首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
After intestinal injury, both the number and type of intestinal epithelial cells must be restored. Intestinal stem cells, located at the base of the intestinal crypt, repopulate the depleted crypt in a process known as compensatory proliferation. In this issue of the JCI, Brown et al. describe a new mechanism by which this process is regulated (see the related article beginning on page 258). Surprisingly, they find that a subset of stromal cells present within the intestinal tissue and expressing the proliferative factor prostaglandin-endoperoxidase synthase 2 (Ptgs2) is repositioned next to the intestinal stem cell compartment where local production of PGE(2) controls injury-induced epithelial cell proliferation.  相似文献   

2.
Prostaglandins (PGs) are important mediators of epithelial integrity and function in the gastrointestinal tract. Relatively little is known, however, about the mechanism by which PGs affect stem cells in the intestine during normal epithelial turnover, or during wound repair. PGs are synthesized from arachidonate by either of two cyclooxygenases, cyclooxygenase-1 (Cox-1) or cyclooxygenase-2 (Cox-2), which are present in a wide variety of mamalian cells. Cox-1 is thought to be a constitutively expressed enzyme, and the expression of Cox-2 is inducible by cytokines or other stimuli in a variety of cell types. We investigated the role of PGs in mouse intestinal stem cell survival and proliferation following radiation injury. The number of surviving crypt stem cells was determined 3.5 d after irradiation by the microcolony assay. Radiation injury induced a dose-dependent decrease in the number of surviving crypts. Indomethacin, an inhibitor of Cox-1 and Cox-2, further reduced the number of surviving crypts in irradiated mice. The indomethacin dose response for inhibition of PGE2 production and reduction of crypt survival were similar. DimethylPGE2 reversed the indomethacin-induced decrease in crypt survival. Selective Cox-2 inhibitors had no effect on crypt survival. PGE2, Cox-1 mRNA, and Cox-1 protein levels all increase in the 3 d after irradiation. Immunohistochemistry for Cox-1 demonstrated localization in epithelial cells of the crypt in the unirradiated mouse, and in the regenerating crypt epithelium in the irradiated mouse. We conclude that radiation injury results in increased Cox-1 levels in crypt stem cells and their progeny, and that PGE2 produced through Cox-1 promotes crypt stem cell survival and proliferation.  相似文献   

3.
Prostaglandin E2 (PGE2) synthesis modulates the response to radiation injury in the mouse intestinal epithelium through effects on crypt survival and apoptosis; however, the downstream signaling events have not been elucidated. WT mice receiving 16,16-dimethyl PGE2 (dmPGE2) had fewer apoptotic cells per crypt than untreated mice. Apoptosis in Bax(-/-) mice receiving 12 Gy was approximately 50% less than in WT mice, and the ability of dmPGE2 to attenuate apoptosis was lost in Bax(-/-) mice. Positional analysis revealed that apoptosis in the Bax(-/-) mice was diminished only in the bax-expressing cells of the lower crypts and that in WT mice, dmPGE2 decreased apoptosis only in the bax-expressing cells. The HCT-116 intestinal cell line and Bax(-/-) HCT-116 recapitulated the apoptotic response of the mouse small intestine with regard to irradiation and dmPGE2. Irradiation of HCT-116 cells resulted in phosphorylation of AKT that was enhanced by dmPGE2 through transactivation of the EGFR. Inhibition of AKT phosphorylation prevented the reduction of apoptosis by dmPGE2 following radiation. Transfection of HCT-116 cells with a constitutively active AKT reduced apoptosis in irradiated cells to the same extent as in nontransfected cells treated with dmPGE2. Treatment with dmPGE2 did not alter bax or bcl-x expression but suppressed bax translocation to the mitochondrial membrane. Our in vivo studies indicate that there are bax-dependent and bax-independent radiation-induced apoptosis in the intestine but that only the bax-dependent apoptosis is reduced by dmPGE2. The in vitro studies indicate that dmPGE2, most likely by signaling through the E prostaglandin receptor EP2, reduces radiation-induced apoptosis through transactivation of the EGFR and enhanced activation of AKT and that this results in reduced bax translocation to the mitochondria.  相似文献   

