首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Marodon G  Mouly E  Blair EJ  Frisen C  Lemoine FM  Klatzmann D 《Blood》2003,101(9):3416-3423
Achieving cell-specific expression of a therapeutic transgene by gene transfer vectors represents a major goal for gene therapy. To achieve specific expression of a transgene in CD4(+) cells, we have generated lentiviral vectors expressing the enhanced green fluorescent protein (eGFP) reporter gene under the control of regulatory sequences derived from the CD4 gene--a minimal promoter and the proximal enhancer, with or without the silencer. Both lentiviral vectors could be produced at high titers (more than 10(7) infectious particles per milliliter) and were used to transduce healthy murine hematopoietic stem cells (HSCs). On reconstitution of RAG-2-deficient mice with transduced HSCs, the specific vectors were efficiently expressed in T cells, minimally expressed in B cells, and not expressed in immature cells of the bone marrow. Addition of the CD4 gene-silencing element in the vector regulatory sequences led to further restriction of eGFP expression into CD4(+) T cells in reconstituted mice and in ex vivo-transduced human T cells. Non-T CD4(+) dendritic and macrophage cells derived from human CD34(+) cells in vitro expressed the transgene of the specific vectors, albeit at lower levels than CD4(+) T cells. Altogether, we have generated lentiviral vectors that allow specific targeting of transgene expression to CD4(+) cells after differentiation of transduced mice HSCs and human mature T cells. Ultimately, these vectors may prove useful for in situ injections for in vivo gene therapy of HIV infection or genetic immunodeficiencies.  相似文献   

2.
Transgenic mouse lines have been developed that express the tv-a receptor under the control of the chicken beta-actin promoter. These mice express the tv-a receptor in most or all tissues and in the early embryo. An avian leukosis virus (ALV)-based retroviral vector system was used for the efficient delivery of genes into preimplantation mouse embryos from these transgenic lines. Experimental animals could be generated quickly and easily by infecting susceptible blastocysts with ALV-based retroviral vectors. Expression of the delivered genes was controlled by either the constitutive viral promoter contained in the long terminal repeat or an internal nonviral tissue-specific promoter. Mating the infected founder chimeric animals produced animals that carry the ALV provirus as a transgene. A subset of the integrated proviruses expressed the chloramphenicol acetyltransferase reporter gene from either the promoter in the long terminal repeat or an internal promoter, which we believe indicates that many of the sites that are accessible to viral DNA insertion in preimplantation embryos are incompatible with expression in older animals. This approach should prove useful for studies on murine cell lineage and development, providing models for studying oncogenesis, and testing gene therapy strategies.  相似文献   

3.
4.
Endothelial cells (ECs) in normal vessels are poorly transducible by retroviral vectors, which require cell division for gene transduction. Among retroviruses, lentiviruses have the unique ability to integrate their genome into the chromatin of nondividing cells. Here we show that multiply attenuated, self-inactivating, lentiviral vectors transduce both proliferating and growth-arrested human umbilical vein ECs (HUVECs), human coronary artery ECs (HCAECs), and human coronary artery smooth muscle cells (HCASMCs), with high efficacy. Lentiviral vectors containing the enhanced green fluorescence protein (EGFP) transgene driven by either the cytomegalovirus or the elongation factor-1alpha promoter, but not the phosphoglycerate kinase promoter, directed high-level EGFP expression in endothelial and smooth muscle cells. The endothelium-specific Tie2 promoter also directed transgene expression in ECs. Re-insertion of cis-acting sequences from pol of human immunodeficiency virus type 1 (HIV-1) into the vectors improved transgene expression. A lentiviral vector containing the vascular endothelial growth factor transgene promoted EC proliferation and sprouting in vitro. In vivo gene transfer was studied by lumenal infusion of vector containing solutions into rat carotid arteries. Lentivirus-mediated EGFP gene transfer was observed in approximately 5% of ECs. Lentiviral vectors containing the LacZ transgene achieved detectable beta-galactosidase activity in rat arteries, albeit at a lower level compared with adenoviral vectors. This difference was mainly due to the lower concentration of lentiviral vector preparations. Lentivirus-mediated gene transfer was associated with minimal neointimal hyperplasia and scant inflammatory cell infiltrates in the media and adventitia. These observations indicate that lentiviral vectors may be useful for genetic modifications of vascular cells in vitro and in vivo.  相似文献   

