首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
目的 制备微观下不同形态的聚己内酯(polycaprolactone,PCL)电纺纳米纤维膜并比较其亲水性、降解速度和对成骨细胞增殖、分化的影响.方法 调整电纺参数制备出不同形态的电纺纤维膜,用扫描电子显微镜及倒置相差显微镜观察其形态,并通过可视接触角测试系统测试不同膜的表面接触角比较其亲水性,测量失重率评估其降解速度,细胞增殖实验、ALP活性实验和qRT-PCR实验评估其对成骨细胞增殖和分化的影响.结果 15%、10%、8%组PCL所制得的电纺纤维膜在电子扫描显微镜500倍和倒置相差显微镜100倍下分别呈现出纯丝状、含有少量串珠的丝状、大量串珠状.3组电纺纤维膜的亲水性和对成骨细胞增殖的影响无明显差异;降解速度:纯丝组<少量串珠组<大量串珠组;成骨细胞分化的程度:纯丝组>少量串珠组>大量串珠组.结论 调节电纺参数可制备不同形态的电纺纤维膜,纯丝状的电纺纤维膜较串珠状电纺纤维膜降解慢且更有利于成骨细胞的分化.  相似文献   

2.
静电纺丝技术(简称"电纺")是一种在高压电场作用下形成超细纤维的聚合物加工技术。通过控制电纺过程的各种参数可以制得性能不同的纳米纤维支架。本文主要介绍了电纺纳米纤维支架在皮肤、血管、骨、肌腱、神经等组织工程领域中的应用研究进展。  相似文献   

3.
目的:制备一种卟啉化聚酰亚胺电纺纤维膜用于微量甲醇蒸气的快速检测.方法:通过化学共聚将卟啉引入聚酰亚胺大分子主链;采用静电纺丝技术制备卟啉化聚酰亚胺电纺纤维膜,通过改变溶液组成、纺丝电压等,调控纳米纤维微结构,从而获得具有微/纳立体结构和大比表面积的电纺纤维膜,应用于微量甲醇蒸气的快速检测.结果:制备的卟啉化聚酰亚胺电纺纤维膜直径分布均匀、形貌良好,且保持了卟啉的基本光谱特性.当甲醇蒸气与此电纺纤维膜作用时,可引起其紫外光谱的红移与荧光强度的减弱,而其它一些常见醇类并无此现象.交替通入150 ppm的甲醇蒸气与氮气后,电纺纤维膜的荧光强度几乎没有改变,显示出良好的可重复使用性.结论:基于卟啉优异的光敏性能和纳米纤维高比表面积的特点,设计并制备了卟啉化聚酰亚胺电纺纤维膜,用于微量甲醇蒸气的检测.该电纺纤维膜具有灵敏度高,选择性好,并可重复使用等优点.  相似文献   

4.
目的 采用静电纺丝法制备同轴及混纺载积雪草总苷的纳米纤维膜,研究其形貌及体外释药行为,为深Ⅱ度烧伤提供新型功能性敷料.方法 采用静电纺丝工艺,制备芯层载积雪草总苷的同轴海藻酸钠/聚乙烯醇-壳聚糖纳米纤维膜.进行处方工艺优化,包括壳层、芯层中聚合物浓度、制备工艺等,同时制备海藻酸钠/聚乙烯醇混纺载积雪草总苷纳米纤维膜.用扫描电子显微镜、透射电子显微镜和X射线衍射表征纳米纤维.考察载积雪草总苷混纺和同轴纳米纤维膜的体外释药行为.结果 载积雪草总苷同轴纳米纤维膜的最优处方是壳层由0.8%海藻酸钠、7%聚乙烯醇混合溶液制备,芯层由含2.5%积雪草苷的3%壳聚糖溶液制备.最优工艺是静电电压23 kV,针头和接收屏距离15 cm,壳层溶液推注速度0.8 ml/h,芯层溶液推注速度0.2 ml/h.混纺纳米纤维膜与同轴纳米纤维膜的处方和工艺类似.同轴纳米纤维膜有明显壳核结构,其芯层直径为99.2nm,整个纤维直径为166.8 nm.与混纺纳米纤维比较,同轴纳米纤维膜有药物缓释效果,机制以Fick's扩散为主.结论 同轴纳米纤维膜有明显药物缓释效果,有利于积雪草苷发挥促愈合效果,可用于深Ⅱ度烧伤的治疗.  相似文献   

