic glutamate receptors, completely reversed the depressant effects of (S)-2-amino-4-phosphonobutanoate on both monosynaptic and polysynaptic responses. (S)-2-amino-4-phosphonobutanoate reduced the paired-pulse depression at excitatory synapses between primary afferent fibers and dorsal horn neurons, but did not alter their postsynaptic membrane potential and input resistance. A clear facilitation of the (S)-2-amino-4-phosphonobutanoate-induced depression of monosynaptic and polysynaptic excitatory postsynaptic potentials in the absence of gamma-aminobutyric acid-subtype A receptor- and glycine-mediated synaptic inhibition was shown. Besides the depressant effect on excitatory synaptic transmission, inhibitory actions of group II and III metabotropic glutamate receptor agonists on the inhibitory postsynaptic potentials evoked by primary afferent stimulation in dorsal horn neurons were observed.These results suggest that group II and group III metabotropic glutamate receptors are expressed at primary afferent synapses in the dorsal horn region, and activation of the receptors suppresses synaptic transmission by an action on the presynaptic site.  相似文献   

4.
In central neurons, the summation of inputs from presynaptic cells combined with the unreliability of synaptic transmission produces incessant variations of the membrane potential termed synaptic noise (SN). These fluctuations, which depend on both the unpredictable timing of afferent activities and quantal variations of postsynaptic potentials, have defied conventional analysis. We show here that, when applied to SN recorded from the Mauthner (M) cell of teleosts, a simple method of nonlinear analysis reveals previously undetected features of this signal including hidden periodic components. The phase relationship between these components is compatible with the notion that the temporal organization of events comprising this noise is deterministic rather than random and that it is generated by presynaptic interneurons behaving as coupled periodic oscillators. Furthermore a model of the presynaptic network shows how SN is shaped both by activities in incoming inputs and by the distribution of their synaptic weights expressed as mean quantal contents of the activated synapses. In confirmation we found experimentally that long-term tetanic potentiation (LTP), which selectively increases some of these synaptic weights, permits oscillating temporal patterns to be transmitted more effectively to the postsynaptic cell. Thus the probabilistic nature of transmitter release, which governs the strength of synapses, may be critical for the transfer of complex timing information within neuronal assemblies.  相似文献   

5.
To clarify the circuitry through which opioid compounds modulate spinal and trigeminal nociceptive transmission, we have examined the synaptic associations formed by leucine-enkephalin-containing (enkephalin) neurons in the superficial dorsal horn of the cat. As described previously, punctate enkephalin immunoreactivity is concentrated in the marginal layer (lamina I) and in both the outer and inner layers of the substantia gelatinosa (lamina IIo and IIi). In colchicine treated cats, enkephalin perikarya are most numerous in lamina I and at the border between laminae I and II. Ultrastructural analysis reveals that enkephalin cells receive a diverse afferent input. The majority of afferent inputs are presynaptic to the enkephalin dendrites; few axosomatic synapses are seen. Among these presynaptic axonal profiles are unlabeled axons which resemble primary afferent terminals, including the characteristic central axonal varicosity. Enkephalin dendrites are also postsynaptic to enkephalin immunoreactive axons. Two types of enkephalin axonal profiles appear in the superficial dorsal horn. Class I profiles are only found in lamina I. These are large profiles which form few synapses; those synapses made are axodendritic. Class II enkephalin axons are smaller and are distributed in both layers I and II. While Class II axons most commonly form axo-dendritic synapses, they also form axo-axonic synapses with flat vesicle-containing profiles; the latter are generally presynaptic to the enkephalin terminals. Serial analysis further revealed that both the enkephalin and the flat vesicle-containing profile synapse onto a common dendrite. Although enkephalin axons frequently lie adjacent to round vesicle-containing profiles, anatomical evidence that opioid axons form synapses with this type of ending was not found. An additional type of enkephalin vesicle containing-profile is found in layer IIi; its morphological features do not clearly distinguish its axonal or dendritic origin. These endings are typically postsynaptic to unlabelled central endings, and provide minimal presynaptic input to other elements in the neuropil. Like some class II axons, these labelled profiles contain vesicles which cluster at the membrane immediately adjacent to unlabelled central axons. These results indicate that spinal enkephalin neurons receive a variety of synaptic inputs. These include inputs which may derive from primary afferent axons. Enkephalin neurons, in turn, influence nociceptive transmission predominantly through postsynaptic mechanisms. Finally, while we did not observe enkephalin terminals presynaptic in an axoaxonic relationship, the possibility that enkephalin neurons modulate the excitability of fine fiber nociceptive and nonnociceptive afferents via "nonsynaptic interactions" is discussed.  相似文献   

