首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Quantitative and qualitative analysis of crossed vs uncrossed projections from the substantia nigra, entopeduncular nucleus and individual cerebellar nuclei to the thalamus was undertaken in nine adult cats using retrograde labeling with horseradish peroxidase and fluorescent dyes. The results indicate that about 90% of entopeduncular nucleus neurons and 50% of substantia nigra neurons give rise to ipsilateral projections to the thalamus whereas the contralateral component of these projections originates from about 10 and 7% neurons of entopeduncular nucleus and substantia nigra, respectively. Some of the fibers constituting the contralateral component are represented by branching axon collaterals of the neurons projecting ipsilaterally. In the basal ganglia thalamic projection, its minor component (contralateral) targets the ventral anterior and ventral medial nuclei the same as its major component (ipsilateral). However, some preferential distribution of the contralateral projections to the ventral medial nucleus appears to exist. In regard to the cerebellothalamic projections it was found that about 90% of neurons located in the dentate and interpositus nuclei and 50% of neurons in the fastigial nucleus project to the contralateral thalamus while 16% of dentate nucleus neurons and 40% of fastigial nucleus neurons give rise to the ipsilateral cerebellothalamic projections. A considerable number of ipsilateral cerebellothalamic fibers are represented by divergent axon collaterals of the same neurons projecting to the contralateral thalamus. The cerebellothalamic projections from all cerebellar nuclei including the fastigial nucleus are targeted primarily to the ventral lateral nucleus both contra- and ipsilaterally. The ventral medial nucleus receives bilateral input from the fastigial nucleus which originates from about one quarter of the thalamus projecting neurons in this nucleus. Of all other cerebellar nuclei only the dentate nucleus projects to the ventral medial nucleus and this projection is exclusively contralateral.  相似文献   

2.
The majority of axons from the fastigial oculomotor region (FOR) decussated in the cerebellum at all rostrocaudal levels of the fastigial nucleus (FN) and entered the brainstem via the contralateral uncinate fasciculus (UF). Some decussated axons separated from the UF and ran medial to the contralateral superior cerebellar peduncle and ascended to the midbrain. Uncrossed FOR axons advanced rostrolaterally in the ipsilateral FN and entered the brainstem via the juxtarestiform body. The decussated fibers terminated in the brainstem nuclei that are implicated in the control of saccadic eye movements. In the midbrain, labeled terminals were found in the rostral interstitial nucleus of the medial longitudinal fasciculus, a medial part of Forel's H-field, the periaqueductal gray, the posterior commissure nucleus, and the superior colliculus of the contralateral side. In the pons and medulla, FOR fibers terminated in a caudal part of the pontine raphe, the paramedian pontine reticular formation, the nucleus reticularis tegmenti pontis, the dorsomedial pontine nucleus of the contralateral side, and the dorsomedial medullary reticular formation of both sides. In contrast, FOR projections to the vestibular complex were bilateral and were mainly to the ventral portions of the lateral and inferior vestibular nuclei. No labeled terminals were found in the following brainstem nuclei which are considered to be involved in oculomotor function: oculomotor and trochlear nuclei, interstitial nucleus of Cajal, medial and superior vestibular nuclei, periphypoglossal nuclei, and dorsolateral pontine nucleus. Labeling appeared in the red nucleus only when HRP encroached upon the posterior interposed nucleus.  相似文献   

3.
本实验用HRP逆行性轴浆运输技术,对猫丘脑中央外侧核的传入纤维联系及其局部定位关系进行了观察。投射至丘脑中央外侧核尾侧区的主要核团包括:外侧膝状体腹核背侧带、丘脑网状核特别是它的背侧部、上丘深层,以同侧为主。板内核、丘脑下部外侧区和黑质网状部神经元的轴突终止在同侧丘脑中央外侧核吻侧区。丘脑中央外侧核全长的传入起自脑干网状结构和前庭神经核,呈双侧投射。前者以同侧为主,后者以对侧占优势。同侧未定带,顶盖前区、动眼神经核周围的细胞群、对侧三叉神经感觉主核、楔束核、薄束核以及小脑齿状核内也含有少量标记细胞。我们还观察到HRP注射中心区位于中央外侧核并扩散至丘脑腹前核者,同侧脚内核含大量HRP阳性细胞,而Gudden被盖腹侧核内充满密集的标记终末。这些结果表明,丘脑中央外侧核可能涉及多种感觉和运动功能。  相似文献   