4.
Commensal flora and pathogenic microbes influence the incidence of diabetes in animal models yet little is known about the mechanistic basis of these interactions. We hypothesized that Myd88, an adaptor molecule in the Toll-like-receptor (TLR) pathway, regulates pancreatic β-cell function and homeostasis. We first examined β-cells histologically and found that Myd88−/− mice have smaller islets in comparison to C57Bl/6 controls. Myd88−/− mice were nonetheless normoglycemic both at rest and after an intra-peritoneal glucose tolerance test (IPGTT). In contrast, after low-dose streptozotocin (STZ) challenge, Myd88−/−mice had an abnormal IPGTT relative to WT controls. Furthermore, Myd88−/− mice suffer enhanced β-cell apoptosis and have enhanced hepatic damage with delayed recovery upon low-dose STZ treatment. Finally, we treated WT mice with broad-spectrum oral antibiotics to deplete their commensal flora. In WT mice, low dose oral lipopolysaccharide, but not lipotichoic acid or antibiotics alone, strongly promoted enhanced glycemic control. These data suggest that Myd88 signaling and certain TLR ligands mediate a homeostatic effect on β-cells primarily in the setting of injury.  相似文献   

5.
OBJECTIVES: The aim of this study was to determine the effects of acute lung injury on the gut epithelium and examine mechanisms underlying changes in crypt proliferation and apoptosis. The relationship between severity and timing of lung injury to intestinal pathology was also examined. DESIGN: Randomized, controlled study. SETTING: University research laboratory. SUBJECTS: Genetically inbred mice. INTERVENTIONS: Following induction of acute lung injury, gut epithelial proliferation and apoptosis were assessed in a) C3H/HeN wild-type and C3H/HeJ mice, which lack functional Toll-like receptor 4 (n = 17); b) C57Bl/6 mice that received monoclonal anti-tumor necrosis factor-alpha or control antibody (n = 22); and c) C57Bl/6 wild-type and transgenic mice that overexpress Bcl-2 in their gut epithelium (n = 21). Intestinal epithelial proliferation and death were also examined in animals with differing degrees of lung inflammation (n = 24) as well as in a time course analysis following a fixed injury (n = 18). MEASUREMENTS AND MAIN RESULTS: Acute lung injury caused decreased proliferation and increased apoptosis in crypt epithelial cells in all animals studied. C3H/HeJ mice had higher levels of proliferation than C3H/HeN animals without additional changes in apoptosis. Anti-tumor necrosis factor-alpha antibody had no effect on gut epithelial proliferation or death. Overexpression of Bcl-2 did not change proliferation despite decreasing gut apoptosis. Proliferation and apoptosis were not correlated to severity of lung injury, as gut alterations were lost in mice with more severe acute lung injury. Changes in both gut epithelial proliferation and death were apparent within 12 hrs, but proliferation was decreased 36 hrs following acute lung injury while apoptosis returned to normal. CONCLUSIONS: Acute lung injury causes disparate effects on crypt proliferation and apoptosis, which occur, at least in part, through differing mechanisms involving Toll-like receptor 4 and Bcl-2. Severity of lung injury does not correlate with perturbations in proliferation or death in the gut epithelium, and acute lung injury-induced changes in intestinal epithelial proliferation persist longer than those in apoptosis.  相似文献   

6.
TLR4 activation mediates kidney ischemia/reperfusion injury   总被引:14,自引:1,他引:14       下载免费PDF全文
Ischemia/reperfusion injury (IRI) may activate innate immunity through the engagement of TLRs by endogenous ligands. TLR4 expressed within the kidney is a potential mediator of innate activation and inflammation. Using a mouse model of kidney IRI, we demonstrated a significant increase in TLR4 expression by tubular epithelial cells (TECs) and infiltrating leukocytes within the kidney following ischemia. TLR4 signaling through the MyD88-dependent pathway was required for the full development of kidney IRI, as both TLR4(-/-) and MyD88(-/-) mice were protected against kidney dysfunction, tubular damage, neutrophil and macrophage accumulation, and expression of proinflammatory cytokines and chemokines. In vitro, WT kidney TECs produced proinflammatory cytokines and chemokines and underwent apoptosis after ischemia. These effects were attenuated in TLR4(-/-) and MyD88(-/-) TECs. In addition, we demonstrated upregulation of the endogenous ligands high-mobility group box 1 (HMGB1), hyaluronan, and biglycan, providing circumstantial evidence that one or more of these ligands may be the source of TLR4 activation. To determine the relative contribution of TLR4 expression by parenchymal cells or leukocytes to kidney damage during IRI, we generated chimeric mice. TLR4(-/-) mice engrafted with WT hematopoietic cells had significantly lower serum creatinine and less tubular damage than WT mice reconstituted with TLR4(-/-) BM, suggesting that TLR4 signaling in intrinsic kidney cells plays the dominant role in mediating kidney damage.  相似文献   

