首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Ghrelin, the endogenous ligand for the GH secretagogue receptor (GHS-R), has been primarily linked to the central neuroendocrine regulation of GH secretion and food intake, although additional peripheral actions of ghrelin have also been reported. In this context, the expression of ghrelin and its cognate receptor has been recently demonstrated in rat testis, suggesting a role for this molecule in the direct control of male gonadal function. However, whether this signaling system is present in human testis remains largely unexplored. In this study we report the expression and cellular location of ghrelin and its functional receptor, the type 1a GHS-R, in adult human testis. In addition, evaluation of ghrelin and GHS-R1a immunoreactivity in testicular tumors and dysgenetic tissue is presented. The expression of the mRNAs encoding ghrelin and GHS-R1a was demonstrated in human testis specimens by RT-PCR, followed by direct sequencing. In normal testis, ghrelin immunostaining was demonstrated in interstitial Leydig cells and, at lower intensity, in Sertoli cells within the seminiferous tubules. In contrast, ghrelin was not detected in germ cells at any stage of spermatogenesis. The cognate ghrelin receptor showed a wider pattern of cellular distribution, with detectable GHS-R1a protein in germ cells, mainly in pachytene spermatocytes, as well as in somatic Sertoli and Leydig cells. Ghrelin immunoreactivity was absent in poorly differentiated Leydig cell tumor, which retained the expression of GHS-R1a peptide. In contrast, highly differentiated Leydig cell tumors expressed both the ligand and the receptor. The expression of ghrelin and GHS-R1a was also detected in dysgenetic Sertoli cell-only seminiferous tubules, whereas germ cell tumors (seminoma and embryonal carcinoma) were negative for ghrelin and were weakly positive for GHS-R1a. In conclusion, our results demonstrate that ghrelin and the type 1a GHS-R are expressed in adult human testis and testicular tumors. Overall, the expression of ghrelin and its functional receptor in human and rat testis, with roughly similar patterns of cellular distribution, is highly suggestive of a conserved role for this newly discovered molecule in the regulation of mammalian testicular function.  相似文献   

2.
Ghrelin is a novel 28-amino acid peptide identified as the endogenous ligand for the GH secretagogue receptor (GHS-R). Besides its hallmark central neuroendocrine effects in the control of GH secretion and food intake, an unexpected reproductive facet of ghrelin has recently emerged because expression of this molecule and its cognate receptor has been demonstrated in rat testis. However, whether this signaling system is present in human gonads remains to be evaluated. In this study, we have assessed the presence and cellular location of ghrelin and its functional receptor, namely the type 1a GHS-R, in the cyclic human ovary by means of immunohistochemistry using specific polyclonal antibodies. Strong ghrelin immunostaining was demonstrated in ovarian hilus interstitial cells. In contrast, ghrelin signal was not detected in ovarian follicles at any developmental stage, nor was it present in newly formed corpora lutea (CL) at very early development. However, specific ghrelin immunoreactivity was clearly observed in young and mature CL, whereas expression of the peptide disappeared in regressing luteal tissue. Concerning the cognate receptor, ovarian expression of GHS-R1a protein showed a wider pattern of tissue distribution, with detectable specific signal in oocytes as well as somatic follicular cells; luteal cells from young, mature, old, and regressing CL; and interstitial hilus cells. Of particular note, follicular GHS-R1a peptide expression paralleled follicle development with stronger immunostaining in granulosa and theca layers of healthy antral follicles. In conclusion, our results are the first to demonstrate that ghrelin and its functional type 1a receptor are expressed in the cyclic human ovary with distinct patterns of cellular location. The presence of both components (ligand and receptor) of the ghrelin signaling system within the human ovary opens up the possibility of a potential regulatory role of this novel molecule in ovarian function under physiological and pathophysiological conditions.  相似文献   