5.
用水热法合成的棒状纳米羟基磷灰石(nHA),引发ε-己内酯(ε-CL)开环聚合得到nHAPCL复合材料。用静电纺丝法分别制备了聚己内酯(PCL)、nHA/PCL共混材料和nHAPCL复合材料的3种电纺纤维膜。通过FT-IR、DSC、SEM、TGA和拉伸试验机表征了样品的结构、热性能和力学性能。结果表明:nHA-PCL电纺膜的结晶性能优于nHA/PCL材料,且热稳定性和力学性能都优于其他两种膜,nHA-PCL电纺膜的完全分解温度为420 °C,拉伸强度和断裂伸长率分别达到28.2 MPa和55.6%。3种膜的纤维直径均小于500 nm,nHA-PCL电纺膜的纤维表面比较粗糙。在人体仿生液中诱导矿化4 d后,nHAPCL电纺膜纤维表面出现磷灰石沉积,而纯PCL和共混nHA/PCL电纺膜的纤维表面沉积的磷灰石很少,nHA-PCL复合电纺膜具有较好的诱导成骨性能。  相似文献   

6.
 目的  以聚己内酯-碳酸亚乙酯[Poly(CL-EC)]共聚物混合血管内皮生长因子(vascular endothelial growth factor,VEGF),采用静电纺的方法构建纳米支架并检测其生物学性能。方法  按照EC/CL共聚物比例为1∶9、1∶6、1∶4,Poly(CL-EC)浓度分别为5%、10%、15%电纺纤维膜,分析电纺纤维膜的表征和力学性能。然后将VEGF按照0 ng/g、10 ng/g、100 ng/g、1 μg/g的质量比与Poly (CL-EC)溶液混合,电纺制备纳米支架。对混纺膜进行细胞增殖和黏附试验、乳酸脱氢酶(lactate dehydrogenase,LDH)释放试验、间接溶血试验和皮下植入试验等检测。结果  根据Poly (CL-EC)电纺纤维膜的表征和力学性能,我们选用EC/CL比例为1∶6的10% Poly(CL-EC)与VEGF构建混合电纺膜。细胞增殖和黏附试验证实Poly(CL-EC)/VEGF电纺膜具有良好的细胞相容性,尤其是血管内皮细胞;LDH释放试验、接触溶血试验和体内植入试验显示该材料无细胞毒性、有较好的血液相容性和很低的异物反应。结论  静电纺构建的Poly(CL-EC)/VEGF具有良好的生物学性能,能够作为组织工程支架材料。  相似文献   

7.
目的:探讨有序聚甲基丙烯酸甲酯(polymethylmethacrylate,PMMA)电纺纳米纤维作为雪旺细胞负载支架的潜力。方法:构建有序PMMA电纺纳米纤维,以随机PMMA电纺纤维作为对照,纯化大鼠原代雪旺细胞并在纤维结构上进行培养,利用慢病毒技术转染绿色荧光蛋白基因作为显色手段,观察有序PMMA电纺纤维的拓扑线索在定向引导SCs生长上的作用,分析细胞对纤维结构的依从性;并在此基础上,持续动态观察雪旺细胞对有序电纺纤维的依从性,从而评价有序PMMA电纺纳米纤维作为神经损伤后植入性雪旺细胞负载支架的潜力。结果:雪旺细胞在随机及有序PMMA电纺纤维上均能顺利贴壁并生长;较之随机电纺纤维,雪旺细胞对有序纤维具有更好的依从性,能够受其接触引导形成和纤维走行方向一致的定向生长,并能够生成更长的细胞突起(P=0.0079);动态的观察则进而显示SCs对有序电纺纳米纤维的拓扑线索能维持稳定的依从性。结论:有序PMMA电纺纳米纤维具有作为神经损伤后植入性雪旺细胞负载支架的潜力。  相似文献   