7.
Dynamic and reciprocal epithelial-mesenchymal interactions are critical for the normal morphogenesis and maintenance of epithelia. Epimorphin has been identified as a unique molecule expressed by mesenchymal cells and myofibroblasts and has putative morphogenetic effects in multiple epithelial tissues, including intestine, skin, mammary gland, lung, gallbladder, and liver. To define the in vivo role of epimorphin, we created epimorphin-null mice by targeted inactivation of the epimorphin gene. Male epimorphin-/- mice are sterile due to abnormal testicular development and impaired spermatogenesis. Intestinal growth is increased in epimorphin-/- mice due to augmented crypt cell proliferation and crypt fission during the neonatal (suckling) period, mediated at least in part by changes in bone morphogenetic protein (Bmp) and Wnt/beta-catenin signaling pathways. Colonic mucosal injury and colitis induced by dextran sodium sulfate (DSS) are ameliorated in epimorphin-/- mice, probably due to the increased proliferative capacity of the epimorphin-/- colon. These in vivo findings support the notion that epimorphin is a key stromal regulator of epithelial cell proliferation and growth in the intestine. In addition, our studies demonstrate a novel and critical role for epimorphin in regulating testicular development and growth as well as spermatogenesis.  相似文献   

8.
During lung development, parabronchial SMC (PSMC) progenitors in the distal mesenchyme secrete fibroblast growth factor 10 (Fgf10), which acts on distal epithelial progenitors to promote their proliferation. β-catenin signaling within PSMC progenitors is essential for their maintenance, proliferation, and expression of Fgf10. Here, we report that this Wnt/Fgf10 embryonic signaling cascade is reactivated in mature PSMCs after naphthalene-induced injury to airway epithelium. Furthermore, we found that this paracrine Fgf10 action was essential for activating surviving variant Clara cells (the cells in the airway epithelium from which replacement epithelial cells originate) located at the bronchoalveolar duct junctions and adjacent to neuroendocrine bodies. After naphthalene injury, PSMCs secreted Fgf10 to activate Notch signaling and induce Snai1 expression in surviving variant Clara cells, which subsequently underwent a transient epithelial to mesenchymal transition to initiate the repair process. Epithelial Snai1 expression was important for regeneration after injury. We have therefore identified PSMCs as a stem cell niche for the variant Clara cells in the lung and established that paracrine Fgf10 signaling from the niche is critical for epithelial repair after naphthalene injury. These findings also have implications for understanding the misregulation of lung repair in asthma and cancer.  相似文献   

9.
10.
Commensal bacteria and their products provide beneficial effects to the mammalian gut by stimulating epithelial cell turnover and enhancing wound healing, without activating overt inflammation. We hypothesized that N-formylpeptide receptors, which bind bacterial N-formylpeptides and are expressed by intestinal epithelial cells, may contribute to these processes. Here we report that formylpeptide receptor-2 (FPR2), which we show is expressed on the apical and lateral membranes of colonic crypt epithelial cells, mediates N-formylpeptide–dependent epithelial cell proliferation and renewal. Colonic epithelial cells in FPR2-deficient mice displayed defects in commensal bacterium–dependent homeostasis as shown by the absence of responses to N-formylpeptide stimulation, shortened colonic crypts, reduced acute inflammatory responses to dextran sulfate sodium (DSS) challenge, delayed mucosal restoration after injury, and increased azoxymethane-induced tumorigenesis. These results indicate that FPR2 is critical in mediating homeostasis, inflammation, and epithelial repair processes in the colon.  相似文献   