5.
Plasmoviruses: nonviral/viral vectors for gene therapy.   总被引:3,自引:0,他引:3       下载免费PDF全文
We have generated a chimeric gene transfer vector that combines the simplicity of plasmids with the infectivity and long-term expression of retroviruses. We replaced the env gene of a Moloney murine leukemia virus-derived provirus by a foreign gene, generating a plasmid that upon transfer to tumor cells generates noninfectious retroviral particles carrying the transgene. We added to this plasmid an independent expression cassette comprising a cytomegalovirus promoter, an amphotropic retroviral envelope, and a polyadenylylation signal from simian virus 40. These constructs were designed to minimize the risk of recombination generating replication-competent retroviruses. Their only region of homology is a 157-bp sequence with 53% identity. We show that the sole transfection of this plasmid in various cell lines generates infectious but defective retroviral particles capable of efficiently infecting and expressing the transgene. The formation of infectious particles allows the transgene propagation in vitro. Eight days after transfection in vitro, the proportion of cells expressing the transgene is increased by 10-60 times. There was no evidence of replication-competent retrovirus generation in these experiments. The intratumoral injection of this plasmid, but not of the control vector lacking the env gene, led to foci of transgene-expressing cells, suggesting that the transgene had propagated in situ. Altogether, these "plasmoviruses" combine advantages of viral and non-viral vectors. They should be easy to produce in large quantity as clinical grade materials and should allow efficient and safe in situ targeting of tumor cells.  相似文献   

6.
The first differentiation event of the mammalian embryo is thought to occur during blastulation and results in two populations of cells, the inner cell mass (ICM) and the trophectoderm. Most embryonic stem (ES) cell lines have been derived from the ICM or a further subset of ICM cells known as the epiblast. There appears to be a limited period of embryonic development during which pluripotent ES cells can be adapted from the cells of the blastocyst to culture. A method is presented here that allows ES cell lines to be isolated from preblastocyst mouse embryos. These lines were derived from 129S2/SvHsd mouse morulae and earlier cleavage stages with high efficiency. The lines expressed genes and antigens characteristic of pluripotent ES cells. XY cell lines remained karyotypically stable through extensive passaging and produced germ-line-competent chimeras upon blastocyst injection. These results suggest that true ES cells can be derived from embryos explanted at any stage of preimplantation development in the mouse. This finding raises the interesting question of whether ES cell lines derived from embryos at different stages of preimplantation development possess the same potential.  相似文献   

7.
Murine embryonic stem (ES) cells were infected with a retrovirus promoter trap vector, and clones expressing lacZ fusion genes (LacZ+) were isolated by fluorescence-activated cell sorting (FACS). Of 12 fusion genes tested, 1 was repressed when ES cells were allowed to differentiate in vitro. Two of three lacZ fusion genes tested were passed into the germ line, indicating that FACS does not significantly affect stem cell totipotency. The pattern of lacZ expression observed in vivo was consistent with that seen in vitro. Both fusion genes were expressed in preimplantation blastulas. However, a fusion gene whose expression was unaffected by in vitro differentiation was ubiquitously expressed in day-10 embryos, while the other, which showed regulated expression in vitro, was restricted to cells located along the posterior neural fold, the optic chiasm, and within the fourth ventricle. These results demonstrate the utility of using promoter trap vectors in conjunction with fluorescence sorting to disrupt developmentally regulated genes in mice.  相似文献   

8.
9.
10.
Wu LC  Sun CW  Ryan TM  Pawlik KM  Ren J  Townes TM 《Blood》2006,108(4):1183-1188
Previous studies have demonstrated that sickle cell disease (SCD) can be corrected in mouse models by transduction of hematopoietic stem cells with lentiviral vectors containing antisickling globin genes followed by transplantation of these cells into syngeneic recipients. Although self-inactivating (SIN) lentiviral vectors with or without insulator elements should provide a safe and effective treatment in humans, some concerns about insertional mutagenesis persist. An ideal correction would involve replacement of the sickle globin gene (beta(S)) with a normal copy of the gene (beta(A)). We recently derived embryonic stem (ES) cells from a novel knock-in mouse model of SCD and tested a protocol for correcting the sickle mutation by homologous recombination. In this paper, we demonstrate the replacement of the human beta(S)-globin gene with a human beta(A)-globin gene and the derivation of mice from these cells. The animals produce high levels of normal human hemoglobin (HbA) and the pathology associated with SCD is corrected. Hematologic values are restored to normal levels and organ pathology is ameliorated. These experiments provide a foundation for similar studies in human ES cells derived from sickle cell patients. Although efficient methods for production of human ES cells by somatic nuclear transfer must be developed, the data in this paper demonstrate that sickle cell disease can be corrected without the risk of insertional mutagenesis.  相似文献   