3.
FSH and LH are vital endocrine regulators of gonadal growth and function. However, locally produced--paracrine--steroidal and nonsteroidal substances mediate and modulate gonadotrophin action on gonadal cells. The testis and ovary share obvious morphological and functional homologies. Optimal functioning of the spermatogenic (Sertoli cells) and follicular (granulosa cells) epithelia depends on both endocrine stimulation by FSH and paracrine stimulation by androgen. In each gland, inhibins and related factors produced by FSH-stimulated Sertoli (testis) cells or granulosa (ovary) cells reciprocally modulate LH-stimulated androgen synthesis in neighbouring Leydig (testis) or thecal (ovary) cells. Thus androgens and inhibins are "unisex" paracrine regulators that operate in similar ways in both ovary and testis.  相似文献   

4.
Novel expression and functional role of ghrelin in rat testis.   总被引:35,自引:0,他引:35  
Ghrelin, the endogenous ligand for the GH-secretagogue receptor (GHS-R), is a recently cloned peptide, primarily expressed in the stomach and hypothalamus, that acts at central levels to elicit GH release and, notably, to regulate food intake. However, the possibility of additional, as yet unknown, peripheral effects of ghrelin cannot be ruled out. In the present communication, we provide evidence for the novel expression of ghrelin and its functional receptor in rat testis. Testicular ghrelin gene expression was demonstrated throughout postnatal development, and ghrelin protein was detected in Leydig cells from adult testis specimens. Accordingly, ghrelin mRNA signal became undetectable in rat testis following selective Leydig cell elimination. In addition, testicular expression of the gene encoding the cognate ghrelin receptor was observed from the infantile period to adulthood, with the GHS-R mRNA being persistently expressed after selective withdrawal of mature Leydig cells. From a functional standpoint, ghrelin, in a dose-dependent manner, induced an average 30% inhibition of human CG- and cAMP-stimulated T secretion in vitro. This inhibitory effect was associated with significant decreases in human CG-stimulated expression levels of the mRNAs encoding steroid acute regulatory protein, and P450 cholesterol side-chain cleavage, 3beta-hydroxy steroid dehydrogenase, and 17beta-hydroxy steroid dehydrogenase type III enzymes. Overall, our data are the first to provide evidence for a possible direct action of ghrelin in the control of testicular function. Furthermore, the present results underscore an unexpected role of ghrelin as signal with ability to potentially modulate not only growth and body weight homeostasis but also reproductive function, a phenomenon also demonstrated recently for the adipocyte-derived hormone, leptin.  相似文献   

5.
Nesfatin-1, product of the precursor NEFA/nucleobindin2 (NUCB2), was initially identified as anorectic hypothalamic neuropeptide, acting in a leptin-independent manner. In addition to its central role in the control of energy homeostasis, evidence has mounted recently that nesfatin-1 is also produced in peripheral metabolic tissues, such as pancreas, adipose, and gut. Moreover, nesfatin-1 has been shown to participate in the control of body functions gated by whole-body energy homeostasis, including puberty onset. Yet, whether, as is the case for other metabolic neuropeptides, NUCB2/nesfatin-1 participates in the direct control of gonadal function remains unexplored. We document here for the first time the expression of NUCB2 mRNA in rat, mouse, and human testes, where NUCB2/nesfatin-1 protein was identified in interstitial mature Leydig cells. Yet in rats, NUCB2/nesfatin-1 became expressed in Sertoli cells upon Leydig cell elimination and was also detected in Leydig cell progenitors. Although NUCB2 mRNA levels did not overtly change in rat testis during pubertal maturation and after short-term fasting, NUCB2/nesfatin-1 content significantly increased along the puberty-to-adult transition and was markedly suppressed after fasting. In addition, testicular NUCB2/nesfatin-1 expression was up-regulated by pituitary LH, because hypophysectomy decreased, whereas human choriogonadotropin (super-agonist of LH receptors) replacement enhanced, NUCB2/nesfatin-1 mRNA and peptide levels. Finally, nesfatin-1 increased human choriogonadotropin-stimulated testosterone secretion by rat testicular explants ex vivo. Our data are the first to disclose the presence and functional role of NUCB2/nesfatin-1 in the testis, where its expression is regulated by developmental, metabolic, and hormonal cues as well as by Leydig cell-derived factors. Our observations expand the reproductive dimension of nesfatin-1, which may operate directly at the testicular level to link energy homeostasis, puberty onset, and gonadal function.  相似文献   