11.
In patients with multiple sclerosis (MS) and mice with experimental autoimmune encephalomyelitis (EAE), inflammatory axonal injury is a major determinant of disability; however, the drivers of this injury are incompletely understood. Here, we used the EAE model and determined that the extracellular matrix protein matrilin-2 (MATN2) is an endogenous neuronal molecule that is regulated in association with inflammatory axonal injury. Compared with WT mice, mice harboring a deletion of Matn2 exhibited reduced disease severity and axon damage following induction of EAE. Evaluation of neuron-macrophage cocultures revealed that exogenous MATN2 specifically signals through TLR4 and directly induces expression of proinflammatory genes in macrophages, promoting axonal damage. Moreover, the MATN2-induced proinflammatory response was attenuated greatly in macrophages from Myd88 KO mice. Examination of brain sections from patients with MS revealed that MATN2 is expressed in lesions but not in normal-appearing white matter. Together, our results indicate that MATN2 is a deleterious endogenous neuroaxonal injury response signal that activates innate immune cells and could contribute to early axonal damage in CNS inflammatory diseases like MS.  相似文献   

12.
Gammadelta T lymphocytes make up approximately 50% of lymphocytes in the intestine. These cells have been shown to prime macrophages for TNF-alpha production after burn. We previously showed that neutralizing anti-TNF-alpha antibodies reduce mucosal atrophy by decreasing gut epithelial apoptosis after severe burn. We hypothesized that burn-induced mucosal turnover is diminished in T cell receptor delta gene knockout (TCR delta-/-) mice through diminished TNF-alpha activity. Forty-two wild-type and 42 TCR delta-/- mice (C57-BL6) were randomly assigned to burn and sham burn groups. The burn group underwent a 25% total body surface area (TBSA) scald burn. The proximal small intestine was harvested at 2, 12, and 48 h. To assess mucosal atrophy, mucosal height and cell numbers in the villi and crypts were determined on hematoxylin and eosin-stained tissue sections. Apoptotic gut epithelium was identified by terminal deoxyuridine nick-end labeling (TUNEL) staining, and cell proliferation was detected by immunostaining for proliferative cell nuclear antigen (PCNA). TNF-alpha mRNA expression was measured by RT-PCR. Caspase-8 activity was measured by colorimetric assay. Statistical analysis was performed with two-way analysis of variance and t testing. Significance was accepted at P < 0.05. Data are expressed as means +/- SEM. TNF-alpha mRNA expression was significantly decreased in TCR delta-/- mice at 2 h after burn. Gut epithelial apoptosis and proliferation in both wild-type and TCR delta-/- mice were significantly increased after burn, but TCR delta-/- mice had a significantly lower levels of apoptosis (P < 0.01) and proliferation (P < 0.05) when compared with wild-type mice. Burn-induced mucosal atrophy was identified in groups by decreasing villus height, crypt depth, and villus and crypt cell number (P < 0.001) compared with sham, but no difference was found between wild-type and TCR delta-/- mice. Caspase-8 activity was significantly diminished in TCR delta-/- mice compared with wild-type mice. Gammadelta T cells are associated with increased TNF-alpha expression and gut epithelial turnover in the small bowel after severe burn. However, absence of delta T cell receptor did not inhibit mucosal atrophy after severe burn. This study suggests that gut mucosal atrophy after severe burn is a multifactorial process associated with increased TNF-alpha activity.  相似文献   

13.
Fluid absorption in isolated perfused colonic crypts.   总被引:9,自引:2,他引:7       下载免费PDF全文
A spatial segregation of ion transport processes between crypt and surface epithelial cells is well-accepted and integrated into physiological and pathophysiological paradigms of small and large intestinal function: Absorptive processes are believed to be located in surface (and villous) cells, whereas secretory processes are believed to be present in crypt cells. Validation of this model requires direct determination of fluid movement in intestinal crypts. This study describes the adaptation of techniques from renal tubule microperfusion to hand-dissect and perfuse single, isolated crypts from rat distal colon to measure directly fluid movement. Morphologic analyses of the isolated crypt preparation revealed no extraepithelial cellular elements derived from the lamina propria, including myofibroblasts. In the basal state, crypts exhibited net fluid absorption (mean net fluid movement = 0.34 +/- 0.01 nl.mm-1.min-1), which was Na+ and partially HCO3- dependent. Addition of 1 mM dibutyryl-cyclic AMP, 60 nM vasoactive intestinal peptide, or 0.1 mM acetylcholine to the bath (serosal) solution reversibly induced net fluid secretion (net fluid movement approximately -0.35 +/- 0.01 nl.mm-1.min-1). These observations permit speculation that absorption is a constitutive transport function in crypt cells and that secretion by crypt cells is regulated by one or more neurohumoral agonists that are released in situ from lamina propria cells. The functional, intact polarized crypt described here that both absorbs and secretes will permit future studies that dissect the mechanisms that govern fluid and electrolyte movement in the colonic crypt.  相似文献   