6.
Long-term potentiation (LTP) is a synaptic change supposed to provide the cellular basis for learning and memory in brain neuronal circuits. Although specific LTP expression mechanisms could be critical to determine the dynamics of repetitive neurotransmission, this important issue remained largely unexplored. In this paper, we have performed whole cell patch-clamp recordings of mossy fiber-granule cell LTP in acute rat cerebellar slices and studied its computational implications with a mathematical model. During LTP, stimulation with short impulse trains at 100 Hz revealed earlier initiation of granule cell spike bursts and a smaller nonsignificant spike frequency increase. In voltage-clamp recordings, short AMPA excitatory postsynaptic current (EPSC) trains showed short-term facilitation and depression and a sustained component probably generated by spillover. During LTP, facilitation disappeared, depression accelerated, and the sustained current increased. The N-methyl-d-aspartate (NMDA) current also increased. In agreement with a presynaptic expression caused by increased release probability, similar changes were observed by raising extracellular [Ca(2+)]. A mathematical model of mossy fiber-granule cell neurotransmission showed that increasing release probability efficiently modulated the first-spike delay. Glutamate spillover, by causing tonic NMDA and AMPA receptor activation, accelerated excitatory postsynaptic potential (EPSP) temporal summation and maintained a sustained spike discharge. The effect of increasing neurotransmitter release could not be replicated by increasing receptor conductance, which, like postsynaptic manipulations enhancing intrinsic excitability, proved very effective in raising granule cell output frequency. Independent regulation of spike burst initiation and frequency during LTP may provide mechanisms for temporal recoding and gain control of afferent signals at the input stage of cerebellar cortex.  相似文献   

7.
Many types of neurons can release endocannabinoids that act as retrograde signals to inhibit neurotransmitter release from presynaptic terminals. Little is known, however, about the properties or role of such inhibition under physiological conditions. Here we report that brief bursts of presynaptic activity evoked endocannabinoid release, which strongly inhibited parallel fiber-to-Purkinje cell synapses in rat cerebellar slices. This retrograde inhibition was triggered by activation of either postsynaptic metabotropic or ionotropic glutamate receptors and was restricted to synapses activated with high-frequency bursts. Thus, endocannabinoids allow neurons to inhibit specific synaptic inputs in response to a burst, thereby dynamically fine-tuning the properties of synaptic integration.  相似文献   

8.
The nature of the synaptic connection from the auditory nerve onto the cochlear nucleus neurons has a profound impact on how sound information is transmitted. Short-term synaptic plasticity, by dynamically modulating synaptic strength, filters information contained in the firing patterns. In the sound-localization circuits of the brain stem, the synapses of the timing pathway are characterized by strong short-term depression. We investigated the short-term synaptic plasticity of the inputs to the bird's cochlear nucleus angularis (NA), which encodes intensity information, by using chick embryonic brain slices and trains of electrical stimulation. These excitatory inputs expressed a mixture of short-term facilitation and depression, unlike those in the timing nuclei that only depressed. Facilitation and depression at NA synapses were balanced such that postsynaptic response amplitude was often maintained throughout the train at high firing rates (>100 Hz). The steady-state input rate relationship of the balanced synapses linearly conveyed rate information and therefore transmits intensity information encoded as a rate code in the nerve. A quantitative model of synaptic transmission could account for the plasticity by including facilitation of release (with a time constant of approximately 40 ms), and a two-step recovery from depression (with one slow time constant of approximately 8 s, and one fast time constant of approximately 20 ms). A simulation using the model fit to NA synapses and auditory nerve spike trains from recordings in vivo confirmed that these synapses can convey intensity information contained in natural train inputs.  相似文献   