6.
Experimental diabetes in animals induces marked alterations of gonadal androgenic functions: reduction in testis weight, morphological alterations of Leydig cells, decrease of plasma testosterone levels and reduction of the ability of the Leydig cells to secrete testosterone in vitro. hCG treatment restores the testicular endocrine function; in addition several morphological and functional changes are observed in the hypothalamic-hypophyseal-gonadal axis which are probably responsible for the testicular lesions found in untreated experimental diabetes mellitus. In diabetic men, the hypothalamic-hypophyseal-gonadal axis seems to be normal (with exception of individual cases); Mean plasma levels of testosterone, LH, FSH and the responses of the gonadal axis to hCG and LHRH are normal.  相似文献   

7.
Little is known about the ability of the fetal primate gonads to produce inhibin/activin. We investigated the presence of the alpha-, beta A-, and beta B-subunits of inhibin/activin in fetal human (16-23 weeks gestational age) and rhesus monkey (days 150-157 of gestation; term = 165 days) testes and ovaries by immunocytochemistry. The regulation of alpha-inhibin secretion by gonadotropins was studied in fetal testicular cultures. In the human fetal testis, alpha-subunit immunostaining was found in interstitial and intratubular cells, while beta A- and beta B-subunit immunostaining occurred in clusters of Leydig cells that were clearly demarcated from groups of Leydig cells that were immunonegative. In the late gestational monkey testis, the alpha-subunit was localized in tubular cells, and the beta B-subunit was present in the tubules and interstitium. Testicular cells from midgestation human testes secreted detectable immunoreactive alpha-inhibin in response to FSH and hCG stimulation; alpha-inhibin levels were significantly higher after hCG than FSH. In contrast, levels of alpha-inhibin secreted by rhesus monkey testicular cells were significantly increased by FSH, but not hCG. In the ovary, only weak beta B-subunit immunoreactivity was detected in granulosa cells of a few primary follicles from midgestational human fetal ovaries. In contrast, all three subunits were found in granulosa cells of numerous primary and secondary follicles in the late gestation rhesus monkey ovary. In light of recent evidence that inhibins/activins have actions on gonadal differentiation and growth modulation in vitro, as well as endocrine effects on the fetal pituitary, we propose that these proteins may have intragonadal and endocrine roles in human and subhuman intrauterine gonadal development.  相似文献   

8.
Paracrine and endocrine roles of insulin-like factor 3   总被引:2,自引:0,他引:2  
Insulin-like factor 3 (INSL3) is expressed in Leydig cells of the testis and theca cells of the ovary. This peptide affects testicular descent by acting on gubernaculum via its specific receptor leucine-rich repeat-containing G protein-coupled receptor 8 (LGR8). From initial animal data showing the cryptorchid phenotype of Insl3/Lgr8 mutants, an extensive search for mutations in INSL3 and LGR8 genes was undertaken in human patients with cryptorchidism, and a frequency of mutation of 4-5% has been detected. However, definitive proofs of a causative role for some of these mutations are still lacking. More recent data suggest additional paracrine (in the testis and ovary) and endocrine actions of INSL3 in adults. INSL3 circulates at high concentrations in serum of adult males and its production is dependent on the differentiation effect of LH. Therefore, INSL3 is increasingly used as a specific marker of Leydig cell differentiation and function.  相似文献   