4.
The topographical organization of the subnuclear projections towards the thalamus was studied with autographic methods in adult Wistar rats. The four cerebellar deep nuclei give rise to projections to the ventral region of the rostral thalamus. Most of the fibers end contralaterally, according to a topographical pattern; however, some fibers from each of the cerebellar nuclei recross the midline at the thalamic level and terminate ipsilaterally, within regions symmetric to those receiving the densest contralateral projection. These ipsilateral cerebellothalamic components arise in decreasing order from the caudal nucleus lateralis, the ventrocaudal nucleus medialis and the nucleus interpositus, respectively. The projections of the nucleus lateralis directed to the contralateral thalamus are topographically organized. (1) Within the nucleus ventralis lateralis, the rostral and caudal parts of the cerebellar nucleus lateralis project respectively to rostral and caudal regions; lateral and medial zones of the nucleus lateralis project, respectively, to medial and central aspects of the nucleus ventralis lateralis. (2) The nucleus ventralis medialis and particularly its caudal portion appears to receive the bulk of its afferents from the ventromedial portion of the nucleus lateralis including the "subnucleus lateralis parvocellularis". (3) The nucleus centralis lateralis receives fibers from most parts of the nucleus lateralis including the "dorsolateral hump". (4) The nucleus interpositus anterior projects to the dorsomedial aspect of the rostral nucleus ventralis lateralis. In the latter nucleus, the ventrolateral aspect of the central region receives projections in cases in which the nucleus interpositus posterior is largely involved. A particular emphasis is put on the different projections from the various subnuclear regions of the lateral nucleus. A comparison is attempted with the situation in the primates, particularly with regard to the question of the parvocellular subdivision of the lateral nucleus.  相似文献   

5.
本实验将~3H-Leucine 或 WGA-HRP 定位注(导)入大鼠一侧上丘内,观察了上丘传出纤维的终止部位。上丘浅层的传出纤维下行终止于二叠体旁核(以同侧核的背、腹群为主)、同侧桥核的背外侧部;其上行投射终止于内侧膝状体、膝上核、顶盖前区后核、丘脑外侧后核(以上均为两侧性,以同侧为主)、同侧的内及外侧视束核和外侧膝状体的背侧及腹侧核。另外,在两侧视束和视束交叉处均有标记颗粒。上丘中、深层的传出纤维终止于同侧中央灰质、Darkschewitsch 核、Cajal 中介核、楔形核以及对侧上丘;上行终止于内测膝状体,膝上核、顶盖前区前核、丘脑外侧后核(以上均为两侧性,以同侧为主)、束旁核、未定带、丘脑腹侧核(以上均为同侧);下行终止于同侧的有二叠体旁区和二叠体旁核,桥核的背外侧部、下丘外侧部、桥脑和延髓网状结构、下橄榄核的外侧部;终止于对侧的有二叠体旁核、桥脑和延髓网状结构内侧部、下橄榄核的内侧副核、脊髓颈段前角。  相似文献   

6.
The cells of origin of pathways descending to the spinal cord in the clawed toad Xenopus laevis have been demonstrated with the horseradish peroxidase technique. A technique has been used taking advantage of the phenomenon that damaged axons can take up horseradish peroxidase and transport this enzyme to their parent cell bodies. The following descending supraspinal pathways could be demonstrated: a striatospinal pathway to the rostral part of the cord; distinct hypothalamospinal projections; a projection as far as the lumbar cord from the ventral thalamic nucleus; distinct projections from the mesencephalic tegmentum; a contralateral cerebellospinal projection from the cerebellar nucleus; a projection from neurons directly medial to the nucleus isthmi which shows resemblance to the coeruleospinal pathway of higher veretebrates; massive reticulospinal projections; a vestibulospinal projection arising in the nucleus ventralis VIII and pathways arising in nuclei receiving lateral line afferents. Furthermore, spinal projections from the nucleus of the solitary tract and the nucleus descendons nervi trigemini were observed.Rather massive projections were found to arise in the midbrain tegmentum: a mainly ipsilateral projection from the interstitial nucleus of the fasciculus longitudinalis medialis, a contralateral projection as far as the lumbar cord from a cell group which presumably represents the anuran homologue of the red nucleus of higher vertebrates, and projections from various other parts of the midbrain tegmentum, mainly to more rostral levels of the cord. Only a very small tectospinal projection could be demonstrated.A comparison with experimental data in higher vertebrates makes it likely that the pathways demonstrated from the hypothalamus and brain stem in Xenopus laevis show remarkable similarities to pathways in reptiles, birds and mammals.  相似文献   