14.
Signaling through toll-like receptor 4 (TLR4) plays an obligate role in burn-related myocardial dysfunction. We hypothesized that signaling through CD14, a cellular receptor for endotoxin that lacks a transmembrane domain but is coupled to TLR4, also plays a role in postburn myocardial inflammation and dysfunction. Burn covering 40% total body surface area (or sham burn for controls) was produced in wild-type (WT) and CD14 knockout (KO) as well as vehicle-treated and geldanamycin-treated WT mice (1 microg/g body weight) to inhibit CD14 signaling. Groups included (1) WT shams, (2) CD14 KO sham, (3) WT burns, (4) CD14 KO burns, (5) vehicle-treated WT shams, (6) geldanamycin-treated WT shams, (7) vehicle-treated WT burns, and (8) geldanamycin-treated WT burns. Twenty-four hours after burn, cardiac function (Langendorff) and cardiomyocyte secretion of inflammatory cytokines TNF-alpha, IL-1 beta, and IL-6 (in pg/mL; 5 x 10(4) myocytes) were studied in all groups. Relative to sham WT controls, burn trauma in increased cardiac myocyte secretion of inflammatory cytokines (TNF-alpha, IL-1 beta, and IL-6 rose from 59 +/- 10 to 171 +/- 8; 6 +/- 0.2 to 78 +/- 1; and 88 +/- 3 to 170 +/- 12 pg/mL, respectively; P < 0.05) and produced robust cardiac contractile dysfunction (left ventricular pressure and +dP/dt fell from 105 +/- 4 to 73 +/- 5 mmHg and 2,400 +/- 73 to 1,803 +/- 90 mmHg/s; P < 0.05). Inability to signal through the CD14/TLR4 pathway (induced by CD14/KO or inhibition of CD14 expression by administration of geldanamycin) attenuated TNF-alpha, IL-1 beta, and IL-6 production in response to burn injury and improved postburn myocardial contractile function. Our data suggest that signaling through the CD14 pathway plays an obligate role in cardiac inflammation/dysfunction which occurs after major burn injury.  相似文献   

15.
Prostaglandin (PG)I2 (prostacyclin [PGI]) and PGE2 are abundantly present in the synovial fluid of rheumatoid arthritis (RA) patients. Although the role of PGE2 in RA has been well studied, how much PGI2 contributes to RA is little known. To examine this issue, we backcrossed mice lacking the PGI receptor (IP) to the DBA/1J strain and subjected them to collagen-induced arthritis (CIA). IP-deficient (IP-/-) mice exhibited significant reduction in arthritic scores compared with wild-type (WT) mice, despite anti-collagen antibody production and complement activation similar to WT mice. IP-/- mice also showed significant reduction in contents of proinflammatory cytokines, such as interleukin (IL)-6 in arthritic paws. Consistently, the addition of an IP agonist to cultured synovial fibroblasts significantly enhanced IL-6 production and induced expression of other arthritis-related genes. On the other hand, loss or inhibition of each PGE receptor subtype alone did not affect elicitation of inflammation in CIA. However, a partial but significant suppression of CIA was achieved by the combined inhibition of EP2 and EP4. Our results show significant roles of both PGI2-IP and PGE2-EP2/EP4 signaling in the development of CIA, and suggest that inhibition of PGE2 synthesis alone may not be sufficient for suppression of RA symptoms.  相似文献   