9.
Ghrelin, the endogenous ligand of the GH secretagogue receptor (GHS-R), is a newly identified, ubiquitously expressed molecule that has been involved in a wide array of endocrine and nonendocrine functions, including cell proliferation. In this context, our group recently reported the expression of ghrelin and its functional receptor, the GHS-R type 1a, in the human ovary and testis as well as several testicular tumors. Ovarian malignancies, however, remain unexplored. Notably, a vast majority of ovarian tumors derive from the surface epithelium, which originates from the celomic epithelium. Considering the proven expression of ghrelin in the human ovary, and its reported effects in the proliferative activity of different cancer cell lines, we aimed at evaluating whether the ovarian surface epithelium as well as related reproductive structures and tumors are potential targets of ghrelin. To this end, expression of GHS-R1a was analyzed by immunohistochemistry in a panel of normal, metaplastic, and neoplastic tissues. Uniform GHS-R1a immunostaining was detected throughout the ovarian surface epithelium. Likewise, ciliated cells within the fallopian tube epithelium showed strong GHS-R1a expression. In contrast, other celomic derivatives, such as endometrium and endocervix, were negative for GHS-R1a immunoreactivity. In keeping with data from normal tissues, inclusion cysts from the surface epithelium expressed GHS-R1a. Similarly, benign serous tumors resembling fallopian tube epithelium were also positive, whereas serous cystadenocarcinomas showed GHS-R1a expression only in highly differentiated specimens. In contrast, other neoplasms, such as mucinous cystadenomas and cystadenocarcinomas, endometrioid tumors, clear cell carcinomas, and Brenner tumors, did not express GHS-R1a. In conclusion, our results demonstrate that the ovarian surface epithelium and related tumors are potential targets for systemic or locally produced ghrelin because they express the functional type 1a GHS-R. Considering the relevant role of the ovarian surface epithelium in key physiological events (such as ovulation) and neoplastic transformation of the ovary, the potential actions of ghrelin in those phenomena merit further investigation.  相似文献   

10.
The purpose of this study was to assess the concentrations of LH that Leydig cells are exposed to upon in vivo stimulation of steroidogenesis. The concentrations of LH were measured in rats in testicular interstitial extracellular fluid, seminiferous tubular fluid and blood plasma from testicular veins from one testis before and from the other testis of the same rats after an intravenous injection of gonadotrophin-releasing hormone (GnRH) or saline, and compared with the concentrations in blood plasma from a peripheral vein. The concentrations of LH in interstitial fluid surrounding the Leydig cells before the injections were about 10% of the levels in blood plasma, and showed no significant rise at 15 min and a much smaller rise at later times in rats injected with GnRH than those seen in blood plasma from either of the two sources, which were similar. The concentrations of LH in tubular fluid were even lower and showed no change after GnRH. Testosterone concentrations in testicular cells, interstitial fluid and testicular venous blood plasma were significantly increased by 15 min after GnRH, when compared with saline-injected controls, with no change in the levels in tubular fluid. The rise in testosterone concentrations in testicular venous plasma after GnRH was smaller than those in the cells and interstitial fluid. In conclusion, the concentrations of LH reaching the testicular interstitial fluid were only about one-tenth of that measured in the circulation, presumably because the endothelial cells restrict access of the hormone to the interstitial fluid. This indicated that either the Leydig cells are extremely sensitive to LH stimulation or that testicular endothelial cells modulate the action of LH on the Leydig cells.  相似文献   

11.
Inhibin, a gonadal hormone capable of preferential suppression of pituitary follicle-stimulating hormone (FSH) secretion, has recently been purified. The major form of this protein is an alpha beta heterodimer encoded by two separate genes. In contrast to the FSH-suppressing action of the alpha beta heterodimer, the beta beta homodimer stimulates FSH secretion. Luteinizing hormone (LH)-secreting pituitary cells and gonadal androgen-producing cells have long been shown to form a closed-loop feedback axis. Based on recent studies demonstrating the FSH stimulation of inhibin biosynthesis by ovarian granulosa and testis Sertoli cells, an additional closed-loop feedback axis exists between pituitary FSH- and gonadal inhibin-producing cells. Because uncharacterized Sertoli cell factors have been suggested to either stimulate or inhibit androgen production by testicular Leydig cells, we have tested the intragonadal paracrine actions of heterodimers and homodimers of inhibin subunits. In primary cultures of testis cells, the alpha beta heterodimer of inhibin enhances Leydig cell androgen biosynthesis stimulated by LH, whereas the beta beta homodimer suppresses androgen production. Furthermore, similar modulatory actions of inhibin-related proteins were found in cultured ovarian theca-interstitial cells and theca explants treated with LH. In contrast, treatment with the inhibin-related proteins alone did not affect gonadal steroidogenesis. Our data indicate that the inhibin-related gene products synthesized by Sertoli and granulosa cells may form heterodimers or homodimers to serve as intragonadal paracrine signals in the modulation of LH-stimulated androgen biosynthesis and allow cross-communication between the two feedback loops.  相似文献   