7.
Ascending projections from the several nuclei of the medullary reticular formation were examined using the autoradiographic method. The majority of fibers labeled after injections of [3H]leucine into nucleus gigantocellularis ascended within Forel's tractus fasciculorum tegmenti which is located ventrolateral to the medial longitudinal fasciculus. Nucleus gigantocellularis injections produced heavy labeling in the pontomesencephalic reticular formation, the intermediate layers of the superior colliculus, the pontine and midbrain central gray, the anterior pretectal nucleus, the ventral midbrain tegmentum including the retrorubral area, the centromedian-parafascicular complex, the fields of Forel/zona incerta, the rostral intralaminar nuclei and the lateral hypothalamic area. Nucleus gigantocellularis projections to the rostral forebrain were sparse. Labeled fibers from nucleus reticularis ventralis, like those from nucleus gigantocellularis, ascended largely in the tracts of Forel and distributed to the pontomedullary reticular core, the facial and trigeminal motor nuclei, the pontine nuclei and the dorsolateral pontine tegmentum including the locus coeruleus and the parabrachial complex. Although projections from nucleus reticularis ventralis diminished significantly rostral to the pons, labeling was still demonstrable in several mesodiencephalic nuclei including the cuneiform-pedunculopontine area, the mesencephalic gray, the superior colliculus, the anterior pretectal nucleus, the zona incerta and the paraventricular and intralaminar thalamic nuclei. The main bundle of fibers labeled by nucleus gigantocellularis-pars alpha injections ascended ventromedially through the brainstem, just dorsal to the pyramidal tracts, and joined Forel's tegmental tract in the midbrain. With the brainstem, labeled fibers distributed to the pontomedullary reticular formation, the locus coeruleus, the raphe pontis, the pontine nuclei, and the dorsolateral tegmental nucleus and adjacent regions of the pontine gray. At mesodiencephalic levels, labeling was present in the rostral raphe nuclei (dorsal, median and linearis), the mesencephalic gray, the deep and intermediate layers of the superior colliculus, the medial and anterior pretectal nuclei, the ventral tegmental area, zona incerta as well as the mediodorsal and reticular nuclei of the thalamus. Injections of the parvocellular reticular nucleus labeled axons which coursed through the lateral medullary tegmentum to heavily innervate lateral regions of the medullary and caudal pontine reticular formation, cranial motor nuclei (hypoglossal, facial and trigeminal) and the parabrachial complex.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
The present study was undertaken to provide anatomical evidence, in the rat, for a direct projection from the cerebellum towards structures, other than the red nucleus, which belong to the ventral midbrain tegmentum, by using the retrograde as well as the anterograde horseradish peroxidase transport method. Following unilateral injection in the ventral midbrain tegmentum of horseradish peroxidase, free or conjugated to wheat germ agglutinin, sparing the red nucleus, retrogradely labeled neurons were found in the contralateral cerebellar lateral nucleus and, at lower density, in the interpositus nucleus. No labeled neurons were found in the fastigial nucleus of either side. Anterogradely labeled axons from lectin coupled horseradish peroxidase injection sites in the lateral and interpositus nuclei reached the contralateral ventral midbrain tegmentum. Terminal labeling was observed in the entire red nucleus as well as in the lateral division of the ventral tegmental area of Tsai, in the dorsal region of the substantia nigra pars compacta, and in the medial part of the retrorubral field. No terminal labeling was found in the caudal linear nucleus, interfascicular nucleus, peripeduncular nucleus, rostral linear nucleus of the raphe, substantia nigra pars lateralis and the substantia nigra pars reticulata. Terminal labeling was also not observed in the ventral midbrain tegmentum following horseradish peroxidase injection in lateral and interpositus nuclei of rats pretreated with kainic acid. In conclusion, it is noteworthy that, besides the red nucleus, the sole structures of ventral midbrain tegmentum receiving cerebellar efferents are those with a higher density of dopaminergic cells.  相似文献   