9.
The 5-HT-induced synaptic plasticity of Aplysia sensorimotor synapses has typically been probed by firing a single presynaptic spike. In this study, 5-HT-induced synaptic plasticity was probed with brief bursts of spikes (10 Hz, 1 s), which are more behaviorally relevant stimuli. Because such bursts provide a greater challenge to the release machinery than single spikes, their use may reveal additional aspects of synaptic modulation, and, in particular, the role of extracellular signal-regulated protein kinase (ERK), which has recently been implicated in several examples of short- and long-term synaptic plasticity. Excitatory postsynaptic currents (EPSCs) were characterized by their amplitudes. In addition, two kinetic measurements, time to peak and decay time constant, were determined for the initial and last EPSCs of each burst. Application of 5-HT produced a uniform increase in gain by facilitating each EPSC elicited during a burst of spikes without affecting the kinetics of the initial or last EPSC. These data suggest that short-term facilitation during a burst is mediated largely by processes such as those that affect the size of the releasable pool or rate of vesicle mobilization rather than by an increase in the duration of the presynaptic action potential. An ERK cascade inhibitor (U0126) had no effect on the 5-HT-mediated facilitation of either the initial EPSC or EPSCs elicited late in the burst.  相似文献   

10.
We provide a functional measure, the synaptic information efficacy (SIE), to assess the impact of synaptic input on spike output. SIE is the mutual information shared by the presynaptic input and postsynaptic output spike trains. To estimate SIE we used a method based on compression algorithms. This method detects the effect of a single synaptic input on the postsynaptic spike output in the presence of massive background synaptic activity in neuron models of progressively increasing realism. SIE increased with increases either in time locking between the input synapse activity and the output spike or in the average number of output spikes. SIE depended on the context in which the synapse operates. We also measured SIE experimentally. Systematic exploration of the effect of synaptic and dendritic parameters on the SIE offers a fresh look at the synapse as a communication device and a quantitative measure of how much the dendritic synapse informs the axon.  相似文献   

11.
High-frequency activity produces transient depression at many synapses but also, as recently demonstrated, may accelerate the recovery from use-dependent depression. We have examined the possible consequences of this synaptic mechanism in neocortical excitatory synapses by recording simultaneously from presynaptic pyramidal neurons and their postsynaptic targets. Brief bursts of high-frequency spikes produced a strong depression of the amplitude of unitary excitatory postsynaptic currents (uEPSCs). However, when burst firing was combined with low-frequency ongoing activity, we found that the strong synaptic depression was followed by a transient rebound of synaptic strength. This rebound overshot the low-frequency baseline values and lasted 1-2 s. These results suggest that in the presence of ongoing activity, neocortical synapses may functionally facilitate following burst firing.  相似文献   

12.
In order to evaluate quantitatively the effects of an inhalation anaesthetic on neuronal excitability and on synaptic transmission in the central nervous system, we have examined the action of isoflurane on slices from rat hippocampal cortex. Isoflurane 1.5% (1.38% anaesthetize 50% of tested rats (MAC)) reduced orthodromically evoked activity in pyramidal cells by 62%. This was due to the combined effects on afferent fibres, excitatory synapses and pyramidal cells. The effect on the postsynaptic neurones was almost as strong as the effect on the excitatory synapses: the population spike evoked by a given synaptic current was reduced by 24%, and the field-EPSP in response to a given afferent fibre volley by 27%. The presynaptic fibre volley was reduced by 17%.  相似文献   