12.
13.
Ghrelin is a novel gastrointestinal hormone produced by rat and human gastric X-like neuroendocrine cells, which strongly stimulates GH secretion and influences energy balance, gastric motility, and acid secretion. Ghrelin is expressed in pituitary and gastrointestinal endocrine tumors. It binds to the GH secretagogue receptor (GHS-R), which is present in a wide variety of central and peripheral human tissues. The aim of the present study was 2-fold: 1) to determine, by immunohistochemistry and mRNA analysis, whether pancreatic islet cells produce ghrelin and express GHS-R; and 2) to investigate ghrelin and GHS-R expression in pancreatic endocrine tumors. Seven cases of nonneoplastic pancreatic tissue and 28 endocrine tumors were studied. In pancreatic islets, ghrelin immunoreactivity was present in all cases and confined to beta-cells. Eleven of the 28 (39%) endocrine tumors were immunoreactive for ghrelin. In situ hybridization and RT-PCR confirmed the immunohistochemical data for both tumors and islets but also revealed ghrelin mRNA in 8 and 11 additional tumors, respectively. GHS-R 1a and 1b mRNAs were present in 7 of 28 and 14 of 28 tumors, respectively, studied by RT-PCR. These findings demonstrate that ghrelin production is not restricted to the stomach but is also present in pancreatic beta-cells and endocrine tumors (regardless of the type of pancreatic hormone produced, if any). Expression of GHS-R in some of the endocrine tumors studied indicates that autocrine/paracrine circuits may be active in neoplastic conditions.  相似文献   

14.
Ghrelin has emerged as putative regulator of an array of endocrine and nonendocrine functions, including cell proliferation. Recently, we provided evidence for the expression of ghrelin in mature, but not in undifferentiated, Leydig cells of rat and human testis. Yet testicular actions of ghrelin, other than modulation of testosterone secretion, remain unexplored. In the present study we evaluated the effects of ghrelin on proliferation of Leydig cell precursors during puberty and after selective elimination of mature Leydig cells by treatment with ethylene dimethane sulfonate. In these settings, intratesticular injection of ghrelin significantly decreased the proliferative activity of differentiating immature Leydig cells, estimated by 5-bromodeoxyuridine labeling. This response was selective and associated, in ethylene dimethane sulfonate-treated animals, with a decrease in the mRNA levels of stem cell factor (SCF), i.e. a key signal in spermatogenesis and a putative regulator of Leydig cell development. Thus, the effects of ghrelin on SCF gene expression were evaluated. In adult rats, ghrelin induced a significant decrease in SCF mRNA levels in vivo. Such an inhibitory action was also detected in vitro using cultures of staged seminiferous tubules. The inhibitory effect of ghrelin in vivo was dependent on proper FSH input, because it was detected in hypophysectomized rats only after FSH replacement. Overall, it is proposed that acquisition of ghrelin expression by Leydig cell precursors during differentiation may operate as a self-regulatory signal for the inhibition of the proliferative activity of this cell type through direct or indirect (i.e. SCF-mediated) mechanisms. In addition, we present novel evidence for the ability of ghrelin to modulate the expression of the SCF gene, which may have implications for the mode of action of this molecule in the testis as well as in other physiological systems.  相似文献   