9.
Summary The termination of the fibers from the dorsal column nuclei (DCN) to the midbrain has been investigated in the cat with the degeneration method, the anterograde horseradish peroxidase (HRP) method and autoradiography after 3H-leucine injections. The results show that the DCN project to several midbrain regions. The external nucleus of the inferior colliculus (IX) receives the heaviest projection from both the gracile and cuneate nuclei. The DCN fibers form three joint terminal zones in IX. Each terminal zone contains clusters with dense aggregations of DCN fibers. Fairly dense terminal networks are found in the posterior pretectal nucleus (PP) and the compact part of the anterior pretectal nucleus (PAc) as well. More scattered DCN fibers are present in the cuneiform nucleus (CF), the lateral part of the periaqueductal gray (PAG1), the red nucleus (NR), the nucleus of the brachium of the inferior colliculus (B), the mesencephalic reticular formation (MRF) and the intermediate and deep layers of the superior colliculus (SI, SP). The projections to all regions are mainly contralateral. Most of the few ipsilateral fibers terminate in IX.A somatotopic organization was seen in IX and NR. The gracile fibers terminate preferentially in the caudal and lateral part of IX and the cuneate ones preferentially in its rostral and medial part. In the red nucleus the gracile fibers terminate ventral to the cuneate ones. In the pretectal region there was a predominance for gracile fibers. There also appeared to be quantitative differences in the projections from various levels of the gracile nucleus, with more midbrain projecting fibers originating in the rostral than in the middle and caudal parts of the nucleus.  相似文献   

10.
The projection leading from the eye and the nuclear targets of the projection to the brainstem were identified in an echolocating megachiropteran (Rousettus aegyptiacus) following unilateral intraocular injections of radioactive amino acids. In the hypothalamus, the projection ended bilaterally in suprachiasmatic nuclei. In the ventral thalamus, it ended bilaterally in external and internal divisions of the ventral lateral geniculate nuclei. In the dorsal thalamus, the projection terminated bilaterally in the dorsal lateral geniculate nuclei and contralaterally in the lateral posterior nucleus. Input from the two eyes was segregated to laminae in the lateral division of the dorsal lateral geniculate nucleus. The contralateral projection ended in the dorsolateral and ventral portions of lamina 1, in lamina 2, the ventral portions of lamina 3, and an interlaminar fiber plexus. The ipsilateral projection ended in the dorsomedial portion of lamina 1, the dorsal portion of lamina 3, and the most superficial portion of lamina 1. Contralateral and ipsilateral input to the medial division of the dorsal lateral geniculate nucleus was for the most part segregated. The projection to the pretectum terminated in nuclei of the optic tract, pretectal olivary nuclei, and posterior pretectal nuclei. Although the input to the pretectal nuclei was bilateral, the contralateral projection was greater. The contralateral projection to the superior colliculus terminated throughout the rostral-caudal extent of the superficial gray layer. The ipsilateral projection to the superior colliculus ended in the superficial gray layer in the middle one-third of the superior colliculus only. On the contralateral side the projection to the outer portion of the superficial gray layer was especially heavy. The superior fascicle of the accessory optic tract was identified. It was traced to dorsal, lateral, and medial accessory optic nuclei. These results indicate that the visual system of Rousettus is more extensive than that of the echolocating microchiroptera and that it is similar to that described for nonecholocating Pteropus.  相似文献   