13.
The arborizations and synaptic relationships of intra-axonally stained horseradish peroxidase- (HRP) labeled primary afferent fibers to the dorsal horn of the cat and monkey spinal cord have been studied by light and electron microscopic methods. The light microscopic arborizations of the afferent fiber types (hair follicle afferents, pacinian corpuscle afferents, type I and type II slowly adapting afferents) are similar to those described by Brown and his colleagues (1) in the cat. The synaptic profiles formed by labeled afferents contain rounded synaptic vesicles. In serial thin sections, it was found that single dorsal root axons may make hundreds or thousands of synapses with neuronal structures of the dorsal horn. The vast majority of synaptic contacts are on the dendritic trees of dorsal horn neurons. The synapses made by these low-threshold afferent axons are almost all in the deeper laminae (III-VI) of the dorsal horn. The hair follicle afferent axons and the pacinian corpuscle afferents have numerous vesicle-containing structures that synapse on them to form either axoaxonal synapses or dendroaxonal synapses. The slowly adapting afferent axons are less often found to be postsynaptic to axons or dendrites. It is concluded that different physiological classes of primary afferent axons have different morphological characteristics, both at the light and electron microscopic level.  相似文献   

14.
The mammalian hippocampus, together with subcortical and cortical areas, is responsible for some forms of learning and memory. Proper hippocampal function depends on the highly dynamic nature of its circuitry, including the ability of synapses to change their strength for brief to long periods of time. In this study, we focused on a transient depression of glutamatergic synaptic transmission at Schaffer collateral synapses in acute hippocampal slices. The depression of evoked excitatory postsynaptic current (EPSC) amplitudes, herein called transient depression, follows brief trains of synaptic stimulation in stratum radiatum of CA1 and lasts for 2-3 min. Depression results from a decrease in presynaptic glutamate release, as NMDA-receptor-mediated EPSCs and composite EPSCs are depressed similarly and depression is accompanied by an increase in the paired-pulse ratio. Transient depression is prevented by blockade of metabotropic glutamate and acetylcholine receptors, presumably located presynaptically. These two receptor types--acting together--cause depression. Blockade of a single receptor type necessitates significantly stronger conditioning trains for triggering depression. Addition of an acetylcholinesterase inhibitor enables depression from previously insufficient conditioning trains. Furthermore, a strong coincident, but not causal, relationship existed between presynaptic depression and postsynaptic internal Ca(2+) release, emphasizing the potential importance of functional interactions between presynaptic and postsynaptic effects of convergent cholinergic and glutamatergic inputs to CA1. These convergent afferents, one intrinsic to the hippocampus and the other likely originating in the medial septum, may regulate CA1 network activity, the induction of long-term synaptic plasticity, and ultimately hippocampal function.  相似文献   

15.
Immunocytochemical studies were carried out on the morphological relation between primary afferent central terminals (C-terminals) and GABAergic neurons in the mouse superficial dorsal horn. The superficial dorsal horn is composed of many synaptic glomeruli comprising two types: Type I with centrally located CI-terminals surrounded by several dendrites and few axonal endings, and Type II with centrally located CII-terminals surrounded by several dendrites and a few axonal endings. The CI-terminals are sinuous or scalloped with densely packed agranular synaptic vesicles, a few granular synaptic vesicles and mitochondria, and show an electron dense axoplasm, whereas the CII-terminals are large and round or rectangular with evenly distributed agranular synaptic vesicles, a number of granular synaptic vesicles and mitochondria, and show an electron opaque axoplasm. The immunoreaction of GABA was remarkable in the superficial laminae of the dorsal horn. Many interneuronal somata in the substantia gelatinosa showed GABAergic immunoreactivity. The immunoreaction was seen in the entire GABAergic neuroplasm, but not in the nucleus and its envelope. Most GABAergic features appeared as dendrites making postsynaptic contact with CI- or CII-terminals; i.e., numerous C-terminals made presynaptic contact with GABAergic dendrites. GABA immunoreactivity was seen over round synaptic vesicles and mitochondrial membranes. A few CII-terminals made presynaptic contact with GABAergic interneuronal somata. Previous physiological and anatomical studies have suggested that not only the cutaneous nociceptive primary afferent C-terminals but also mechanoreceptive primary afferent C-terminals make presynaptic contact with the GABAergic dendrites, boutons and soma. The presynaptic relation of these primary afferents with GABAergic neurons seems to provide morphological support for the essential feature of the gate control theory: primary afferent fibers may play a part in the modulation of nociceptive information via GABAergic neurons in the superficial dorsal horn. Small GABAergic terminals were found to make contact with blood capillaries suggesting the release of GABA into circulation.  相似文献   