8.
目的: 探讨聚甲基丙烯酸甲酯(PMMA)电纺纳米纤维支架的拓扑线索对于大鼠原代背根神经元(DRGn)培养及其与雪旺细胞(SCs)共培养的影响。 方法: 构建具有随机分布和轴向有序排列拓扑结构的PMMA电纺纳米纤维,分别为随机和有序PMMA电纺纳米纤维组,以PMMA薄膜作为对照组;分离纯化大鼠原代DRGn和SCs,与上述各组PMMA电纺纳米纤维共培养;利用慢病毒技术转染荧光蛋白基因作为显色方法,观察PMMA电纺纳米纤维的拓扑线索对于DRGn神经突生长的影响,在共培养实验通过荧光图像的快速傅立叶转换(FFT)及半高全宽值(FWHM)的计算,定量分析电纺纤维对DRGn神经突和SCs细胞突起的接触引导作用。 结果: 大鼠原代DRGn和SCs均能够顺利在PMMA材料上贴壁并生长;与PMMA薄膜组比较,随机和有序PMMA电纺纳米纤维组DRGn平均神经突数量及神经突长度差异无统计学意义(P>0.05);共培养实验中,电纺纤维的拓扑线索对于 DRGn神经突和SCs细胞突起的生长均具有明显的接触引导作用,与PMMA薄膜组和随机PMMA电纺纳米纤维组比较,有序PMMA电纺纳米纤维组DRGn和SCs的FWHM值均明显降低 (P<0.01),有序PMMA电纺纳米纤维能够在空间上促成DRGn神经突和SCs细胞突起建立共定位。 结论: 有序PMMA电纺纳米纤维具有作为脊髓损伤(SCI)后植入性支架材料的潜力,其拓扑线索有可能加速SCs的轴突髓鞘化过程。  相似文献   

9.
以聚酰胺酸(PAA)溶液为原料,采用静电纺丝法制备了聚酰胺酸纳米纤维膜(PAAM),热处理脱水后获得聚酰亚胺纳米纤维膜(PIM)。采用PIM表面预涂覆聚甲基丙烯酸(PMAA),以茶碱(THO)为模板分子、偶氮二异丁腈(AIBN)为引发剂、乙二醇二甲基丙烯酸酯(EDMA)为交联剂、氯仿为溶剂,在PIM表面进行了热交联反应,制备了THO分子印迹聚酰亚胺纳米纤维复合膜(PIMIM)。讨论了纺膜条件,并用傅里叶红外光谱与扫描电镜分别表征了PIMIM的结构和形态,比较了THO的洗脱方式。结果表明:较佳的纺膜条件为纺丝电压15.0 kV、接收距离12.0 cm和纺丝液流量0.5 mL/h。以PIM为支撑体,获得了聚酰亚胺纳米纤维间有分子印迹层的PIMIM。PIMIM对THO的静态吸附结合容量达144 μmol/g,对THO与可可碱(TB)的选择性分离因子达1.96。对PIMIM循环再生,索氏提取法优于超声洗脱法。  相似文献   

10.
目的:用静电纺丝技术将聚己内酯(PCL)、明胶(GEL)、葛根素(PUE)制备成PCL/GEL@PUE纳米纤维膜,验证其生物相容性、机械性能、成骨及抗菌性能。方法:在电纺前溶液中分别加入0%(W/V)、0.1%(W/V)、0.2%(W/V)的PUE,制成PCL/GEL、PCL/GEL@0.1%PUE、PCL/GEL@0.2%PUE 3组纳米纤维膜。利用扫描电子显微镜(SEM)观察纳米纤维膜的结构;傅里叶红外光谱分析仪(FTIR)确认制备成功;力学性能测试纳米纤维膜机械强度。将骨髓间充质干细胞接种于各纳米纤维膜上,通过细胞计数试剂(CCK-8)法、钙黄绿素/碘化丙啶(Calcein-AM/PI)染色检测细胞相容性;茜素红染色检测成骨性能。将耐甲氧西林金黄色葡萄球菌与各组纳米纤维膜共培养,并涂琼脂板,计数菌落,检测抑菌率。结果:SEM结果显示,加入PUE后纤维变细,孔径变小,表面变粗糙;FTIR结果显示PCL/GEL@PUE纳米纤维膜构建成功;力学测试结果表明,加入PUE后,纳米纤维膜机械性能增强。CCK-8及Calcein-AM/PI染色结果显示,各组纳米纤维膜在第7天时能明显促进骨髓间...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号