11.
Summary The retinal projections in the horseshoe bat were studied with anterograde transport of wheat germ agglutinin conjugated to horseradish peroxidase. Retinal fibers clearly terminate bilaterally in the lateral geniculate nuclei, superior colliculus, pretectal area, and nucleus of the optic tract. The suprachiasmatic nucleus and the lateral terminal nucleus of the accessory optic tract receive extremely weak, though bilateral retinal input. No projections to medial and dorsal accessory optic nuclei were found. There was a limited retinal projection to the ipsilateral dorsal geniculate nucleus. The focus of the ipsilateral projection corresponded to a less densely labeled region on the contralateral side. In this study an ipsilateral retinal projection to the anterior superior colliculus is documented for the first time in a Microchiropteran bat. In the contralateral superior colliculus retinal fibers terminate in a patch-like pattern at caudal levels.Abbreviations BSC brachium of the SC - CH optic chiasm - CP cerebral peduncle - IGL intergeniculate leaflet - dLGN dorsal lateral geniculate nucleus - vLGN ventral lateral geniculate nucleus: d dorsal, i intermediate, v ventral subdivision - LTN lateral terminal nucleus of accessory optic system - MGN medial geniculate nucleus - NOT nucleus of the optic tract - NSCH suprachiasmatic nucleus - ON optic nerve - OT optic tract - PA pretectal area - PON pretectal olivary nucleus - Rh.r. Rhinolophus rouxi - SC superior colliculus  相似文献   

12.
Efferent connections from a portion of the cerebellar fastigial nucleus were investigated using autoradiography. Bipolar stimulating electrodes were placed in the fastigial nucleus of anesthetized beagles and the area that produced increases in blood pressure and heart rate was localized. A mixture of [3H]leucine and [3H]proline (4:1) was injected into the area and autoradiograms of transported material were prepared. Injections filled the rostral and various parts of the caudal fastigial nucleus. Labeled axons reached the brain stem via two routes, the ipsilateral juxtarestiform body and the contralateral uncinate fasciculus. Ventral portions of the lateral vestibular nucleus were labeled bilaterally, projections to the inferior vestibular and medial vestibular nuclei are contralateral. Nucleus tractus solitarius was heavily labeled on the side opposite the injection. The contralateral medial reticular formation contained many labeled terminals and axons. Label was found in the nucleus reticularis ventralis, lateral reticular nucleus, nucleus gigantocellularis, nucleus pontis caudalis and the paramedian reticular nucleus. No terminal labeling was found in nucleus parvocellularis or nucleus ambiguus.Stimulation of the rostral fastigial nucleus produces increases in blood pressure and heart rate by generalized sympathoexcitation. Many cell groups which facilitate the activity of preganglionic sympathetic neurons do not receive direct fastigial input. It is suggested that sympathoexcitation resulting from stimulation of the fastigial nucleus occurs through multisynaptic connections in the brain stem.  相似文献   