11.
Lentiviral-mediated gene transfer into haematopoietic stem cells   总被引:2,自引:0,他引:2  
OBJECTIVES: Lentiviral vectors can transduce nondividing cells. As most haematopoietic stem cells (HSCs) are nondividing in vivo, lentiviral vectors are promising viral vectors to transfer genes into HSCs. DESIGN AND SETTING: We have used HIV-1 based lentiviral vectors containing the green fluorescent protein (GFP) gene to transduce umbilical cord blood CD34+ and CD34+/CD38- cells prior to transplantation into NOD/SCID mice. RESULTS: High level engraftment of human cells was obtained and transgene expression was seen in both myeloid and lymphoid lineages. Bone marrow from the primary transplant recipients mice was transplanted into secondary recipients. GFP expression was seen in both lymphoid and myeloid cells in the secondary recipients 6 weeks posttransplantation. Human haematopoietic progenitor colonies were grown from both primary and secondary recipients. Over 50% of the haematopoietic colonies in these recipients were positive for the GFP transgene by PCR. Following inverse PCR, amplified fragments were sequenced and integration of the vector into human genomic DNA was demonstrated. Several vectors containing different internal promoters were tested in NOD/SCID mice that had been transplanted with transduced CD34+ and CD34+/CD38- cells. The elongation factor-1alpha (EF-1alpha) promoter gave the highest level of expression, both in the myeloid and lymphoid progeny of the engrafting cells. CONCLUSIONS: These data collectively indicate that candidate human HSCs can be efficiently transduced with lentiviral vectors and that the transgene is highly expressed in their progeny cells.  相似文献   

12.
13.
Imprinted gene expression in preimplantation development has been extensively studied in the mouse. Different imprinted genes vary in their time of onset of expression and also in the timing and tissue-specificity of mono-allelic expression. We have surveyed a range of imprinted genes for expression, and mono-allelic expression, in human development. Due to the scarcity of human embryos available for research, we first prepared amplified cDNA from replicate samples of human oocytes, four-cell, eight-cell and blastocyst stages. We then analysed these cDNAs for expression of a range of imprinted genes. Three of six genes analysed (SNRPN, PEG1 and UBE3A) are clearly expressed in preimplantation embryos. Expression was confirmed by direct analysis of embryos for these genes. For one of the expressed genes, SNRPN, we have shown that expression is mono-allelic from the paternal allele in human preimplantation embryos. This gene is also mono-allelically expressed in mouse preimplantation embryos. In our earlier work, we investigated the molecular mechanisms governing mono-allelic expression of the paternal allele of the Xist gene in preimplantation mouse embryos. We found that mono-allelic expression was correlated with differential methylation of Xist promoter sites in egg and sperm, and specific binding of a protein only to the methylated maternal (egg) allele. However, extension of these studies to the human showed that, unlike the mouse, XIST is expressed from both parental alleles in human preimplantation embryos. Since perturbation of imprinting is associated with disease and tumourigenesis, it is important to know the expression profiles of imprinted genes in human embryos and to monitor for normal imprinted gene expression with the introduction of new procedures in assisted conception.  相似文献   

14.
15.
OBJECTIVE: To support immune reconstitution after cord blood transplantation, immunotherapy using gene-modified dendritic cells (DCs), the most potent antigen-presenting cells, can be a powerful strategy for preventing infection and recurrence. To investigate the applicability of lentiviral vector-transduced DCs compared to retroviral vectors, we transduced umbilical cord blood (CB) CD34(+) cells, then expanded and differentiated them into DCs. MATERIALS AND METHODS: We transduced CB CD34(+) cells by vesicular stomatitis virus G-protein pseudotyped self-inactivating lentiviral vector or retroviral vectors carrying the enhanced green fluorescent protein gene. The cells were expanded in the stroma-dependent culture system and transferred to the culture condition for developing DCs. The efficiency of transduction and expression of the transgene in severe combined immunodeficiency (SCID) mice-repopulating cells (SRCs) and DCs were compared between lentiviral vector and retroviral vectors. Induced DCs were cocultured with allogeneic or autologous T cells to test the ability to present antigens. RESULTS: CB CD34(+) cells transduced by lentiviral vector and expanded ex vivo sustained stable transgene expression and multipotentiality by assessing SRCs assay and clonogenic assay of bone marrow cells from the transplanted mice. DCs derived from these cells expressed green fluorescent protein and surface markers CD1a, CD80, and HLA-DR and showed potent allo-stimulatory activity as well as nontransduced DCs did. On the other hand, we did not detect transgene expression in SRCs and DCs transduced by retroviral vectors. CONCLUSION: Gene-modified DCs derived from ex vivo expanded CB CD34(+) cells transduced by lentiviral vector will be useful in future immunotherapy protocols.  相似文献   

