首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Genetics in medicine》2019,21(11):2413-2421
PurposeFor neurodevelopmental disorders (NDDs), etiological evaluation can be a diagnostic odyssey involving numerous genetic tests, underscoring the need to develop a streamlined algorithm maximizing molecular diagnostic yield for this clinical indication. Our objective was to compare the yield of exome sequencing (ES) with that of chromosomal microarray (CMA), the current first-tier test for NDDs.MethodsWe performed a PubMed scoping review and meta-analysis investigating the diagnostic yield of ES for NDDs as the basis of a consensus development conference. We defined NDD as global developmental delay, intellectual disability, and/or autism spectrum disorder. The consensus development conference included input from genetics professionals, pediatric neurologists, and developmental behavioral pediatricians.ResultsAfter applying strict inclusion/exclusion criteria, we identified 30 articles with data on molecular diagnostic yield in individuals with isolated NDD, or NDD plus associated conditions (such as Rett-like features). Yield of ES was 36% overall, 31% for isolated NDD, and 53% for the NDD plus associated conditions. ES yield for NDDs is markedly greater than previous studies of CMA(15–20%).ConclusionOur review demonstrates that ES consistently outperforms CMA for evaluation of unexplained NDDs. We propose a diagnostic algorithm placing ES at the beginning of the evaluation of unexplained NDDs.  相似文献   

2.
3.
《Genetics in medicine》2021,23(2):352-362
PurposeNeurodevelopmental disorders (NDD) caused by protein phosphatase 2A (PP2A) dysfunction have mainly been associated with de novo variants in PPP2R5D and PPP2CA, and more rarely in PPP2R1A. Here, we aimed to better understand the latter by characterizing 30 individuals with de novo and often recurrent variants in this PP2A scaffolding Aα subunit.MethodsMost cases were identified through routine clinical diagnostics. Variants were biochemically characterized for phosphatase activity and interaction with other PP2A subunits.ResultsWe describe 30 individuals with 16 different variants in PPP2R1A, 21 of whom had variants not previously reported. The severity of developmental delay ranged from mild learning problems to severe intellectual disability (ID) with or without epilepsy. Common features were language delay, hypotonia, and hypermobile joints. Macrocephaly was only seen in individuals without B55α subunit-binding deficit, and these patients had less severe ID and no seizures. Biochemically more disruptive variants with impaired B55α but increased striatin binding were associated with profound ID, epilepsy, corpus callosum hypoplasia, and sometimes microcephaly.ConclusionWe significantly expand the phenotypic spectrum of PPP2R1A-related NDD, revealing a broader clinical presentation of the patients and that the functional consequences of the variants are more diverse than previously reported.  相似文献   

4.
5.
《Genetics in medicine》2023,25(8):100885
PurposeMissense variants clustering in the BTB domain region of RHOBTB2 cause a developmental and epileptic encephalopathy with early-onset seizures and severe intellectual disability.MethodsBy international collaboration, we assembled individuals with pathogenic RHOBTB2 variants and a variable spectrum of neurodevelopmental disorders. By western blotting, we investigated the consequences of missense variants in vitro.ResultsIn accordance with previous observations, de novo heterozygous missense variants in the BTB domain region led to a severe developmental and epileptic encephalopathy in 16 individuals. Now, we also identified de novo missense variants in the GTPase domain in 6 individuals with apparently more variable neurodevelopmental phenotypes with or without epilepsy. In contrast to variants in the BTB domain region, variants in the GTPase domain do not impair proteasomal degradation of RHOBTB2 in vitro, indicating different functional consequences. Furthermore, we observed biallelic splice-site and truncating variants in 9 families with variable neurodevelopmental phenotypes, indicating that complete loss of RHOBTB2 is pathogenic as well.ConclusionBy identifying genotype-phenotype correlations regarding location and consequences of de novo missense variants in RHOBTB2 and by identifying biallelic truncating variants, we further delineate and expand the molecular and clinical spectrum of RHOBTB2-related phenotypes, including both autosomal dominant and recessive neurodevelopmental disorders.  相似文献   

6.
《Genetics in medicine》2019,21(11):2504-2511
PurposeNext-generation sequencing has revealed the major impact of de novo variants (DNVs) in developmental disorders (DD) such as intellectual disability, autism, and epilepsy. However, a substantial fraction of these predicted pathogenic DNVs remains challenging to distinguish from background DNVs, notably the missense variants acting via nonhaploinsufficient mechanisms on specific amino acid residues. We hypothesized that the detection of the same missense variation in at least two unrelated individuals presenting with a similar phenotype could be a powerful approach to reveal novel pathogenic variants.MethodsWe looked for variations independently present in both our database of >1200 solo exomes and in denovo-db, a large, publicly available collection of de novo variants identified in patients with DD.ResultsThis approach identified 30 variants with strong evidence of pathogenicity, including variants already classified as pathogenic or probably pathogenic by our team, and also several new variants of interest in known OMIM genes or in novel genes. We identified FEM1B and GNAI2 as good candidate genes for syndromic intellectual disability and confirmed the implication of ACTL6B in a neurodevelopmental disorder.ConclusionAnnotation of local variants with denovo-db can highlight missense variants with high potential for pathogenicity, both facilitating the time-consuming reanalysis process and allowing novel DD gene discoveries.  相似文献   