16.
Gut epithelial apoptosis is increased in human studies and animal models of noninfectious inflammation and sepsis. Elevated intestinal cell death appears to be physiologically significant in sepsis. Previous studies demonstrate that overexpression of the antiapoptotic protein Bcl-2 in the gut epithelium of transgenic mice is associated with improved survival from Pseudomonas aeruginosa pneumonia and cecal ligation and puncture. The functional significance of elevated gut apoptosis in noninfectious inflammation has not been examined. We hypothesized that intestinal apoptosis would be detrimental to survival in noninfectious critical illness. To address this issue, acute lung injury (ALI) was induced with intratracheal injection of lipopolysaccharide (LPS, 800 microg) in wild-type (WT) FVB/N mice and transgenic mice that overexpress Bcl-2 in their intestinal epithelium. Guts were harvested at 12, 24, 48, and 72 h and assessed for apoptosis by both hematoxylin and eosin and active caspase-3 staining in 100 contiguous crypts. ALI increased gut epithelial apoptosis 12 h after LPS instillation compared with shams (P < 0.01), whereas overexpression of Bcl-2 decreased intestinal apoptosis compared with WT animals with ALI when assayed by active caspase-3 (P < 0.05). Plasma levels of tumor necrosis factor alpha, interleukin (IL)-6, and IL-10 were similar between WT and transgenic animals with ALI, both of which had elevated IL-10 levels at 12 h and elevated IL-6 levels at 24 h compared with sham animals. In a separate experiment, transgenic and WT animals with ALI were followed for mortality to determine whether gut overexpression of Bcl-2 conferred a survival advantage. Survival at 10 days was 73% in WT animals (n = 33) and 65% in Bcl-2 animals (n = 23, P = ns). These results indicate that while gut epithelial apoptosis is elevated in multiple models of critical illness, prevention of intestinal cell death by overexpression of Bcl-2 is associated with a disparate survival effect between sepsis and noninfectious inflammation.  相似文献   

17.
Patients with prolonged ulcerative colitis (UC) frequently develop colorectal adenocarcinoma for reasons that are not fully clear. To analyze inflammation-associated colonic tumorigenesis, we developed a chronic form of oxazolone-induced colitis in mice that, similar to UC, was distinguished by the presence of IL-13-producing NKT cells. In this model, the induction of tumors using azoxymethane was accompanied by the coappearance of F4/80+CD11b(high)Gr1(low) M2 macrophages, cells that undergo polarization by IL-13 and are absent in tumors that lack high level IL-13 production. Importantly, this subset of macrophages was a source of tumor-promoting factors, including IL-6. Similar to dextran sodium sulfate-induced colitis, F4/80+CD11b(high)Gr1(intermediate) macrophages were present in the mouse model of chronic oxazolone-induced colitis and may influence tumor development through production of TGF-β1, a cytokine that inhibits tumor immunosurveillance. Finally, while robust chronic oxazolone-induced colitis developed in myeloid differentiation primary response gene 88-deficient (Myd88-/-) mice, these mice did not support tumor development. The inhibition of tumor development in Myd88-/- mice correlated with cessation of IL-6 and TGF-β1 production by M2 and F4/80+CD11b(high)Gr1(intermediate) macrophages, respectively, and was reversed by exogenous IL-6. These data show that an UC-like inflammation may facilitate tumor development by providing a milieu favoring development of MyD88-dependent tumor-supporting macrophages.  相似文献   

18.
Nonsteroidal antiinflammatories are known to suppress incidence and progression of malignancies including colorectal cancers. However, the precise mechanism of this action remains unknown. Using prostaglandin (PG) receptor knockout mice, we have evaluated a role of PGs in tumor-associated angiogenesis and tumor growth, and identified PG receptors involved. Sarcoma-180 cells implanted in wild-type (WT) mice formed a tumor with extensive angiogenesis, which was greatly suppressed by specific inhibitors for cyclooxygenase (COX)-2 but not for COX-1. Angiogenesis in sponge implantation model, which can mimic tumor-stromal angiogenesis, was markedly suppressed in mice lacking EP3 (EP3(-/-)) with reduced expression of vascular endothelial growth factor (VEGF) around the sponge implants. Further, implanted tumor growth (sarcoma-180, Lewis lung carcinoma) was markedly suppressed in EP3(-/-), in which tumor-associated angiogenesis was also reduced. Immunohistochemical analysis revealed that major VEGF-expressing cells in the stroma were CD3/Mac-1 double-negative fibroblasts, and that VEGF-expression in the stroma was markedly reduced in EP3(-/-), compared with WT. Application of an EP3 receptor antagonist inhibited tumor growth and angiogenesis in WT, but not in EP3(-/-). These results demonstrate significance of host stromal PGE(2)-EP3 receptor signaling in tumor development and angiogenesis. An EP3 receptor antagonist may be a candidate of chemopreventive agents effective for malignant tumors.  相似文献   