13.
Summary Descending projections from the mesencephalon and superior colliculus to the inferior olive were analyzed by an autoradiographic tracing method. Injections of tritium-labelled leucine were placed in regions which had previously been identified as sources of afferents to the olive. These were located adjacent to the central gray and extended from the rostral red nucleus to the posterior thalamus. Additional injections were made in the superior colliculus. Other injections were placed in the basal ganglia and thalamus. Injections restricted to one side of the central mesencephalon resulted in predominantly ipsilateral labelling of the olive. After injections in the caudo-medial parafascicular and subparafascicular nuclei and rostral nucleus of Darkschewitsch, deposits of grains were observed in the rostral pole of the medial accessory olive and adjacent ventral lamella of the principal olive. The medial accessory olive contained grains into its middle third. More caudal injections which involved the interstitial nucleus of Cajal as well as the nucleus of Darkschewitsch and rostral red nucleus resulted in the dense labelling of the entire principal olive (except the dorsal cap), the entire medial acessory olive (except subnucleus and the caudo-medial pole) and the caudo-dorsal accessory olive. Injections centered in the caudal magnocellular red nucleus and extending into the rostral parvocellular division labelled the dorsal lamella of the principal olive almost exclusively. When only the caudal part of the red nucleus was involved in the injection, the olive was entirely clear of grains. Minor contralateral distributions were observed in the dorsomedial cell column, the medial tip of the dorsal lamella and in the caudal medial accessory olive. The deep layers of the superior colliculus were found to project strongly to the contralateral medial accessory olive immediately beside subnucleus and weakly to the same area ipsilaterally.Four pathways were identified as contributing fibers to the olivary projections. These were the medial longitudinal fasciculus, the medial tegmental tract, the central tegmental tract and tectospinal or tectobulbar fibers. The rubrospinal tract did not contribute projections to the olive. Injections in the caudate nucleus, entopeduncular nucleus and ventral anterior and ventral lateral thalamic nuclei, did not result in any labeling in the olive.List of Abbreviations AC anterior commissure - Cd caudate nucleus - CG central gray - CP cerebral peduncle - CTT central tegmental tract - DAO dorsal accessory olive - dc dorsal cap of Kooy - dmcc dorsomedial cell column of the inferior olive - dlPO dorsal lamella of the principal olive - Entop entopeduncular nucleus - EW nucleus of Edinger-Westphal - FR fasciculus retroflexus - Fx fornix - GP globus pallidus - H H field of Forel - HRP horseradish peroxidase - IC inferior colliculus - INC interstitial nucleus of Cajal - Int Cap internal capsule - IPN interpeduncular nucleus - LRN lateral reticular nucleus - MAO medial accessory olive - MB mammillary body - MGB medial geniculate body - MLF medial longitudinal fasciculus - MRF mesencephalic reticular formation - MTT medial tegmental tract - ND nucleus of Darkschewitsch - NFF nucleus of the fields of Forel - NPC nucleus of posterior commissure - NPP posterior pretectal nucleus - NRTP nucleus reticularis tegmenti pontis - n III third cranial nerve fibers - OT optic tract - PC posterior commissure - PF parafascicular nucleus - PG pontine gray - PO principal olive - PTM medial pretectal nucleus - RNp parvocellular red nucleus - RN red nucleus - RST rubrospinal tract - subnucleus beta of the inferior olive - sPf subparafascicular nucleus - SC superior colliculus - TH thalamus - vlPO ventral lamella of the principal olive - vlo ventral lateral outgrowth of the principal olive - VTA ventral tegmental area of Tsai - ZI zona incerta - III nucleus of third cranial nerve - XII nucleus of twelfth cranial nerve Supported by a grant from the Canadian Medical Research Council to the Group in Neurological Sciences at the Université de MontréalSupported by a postdoctoral fellowship of the Centre de Recherche en Sciences Neurologiques of the Université de Montréal  相似文献   

14.
Using different tracer substances the pathways connecting the superior colliculus with the diencephalon were studied in the Madagascan hedgehog tenrec (Echinops telfairi), a nocturnal insectivore with tiny eyes, a small and little differentiated superior colliculus and a visual cortex with no obvious fourth granular layer. The most prominent tecto-thalamic projection terminated in the ipsilateral dorsal lateral geniculate nucleus. The entire region receiving contralateral retinal afferents was labeled with variable density. In addition, there was a widespread, homogeneously distributed collicular input to the lateralis posterior-pulvinar complex and a distinct tectal projection to the suprageniculate nucleus. The latter projections were bilateral with a clear ipsilateral predominance. Among the intra- and paralaminar nuclei the centralis lateralis complex was most heavily labeled on both sides, followed by the nucleus centralis medialis. The paralamellar portion of the nucleus medialis dorsalis and the nucleus parafascicularis received sparse projections. A clear projection to the nucleus ventralis medialis could not be demonstrated but its presence was not entirely excluded either. There were also projections to medial thalamic nuclei, particularly the reuniens complex and the nucleus paraventricularis thalami. The main tecto-subthalamic target regions were the zona incerta, the dorsal hypothalamus and distinct subdivisons of the ventral lateral geniculate nucleus. These regions also gave rise to projections to the superior colliculus, as did the intergeniculate leaflet. The pathways oriented toward the visual or frontal cortex and the projections possibly involved in limbic and circadian mechanisms were compared with the connectivity patterns reported in mammals with more differentiated brains. Particular attention was given to the tenrec's prominent tecto-geniculate projection, the presumed W- or K-pathway directed toward the supragranular layers.  相似文献   