16.
Directional selectivity, in which neurons respond strongly to an object moving in a given direction ("preferred") but respond weakly or not at all to an object moving in the opposite direction ("null"), is a critical computation achieved in brain circuits. Previous measures of direction selectivity have compared the numbers of action potentials elicited by each direction of movement, but most sensory neurons display patterning, such as bursting, in their spike trains. To examine the contribution of patterned responses to direction selectivity, we recorded from midbrain neurons in weakly electric fish and found that most neurons responded with a combination of both bursts and isolated spikes to moving object stimuli. In these neurons, we separated bursts and isolated spikes using an interspike interval (ISI) threshold. The directional bias of bursts was significantly higher than that of either the full spike train or the isolated spike train. To examine the encoding and decoding of bursts, we built biologically plausible models that examine 1) the upstream mechanisms that generate these spiking patterns and 2) downstream decoders of bursts. Our model of upstream mechanisms uses an interaction between afferent input and subthreshold calcium channels to give rise to burst firing that occurs preferentially for one direction of movement. We tested this model in vivo by application of calcium antagonists, which reduced burst firing and eliminated the differences in direction selectivity between bursts, isolated spikes, and the full spike train. Our model of downstream decoders used strong synaptic facilitation to achieve qualitatively similar results to those obtained using the ISI threshold criterion. This model shows that direction selective information carried by bursts can be decoded by downstream neurons using biophysically plausible mechanisms.  相似文献   

17.
Summary A Golgi and electron microscope study, using also secondary degeneration after dorsal root transection and chronically isolated dorsal horn preparations, were undertaken with the objective to clarify the large (glomerulus-like) synaptic complexes in lamina II of the dorsal horn. The large sinusoid axon terminals forming the centers of these synaptic complexes are of intraspinal origin and are thought to arise from the hitherto unknown type of pyramid-shape nerve cells, situated at the border between laminae III and IV. The sinusoid axon terminals establish axo-dendritic synapses with substantia gelatinosa neurons and abundant axo-axonic synapses with smaller terminals that could be identified (at least partly) as endings of primary sensory afferents. The central sinuous axon terminals of the synaptic complexes are always presynaptic to the smaller axons and thus might be considered as a device for 1. presynaptic inhibition of impulse transmission from primary afferents to substantia gelatinosa neurons, and 2. as the anatomical basis for primary afferent depolarization.This study has been carried out and the paper has been prepared largely before the recent publications of the paper by Scheibel and Scheibel (1968), which accounts for some overlap between the Golgi informations presented.  相似文献   