7.
《Genetics in medicine》2023,25(1):135-142
PurposeProtein arginine methyltransferase 7 (PRMT7) is a member of a family of enzymes that catalyzes the methylation of arginine residues on several protein substrates. Biallelic pathogenic PRMT7 variants have previously been associated with a syndromic neurodevelopmental disorder characterized by short stature, brachydactyly, intellectual developmental disability, and seizures. To our knowledge, no comprehensive study describes the detailed clinical characteristics of this syndrome. Thus, we aim to delineate the phenotypic spectrum of PRMT7-related disorder.MethodsWe assembled a cohort of 51 affected individuals from 39 different families, gathering clinical information from 36 newly described affected individuals and reviewing data of 15 individuals from the literature.ResultsThe main clinical characteristics of the PRMT7-related syndrome are short stature, mild to severe developmental delay/intellectual disability, hypotonia, brachydactyly, and distinct facial morphology, including bifrontal narrowing, prominent supraorbital ridges, sparse eyebrows, short nose with full/broad nasal tip, thin upper lip, full and everted lower lip, and a prominent or squared-off jaw. Additional variable findings include seizures, obesity, nonspecific magnetic resonance imaging abnormalities, eye abnormalities (i.e., strabismus or nystagmus), and hearing loss.ConclusionThis study further delineates and expands the molecular, phenotypic spectrum and natural history of PRMT7-related syndrome characterized by a neurodevelopmental disorder with skeletal, growth, and endocrine abnormalities.  相似文献   

8.
《Genetics in medicine》2023,25(11):100938
PurposeBiallelic variants in TARS2, encoding the mitochondrial threonyl-tRNA-synthetase, have been reported in a small group of individuals displaying a neurodevelopmental phenotype but with limited neuroradiological data and insufficient evidence for causality of the variants.MethodsExome or genome sequencing was carried out in 15 families. Clinical and neuroradiological evaluation was performed for all affected individuals, including review of 10 previously reported individuals. The pathogenicity of TARS2 variants was evaluated using in vitro assays and a zebrafish model.ResultsWe report 18 new individuals harboring biallelic TARS2 variants. Phenotypically, these individuals show developmental delay/intellectual disability, regression, cerebellar and cerebral atrophy, basal ganglia signal alterations, hypotonia, cerebellar signs, and increased blood lactate. In vitro studies showed that variants within the TARS2301-381 region had decreased binding to Rag GTPases, likely impairing mTORC1 activity. The zebrafish model recapitulated key features of the human phenotype and unraveled dysregulation of downstream targets of mTORC1 signaling. Functional testing of the variants confirmed the pathogenicity in a zebrafish model.ConclusionWe define the clinico-radiological spectrum of TARS2-related mitochondrial disease, unveil the likely involvement of the mTORC1 signaling pathway as a distinct molecular mechanism, and establish a TARS2 zebrafish model as an important tool to study variant pathogenicity.  相似文献   

9.
《Genetics in medicine》2021,23(10):1922-1932
PurposeCACNA1C encodes the alpha-1-subunit of a voltage-dependent L-type calcium channel expressed in human heart and brain. Heterozygous variants in CACNA1C have previously been reported in association with Timothy syndrome and long QT syndrome. Several case reports have suggested that CACNA1C variation may also be associated with a primarily neurological phenotype.MethodsWe describe 25 individuals from 22 families with heterozygous variants in CACNA1C, who present with predominantly neurological manifestations.ResultsFourteen individuals have de novo, nontruncating variants and present variably with developmental delays, intellectual disability, autism, hypotonia, ataxia, and epilepsy. Functional studies of a subgroup of missense variants via patch clamp experiments demonstrated differential effects on channel function in vitro, including loss of function (p.Leu1408Val), neutral effect (p.Leu614Arg), and gain of function (p.Leu657Phe, p.Leu614Pro). The remaining 11 individuals from eight families have truncating variants in CACNA1C. The majority of these individuals have expressive language deficits, and half have autism.ConclusionWe expand the phenotype associated with CACNA1C variants to include neurodevelopmental abnormalities and epilepsy, in the absence of classic features of Timothy syndrome or long QT syndrome.  相似文献   