19.
Priming response of neutrophil in clinical-related conditions and its mechanism has not been clarified. This study is to determine if thermal injury-induced priming effect of neutrophil is TNF-alpha and p38 dependent. In Experiment 1, bone marrow neutrophil of wild-type (WT) mice and TNF receptor superfamily, member 1A (Tnfrsf1a-/-) mice were harvested and treated with TNF-alpha, platelet activating factor (PAF) first, then with or without N-formyl-Met-Leu-Phe (fMLP). Reactive oxygen species (ROS) production and p38 phosphorylation were evaluated. In Experiment 2, ROS of neutrophil from WT and Tnfrsf1a-/- mice at 3 or 15 h after thermal injury with or without fMLP treatment were assayed. In Experiment 3, p38 and p44/42 phosphorylation, CXCR2 and macrophage inflammatory protein-2 expression, apoptotic ratio, and activating protein-1 (AP-1) and nuclear factor-kappa B (NF-kappaB) activation of neutrophil from WT and Tnfrsf1a-/- mice at 3 h after thermal injury were tested. FMLP treatment after TNF-alpha or PAF incubation of neutrophil increased ROS of PAF-treated but not TNF-alpha-treated neutrophil. PAF treatment increased ROS of neutrophil in WT and Tnfrsf1a-/- mice. FMLP increased ROS of neutrophil of WT mice at 3 h after thermal but not that of Tnfrsf1a-/- mice. TNF-alpha and PAF increased p38 phosphorylation of neutrophil in WT but not that in Tnfrsf1a-/- mice. Thermal injury increased p38 phosphorylation, NF-kappaB activation, and decreased apoptosis of neutrophil at 3 h after thermal injury in WT but not in Tnfrsf1a-/- mice. Thermal injury also induced AP-1 activation and ROS production on neutrophil at 3 and 15 h after thermal injury, respectively, in WT and Tnfrsf1a-/- mice. Collectively, fMLP stimulates ROS of neutrophil through TNF-alpha signaling; PAF stimulates that of neutrophil through both TNF-alpha-dependent and TNF-alpha-independent pathway. Thermal injury induces a TNF-alpha-dependent priming effect and a TNF-alpha-independent activation effect on neutrophil at 3 and 15 h after thermal injury, respectively. NF-kappaB signaling pathway plays an important role in neutrophil activation. Thermal injury also induces TNF-alpha-dependent delay apoptosis and TNF-alpha-independent AP-1 activation of neutrophil at 3 h after thermal injury. Taken together with the TNF-alpha-dependent p38 and NF-kappaB activation in primed neutrophil, we conclude that thermal injury-induced priming effect of polymorphonuclear neutrophil is TNF-alpha and p38 dependent.  相似文献   

20.
Production of prostaglandin E(2) (PGE(2)) is enhanced during inflammation, and this lipid mediator can dramatically modulate immune responses. There are four receptors for PGE(2) (EP1-EP4) with unique patterns of expression and different coupling to intracellular signaling pathways. To identify the EP receptors that regulate cellular immune responses, we used mouse lines in which the genes encoding each of the four EP receptors were disrupted by gene targeting. Using the mixed lymphocyte response (MLR) as a model cellular immune response, we confirmed that PGE(2) has potent antiproliferative effects on wild-type responder cells. The absence of either the EP1 or EP3 receptors did not alter the inhibitory response to PGE(2) in the MLR. In contrast, when responder cells lacked the EP2 receptor, PGE(2) had little effect on proliferation. Modest resistance to PGE(2) was also observed in EP4-/- responder cells. Reconstitution experiments suggest that EP2 receptors primarily inhibit the MLR through direct actions on T cells. Furthermore, PGE(2) modulates macrophage function by activating the EP4 receptor and thereby inhibiting cytokine release. Thus, PGE(2) regulates cellular immune responses through distinct EP receptors on different immune cell populations: EP2 receptors directly inhibit T cell proliferation while EP2 and EP4 receptors regulate antigen presenting cells functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号