18.
Summary Individually labelled sensory neurons from the femoral chordotonal organ, a proprioceptor at the femoro-tibial joint of a locust hindleg, were analysed by intracellular recording, and by electron microscopical immunocytochemistry to reveal the arrangement of their input and output synapses and to determine whether the input synapses were GABAergic. Intracellular recordings from these sensory neurons show spikes superimposed on a barrage of synaptic potentials during movements of the femoro-tibial joint. These synaptic inputs can be mimicked by GABA. Input synapses are made onto the vesicle-containing terminals of afferents and are often closely associated with the output synapses. By contrast, the axons of the afferents in the neuropil have no vesicles and neither make nor receive synapses. The input synapses to the afferent terminals are made from processes typically a few microns in diameter, whereas the output synapses are made onto much smaller processes of only 0.1–0.2 m. Input synapses at which an afferent terminal is the only postsynaptic element are common. Where the synapse is dyadic the second postsynaptic element does not usually appear to be a chordotonal afferent. The output synapses from the afferent terminals are usually dyadic. At 78% of the input synapses, the presynaptic neurite showed immunoreactivity to a GABA antibody, supporting the physiological evidence that the presynaptic effects can be mediated by the release of GABA. The remaining (22%) immunonegative synapses are intermingled with those showing GABA immunoreactivity, but their putative transmitter is unknown. These morphological observations suggest that the presynaptic control of the chordotonal afferents is largely mediated by GABAergic neurons, but because other types of neuron also appear to be involved, presynaptic modulation may be more complex than has yet been revealed by the physiology.  相似文献   

19.
We are studying afferent transmission from a mechanoafferent, B21, to a follower, B8. During motor programs, afferent transmission is regulated so that it does not always occur. Afferent transmission is eliminated when spike propagation in B21 fails, i.e., when spike initiation is inhibited in one output region-B21's lateral process. Spike initiation in the lateral process is inhibited by the B52 and B4/5 cells. Individual B52 and B4/5-induced inhibitory postsynaptic potentials (IPSPs) in B21 differ. For example, the peak amplitude of a B4/5-induced IPSP is four times the amplitude of a B52 IPSP. Nevertheless, when interneurons fire in bursts at physiological (i.e., low) frequencies, afferent transmission is most effectively reduced by B52. Although individual B52-induced IPSPs are small, they have a long time constant and summate at low firing frequencies. Once IPSPs summate, they effectively block afferent transmission. In contrast, individual B4/5-induced IPSPs have a relatively short time constant and do not summate at low frequencies. B52 and B4/5 therefore differ in that once synaptic input from B52 becomes effective, afferent transmission is continuously inhibited. In contrast, periods of B4/5-induced inhibition are interspersed with relatively long intervals in which inhibition does not occur. Consequently, the probability that afferent transmission will be inhibited is low. In conclusion, it is widely recognized that afferent transmission can be regulated by synaptic input. Our experiments are, however, unusual in that they relate specific characteristics of postsynaptic potentials to functional inhibition. In particular we demonstrate the potential importance of the IPSP time constant.  相似文献   

20.
The amplitude of glycinergic miniature inhibitory postsynaptic currents (mIPSCs) varies considerably in neurons recorded in the isolated hindbrain of 50-h-old zebrafish larvae. At this age, glycinergic synapses are functionally mature. In order to measure the occupancy level of postsynaptic glycine receptors (GlyRs) and to determine the pre- and/or postsynaptic origin of its variability, we analysed mIPSCs within bursts evoked by α-latrotoxin (0.1–1 n m ). Two types of burst were observed according to their mIPSC frequencies: 'slow' bursts with clearly spaced mIPSCs and 'fast' bursts characterised by superimposed events. Non-stationary noise analysis of mIPSCs in some 'slow' bursts recorded in the presence or in the absence of Ca2+ denoted that mIPSC amplitude variance did not depend on the quantity of neurotransmitters released (presynaptic origin), but rather on intrinsic stochastic behaviour of the same group of GlyRs (postsynaptic origin). In these bursts, the open probability measured at the peak of the mIPSCs was close to 0.5 while the maximum open probability is close to 0.9 for the synaptic isoform of GlyRs (heteromeric α1/β GlyRs). In 'fast' bursts with superimposed events, a correlation was found between the amplitude of mIPSCs and the basal current level measured at their onset, which could suggest that the same group of GlyRs is activated during such bursts. Altogether, our results indicate that glycine synapses can display different release modes in the presence of α-latrotoxin. They also indicate that, in our model, postsynaptic GlyRs cannot be saturated by the release of a single vesicle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号