15.
The efferent and intranuclear connections of the nuclei of the descending trigeminal tract of the mallard have been studied with lesion methods, and by axonal transport techniques following injections of tritiated leucine, and of horseradish peroxidase.The large subnucleus oralis neurons, including those belonging to the nucleus of the ascending glossopharyngeal tract, have proven to be the sole origin of trigeminocerebellar connections. The cerebellar afferents are of the mossy fiber type, and terminate predominantly in lobules V, VI and VII, and possibly, lobule IV. Trigeminocerebellar projections are ipsilateral except for the vermal area.Subnucleus interpolaris is the main source of intratrigeminal fibers that terminate in subnucleus oralis and the ventral part of the main sensory nucleus. These intranuclear connections are bilateral, but the medium-celled caudal part of subnucleus interpolaris in particular contains the majority of bi- and/or contralaterally projecting neurons. Additionally, the small cells in the rostral part of subnucleus interpolaris project ipsilaterally upon the parabrachial region, and upon the lateral reticular formation.Projections upon the parabrachial region furthermore emanate bilaterally from layer I of the rostral subnucleus caudalis. A minor part of layer I neurons sends its axons contralaterally along with those of the dorsal column nuclei toward the thalamic nucleus dorsolateralis posterior. Associated with the medial lemniscus, contralateral termination is also present in the lateral part of the ventral lamella of oliva caudalis, in the marginal zone of nucleus mesencephalicus lateralis, pars dorsalis and immediately surrounding intercollicular grey and, finally, in the nucleus intercalatus thalami. Furthermore, a bilaterally descending projection from subnucleus caudalis upon layers I and II of the rostral cervical cord was observed. Close to their origin subnucleus caudalis neurons project upon the adjoining caudal part of the lateral reticular formation.  相似文献   

16.
Retinofugal projections in the house musk shrew (Suncus murinus) were studied with the WGA-HRP method. After WGA-HRP injection into the vitreous cavity of one eye, terminal labeling was seen in the suprachiasmatic nucleus, dorsal and ventral lateral geniculate nuclei, pretectum and superficial layer of the superior colliculus. The terminal labeling in the suprachiasmatic nucleus was more marked on the side ipsilateral to the injection than on the contralateral side, whereas that in other regions was seen mainly on the contralateral side. A retino-intergeniculate leaflet projection was observed. No unequivocal terminal labeling was found in the lateroposterior thalamic nucleus.  相似文献   

17.
We have used the anterograde tracer Phaseolus vulgaris-leucoagglutinin (PHA-L) to study with albino rats the projections from the inferior colliculus (IC) to the tectal longitudinal column (TLC), a newly discovered nucleus that spans the midbrain tectum longitudinally, on each side of the midbrain, immediately above the periaqueductal gray matter. We studied the projections of the medial IC, which includes the classical central nucleus (CNIC) and the dorsal cortex (DCIC), and those of the lateral IC, equivalent to the classical external cortex (ECIC). Following unilateral injections of PHA-L into the medial IC, numerous terminal fibers are labeled bilaterally in the TLC. The ipsilateral projection is denser and targets the entire nucleus, whereas the contralateral projection targets significantly only the caudal half or two-thirds of the TLC. Fibers from the medial IC reach the TLC by two routes: as collaterals of axons that travel in the commissure of the IC and as collaterals of thick ipsilateral colliculogeniculate axons; the latter travel through the deep superior colliculus on their way to the TLC. Within the TLC, individual IC fibers tend to run longitudinally. The injection of PHA-L into the lateral IC indicates that this subdivision sends a weak, bilateral projection to the TLC whose trajectory, morphology and distribution are similar to those of the projection from the medial IC. These results demonstrate that all subdivisions of the IC send projections to the TLC, suggesting that the IC may be one of the main sources of auditory input to this tectal nucleus.  相似文献   