15.
16.
CONTEXT: Experimental and epidemiological studies have indicated the adverse impact of changing estrogen [17beta-estradiol (E2)] milieu or of endocrine disrupters on testis development and function. OBJECTIVE: This study examines the direct impact of elevated E2 levels on gonadotropin-induced pubertal testis development and function in the primate. DESIGN: Juvenile monkeys, which have characteristically little endogenous gonadotropin secretion, were treated with pulsatile infusions of recombinant monkey (rm) FSH (rmFSH) and LH (rmLH) in the presence (experiment 1, approximately 100 pg/ml for about 15-20 wk; experiment 2, approximately 400 pg/ml for about 5 wk) or absence (control group) of elevated E2 in the circulation. Changes in circulating concentrations of E2, gonadotropins, testosterone (T), and inhibin B were monitored throughout the study. The number of Leydig cells per testis was determined after immunohistochemical staining for 3-beta hydroxysteroid dehydrogenase in experiment 2. RESULTS: Exogenous gonadotropin treatment produced physiological, episodic, and similar circulating concentrations of FSH and LH in both groups. Exposure to approximately 100 pg/ml of E2 appeared to blunt testicular T production. Exposure to approximately 400 pg/ml of E2 led to a significant (approximately 75%) inhibition of T production together with a marked (approximately 40%) decrease in Leydig cell numbers per testis and a notable inhibition in the growth of the testis. In contrast, E2 exposure had little effect on inhibin B production. CONCLUSIONS: The direct testicular impact of elevated E2 is on Leydig cell number, T production, and testicular growth, but not on inhibin B production. This experimental paradigm provides a powerful primate model for the examination of the direct impact of E2 or other endocrine disrupters on pubertal testicular development.  相似文献   

17.
18.
An increasing number of long-term surviving bone marrow transplantation (BMT) recipients have recovered from their primary disease but are at risk of developing failure of endocrine organs. We investigated 30 recipients who underwent allogeneic BMT during childhood or adolescence. Testicular growth and function were evaluated by serial measurement of testicular volume, basal luteinizing hormone (LH), basal follicle-stimulating hormone (FSH) and testosterone levels and by gonadotropin-releasing hormone (GnRH) provocative test. Puberty started spontaneously in all patients. However, all except four patients had normal testosterone levels with elevated LH, indicating partial Leydig cell dysfunction. Standard deviation scores of testicular volume at last evaluation were statistically lower in those who had received irradiation without gonadal shield compared to those with (-2.04+/-0.45 vs -0.30+/-1.17, respectively, P<0.005), suggesting damage of testicular germinal epithelium owing to gonadal irradiation. Serial measurement of testicular volume showed a tendency of growth to stop at 10 ml in those without gonadal shield. Among the 30 patients, only one patient has fathered a child after reaching spontaneous puberty. These results suggest that gonadal shield is effective to protect testicular growth and function, although the attainment of fertility is difficult to achieve.  相似文献   

19.
Ethylene dimethanesulfonate destroys Leydig cells in the rat testis   总被引:1,自引:0,他引:1  
Ultrastructural changes in the interstitial cells of the adult rat testis were studied up to 45 days after administration of a single dose (100 mg/kg) of the antifertility compound ethylene dimethanesulfonate (EDS). Most Leydig cells showed degenerative changes 12 h after treatment. Twenty-four and 48 h after injection, all Leydig cells observed showed gross degenerative changes. At 4 and 14 days, intact Leydig cells could not be identified in the interstitial spaces. Twenty-one days after treatment with EDS, small Leydig cells were visible, and at 45 days, Leydig cells appeared normal. The seminiferous epithelium appeared morphologically normal until 4 days after injection of EDS, when slight abnormalities were observed. At 14 and 21 days, the seminiferous epithelium was grossly abnormal, but at 48 days, spermatogenesis appeared normal. Twelve, 24, and 48 h after treatment, large quantities of material, presumably from dead Leydig cells, were observed within the macrophage cytoplasm. The predominant cell in the interstitial space 4 and 14 days after EDS was the macrophage. Inclusions from the dead Leydig cells within the cytoplasm of the macrophages had almost disappeared. LH receptors (hCG binding) in testicular homogenates were consistent with the cytological changes in Leydig cells. Receptor concentration was low at 24 h and was almost zero at 4 days. This change was accompanied by a decrease in serum testosterone to castrate levels by 2 days. The responses of the endocrine system to destruction of the Leydig cell by EDS, as monitored by serum FSH, LH, and testosterone, were slower than those after castration, indicating that the response to EDS reflects the time required to kill the Leydig cell rather than direct impairment of the steroidogenic pathway. These experiments demonstrate that Leydig cells can be specifically destroyed by a cytotoxic drug. The availability of a specific cytotoxic agent for Leydig cells offers further opportunities to study the interrelationships between the Leydig cell and the seminiferous tubule.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号