16.
17.
Our goal is to develop cell vaccines against leukemia cells, genetically modified to express molecules with potent immune-stimulatory capacities. Pre-clinical evaluation of this approach in murine models has demonstrated efficient anti-leukemic responses with the expression of immunomodulators, in particular GM-CSF and CD80, in irradiated cell vaccines. We have previously shown efficient insertion of GM-CSF and CD80 genes into primary human leukemia cells with the use of second and third generation self-inactivating (SIN) lentiviral vectors (Blood 96 (2000), 1317; Leukemia 16 (2002), 1645). The advantages of lentiviral vectors for development of autologous leukemia cell vaccines include: (1) efficient and consistent gene delivery; (2) high levels of transgene expression; (3) persistent expression of the transduced gene; (4) no viral proteins, as only the transduced gene is expressed; (5) no undesirable cytotoxic effects, and; (6) simplicity of use [leukemia cells are exposed to vector(s) only once]. In this work, we evaluated the insertion of the central polypurine tract and the central termination sequence into a SIN lentiviral vector encoding for GM-CSF and CD80, which significantly enhanced the transduction efficiency of primary leukemia cells and provided higher levels of GM-CSF and CD80 co-expression. We also demonstrate a methodology to deliver simultaneously a combination of immunomodulatory molecules (GM-CSF, CD80, IL-4, and CD40L) to activate different pathways of immune stimulation. Therefore, lentiviral vectors offer a simple, versatile, and reliable approach for engineering leukemic cells for use as cell vaccines.  相似文献   

18.
OBJECTIVE: Study the effect of loss of expression of Pitx2, a homeodomain gene preferentially expressed in murine hematopoietic stem/progenitor cells, on hematopoietic stem cells (HSCs). METHODS: We examined the fetal livers of mouse embryos with homozygous disruption of the Pitx2 gene, using flow cytometry immunophenotyping analysis, as well as immunohistochemistry techniques. We further investigated the role of Pitx2 in HSCs using a chimeric mouse model system. Pitx2 null embryonic stem (ES) cell clones were generated from embryonic day 3.5 blastocysts of Pitx2 null embryos. The Pitx2 null donor ES cell contribution to the adult hematopoietic system was confirmed by identifying donor-specific glucose-phosphate isomerase isotype in the erythrocytes using cellulose acetate eletrophoresis, and by demonstrating donor-specific major histocompatibility complex antigen allotype on the granulocytes/monocytes and T and B lymphocytes of the chimeric mice using flow cytometry analysis. RESULTS: Pitx2 homozygous null fetal livers are decreased in size and overall cellularity. The erythroid cell component of these livers is further reduced as compared to that of their wild-type and heterozygous littermates. Detailed quantitative analysis of the chimeric mice revealed contribution of Pitx2 null ES cells to erythroid, myeloid, lymphoid, and megakaryocytic lineages. The quantitative level of ES cell contribution to the peripheral hematopoietic cells was proportional to the level of general chimerism as determined by coat color. CONCLUSION: Although the fetal livers of Pitx2 null embryos displayed signs of impaired erythropoiesis, Pitx2 gene disrupted HSCs can contribute to hematopoiesis under physiological conditions.  相似文献   

19.
20.
Hematopoietic stem cells (HSCs) represent an important target for the treatment of various blood disorders. As the source of critical cells within the immune system, genetic modification of HSCs can also be used to modulate immune responses. The effectiveness of HSC-mediated gene therapy largely depends on efficient gene delivery into long-term repopulating progenitors and targeted transgene expression in an appropriate progeny of the transduced pluripotent HSCs. Self-inactivating (SIN) lentiviral vectors have been demonstrated to be capable of transducing mitotically inactive cells, including HSCs, and accommodating a nonviral promoter to control the transgene expression in transduced cells. In this study, we constructed 2 SIN lentiviral vectors, EF.GFP and DR.GFP, to express the green fluorescent protein (GFP) gene controlled solely by the promoter of either a housekeeping gene EF-1alpha or the human HLA-DRalpha gene, which is selectively expressed in antigen-presenting cells (APCs). We demonstrated that both vectors efficiently transduced human pluripotent CD34+ cells capable of engrafting nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice. When the EF.GFP vector was used, constitutive high-level GFP expression was obtained in all the human HSC progeny detectable in NOD/SCID mice and in subsequent in vitro differentiation assays, indicating that engrafting human HSCs have been transduced. In contrast, the DR.GFP vector mediated transgene expression specifically in human HLA-DR+ cells and highly in differentiated dendritic cells (DCs), which are critical in regulating immunity. Furthermore, human DCs derived from transduced and engrafted human cells potently stimulated allogeneic T-cell proliferation. This study demonstrated successful targeting of transgene expression to APCs/DCs after stable gene transduction of pluripotent HSCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号