18.
The major extrinsic projections to and from visual and auditory areas of cerebral cortex were examined in fetal cats between 46 and 60 days of gestation (E46-E60) using axonal transport of horseradish peroxidase either alone or in combination with tritiated proline. Projections to visual cortex from the dorsal lateral geniculate nucleus and lateral-posterior/pulvinar complex exist by E46, and those from the contralateral hemisphere, claustrum, putamen, and central lateral nucleus of the thalamus are present by E54-E56. In addition, cells in the medial geniculate nucleus project to auditory cortex by E55. At E54-E56 efferent cortical projections reach the contralateral hemisphere, claustrum, putamen, lateral-posterior/pulvinar complex and reticular nucleus of the thalamus. Cells in visual cortex also project to the dorsal and ventral lateral geniculate nuclei, pretectum, superior colliculus and pontine nuclei, and cells in auditory cortex project to the medial geniculate nucleus. Except for interhemispheric projections, all pathways demonstrated are ipsilateral, and projections linking cerebral cortex with claustrum, dorsal lateral geniculate nucleus and lateral-posterior/pulvinar complex are reciprocal. The reciprocal projections formed with the dorsal lateral geniculate nucleus, lateral-posterior/pulvinar complex and the claustrum show a greater degree of topological organization compared to the projections formed with the contralateral hemisphere and superior colliculus, which show little or no topological order. Therefore, the results of the present study show that the major extrinsic projections of the cat's visual and auditory cortical areas with subcortical structures are present by the eighth week of gestation, and that the origins and terminations of many of these projections are arranged topologically.  相似文献   

19.
J D Mikkelsen 《Neuroscience》1992,48(4):953-962
The intergeniculate leaflet of the thalamus is known to give rise to neuronal projections to the suprachiasmatic nuclei and the rostral part of the pineal gland. Via these projections the intergeniculate leaflet is considered to play a role in regulation of circadian rhythms. Iontophoretic injections of the anterograde tracer Phaseolus vulgaris-leucoagglutinin were placed in various subnuclei of the lateral geniculate nucleus in order to study the topographical organization of the crossed geniculogeniculate pathway in the rat. Injections involving neurons in the intergeniculate leaflet or the medial subpart of the ventral nucleus (which presumably is part of the intergeniculate leaflet of the thalamus too) gave rise to labeled nerve fibers in the opposite lateral geniculate nucleus. The axons contained in this pathway were followed either medially via the posterior commissure, or via the optic tracts and optic chiasm, to the contralateral hemisphere. In the contralateral lateral geniculate nucleus, the intergeniculate leaflet was most densely innervated, but a substantial innervation of the ventral lateral geniculate nucleus was observed as well. Only a few labeled fibers were observed in the dorsal subnucleus. However, the dense innervation of the contralateral intergeniculate leaflet not only covered the small zone between the dorsal and ventral nuclei, but also a dorsomedial part of the ventral nucleus that merged caudally with the lateral part of the zona incerta. In the remaining part of the ventral nucleus, single Phaseolus vulgaris-leucoagglutinin-labeled fibers surrounded specific cells. The demonstration of a divergent projection between the intergeniculate leaflet and specific subparts of the contralateral geniculate nuclei indicates that the two lateral geniculate nuclei are regulating each other. The function of this pathway is suggested to be related to the regulation of circadian rhythmicity, but experimental evidence for this hypothesis is still lacking.  相似文献   

20.
Summary The cerebellar nuclear projection from the lateral reticular nucleus (NRL) was studied in 29 cats by means of retrograde axonal transport after implantation of the crystalline wheat germ agglutinin-horseradish peroxidase (WGA-HRP) complex in the cerebellar nuclei. It was confirmed that all the cerebellar nuclei receive afferent fibres from the NRL with the strongest termination in the ipsilateral interposed nuclei. In addition, these experiments give evidence of a previously unrecognized topical pattern in the projection to the interposed nuclei, arranged according to the same principle as in the projection to the immediately overlying cerebellar cortex. Thus, the anterior interposed nucleus receives fibres from all parts of the main NRL, its rostral part especially from laterally situated neurons, while subsequent more caudal parts from more medially situated neurons, while the posterior interposed nucleus receives fibres mainly from the dorsomedial part of the main NRL.The cerebellar nuclear projection to the NRL was investigated in 15 cats using retrograde transport after ventral microiontophoretical ejections of the WGA-HRP complex in the main NRL. The contralateral rostral fastigial nucleus was confirmed as the main origin of this projection, but projecting neurons were, in addition, discovered rostrally in the anterior interposed and dentate nuclei on the same side. No topical differences could be observed following ejections in different parts of the NRL; the majority of the projecting neurons were always concentrated along the ventral and lateral borders of the fastigial nucleus and in the adjacent medial part of the anterior interposed nucleus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号