10.
《Genetics in medicine》2021,23(11):2122-2137
PurposePathogenic variants in SETD1B have been associated with a syndromic neurodevelopmental disorder including intellectual disability, language delay, and seizures. To date, clinical features have been described for 11 patients with (likely) pathogenic SETD1B sequence variants. This study aims to further delineate the spectrum of the SETD1B-related syndrome based on characterizing an expanded patient cohort.MethodsWe perform an in-depth clinical characterization of a cohort of 36 unpublished individuals with SETD1B sequence variants, describing their molecular and phenotypic spectrum. Selected variants were functionally tested using in vitro and genome-wide methylation assays.ResultsOur data present evidence for a loss-of-function mechanism of SETD1B variants, resulting in a core clinical phenotype of global developmental delay, language delay including regression, intellectual disability, autism and other behavioral issues, and variable epilepsy phenotypes. Developmental delay appeared to precede seizure onset, suggesting SETD1B dysfunction impacts physiological neurodevelopment even in the absence of epileptic activity. Males are significantly overrepresented and more severely affected, and we speculate that sex-linked traits could affect susceptibility to penetrance and the clinical spectrum of SETD1B variants.ConclusionInsights from this extensive cohort will facilitate the counseling regarding the molecular and phenotypic landscape of newly diagnosed patients with the SETD1B-related syndrome.  相似文献   

11.
《Genetics in medicine》2023,25(1):49-62
PurposePathogenic variants in genes involved in the epigenetic machinery are an emerging cause of neurodevelopment disorders (NDDs). Lysine-demethylase 2B (KDM2B) encodes an epigenetic regulator and mouse models suggest an important role during development. We set out to determine whether KDM2B variants are associated with NDD.MethodsThrough international collaborations, we collected data on individuals with heterozygous KDM2B variants. We applied methylation arrays on peripheral blood DNA samples to determine a KDM2B associated epigenetic signature.ResultsWe recruited a total of 27 individuals with heterozygous variants in KDM2B. We present evidence, including a shared epigenetic signature, to support a pathogenic classification of 15 KDM2B variants and identify the CxxC domain as a mutational hotspot. Both loss-of-function and CxxC-domain missense variants present with a specific subepisignature. Moreover, the KDM2B episignature was identified in the context of a dual molecular diagnosis in multiple individuals. Our efforts resulted in a cohort of 21 individuals with heterozygous (likely) pathogenic variants. Individuals in this cohort present with developmental delay and/or intellectual disability; autism; attention deficit disorder/attention deficit hyperactivity disorder; congenital organ anomalies mainly of the heart, eyes, and urogenital system; and subtle facial dysmorphism.ConclusionPathogenic heterozygous variants in KDM2B are associated with NDD and a specific epigenetic signature detectable in peripheral blood.  相似文献   

12.
13.
《Genetics in medicine》2019,21(8):1797-1807
PurposeHaploinsufficiency of USP7, located at chromosome 16p13.2, has recently been reported in seven individuals with neurodevelopmental phenotypes, including developmental delay/intellectual disability (DD/ID), autism spectrum disorder (ASD), seizures, and hypogonadism. Further, USP7 was identified to critically incorporate into the MAGEL2-USP7-TRIM27 (MUST), such that pathogenic variants in USP7 lead to altered endosomal F-actin polymerization and dysregulated protein recycling.MethodsWe report 16 newly identified individuals with heterozygous USP7 variants, identified by genome or exome sequencing or by chromosome microarray analysis. Clinical features were evaluated by review of medical records. Additional clinical information was obtained on the seven previously reported individuals to fully elucidate the phenotypic expression associated with USP7 haploinsufficiency.ResultsThe clinical manifestations of these 23 individuals suggest a syndrome characterized by DD/ID, hypotonia, eye anomalies,feeding difficulties, GERD, behavioral anomalies, and ASD, and more specific phenotypes of speech delays including a nonverbal phenotype and abnormal brain magnetic resonance image findings including white matter changes based on neuroradiologic examination.ConclusionThe consistency of clinical features among all individuals presented regardless of de novo USP7 variant type supports haploinsufficiency as a mechanism for pathogenesis and refines the clinical impact faced by affected individuals and caregivers.  相似文献   

14.
Due to small numbers of reported patients with pathogenic variants in single genes, the phenotypic spectrum associated with genes causing neurodevelopmental disorders such as intellectual disability (ID) and autism spectrum disorder is expanding. Among these genes is KLF7 (Krüppel‐like factor 7), which is located at 2q33.3 and has been implicated in several developmental processes. KLF7 has been proposed to be a candidate gene for the phenotype of autism features seen in patients with a 2q33.3q34 deletion. Herein, we report 4 unrelated individuals with de novo KLF7 missense variants who share similar clinical features of developmental delay/ID, hypotonia, feeding/swallowing issues, psychiatric features and neuromuscular symptoms, and add to the knowledge about the phenotypic spectrum associated with KLF7 haploinsufficiency.  相似文献   

15.
16.
《Genetics in medicine》2023,25(7):100859
PurposeThe study aimed to clinically and molecularly characterize the neurodevelopmental disorder associated with heterozygous de novo variants in CNOT9.MethodsIndividuals were clinically examined. Variants were identified using exome or genome sequencing. These variants were evaluated using in silico predictions, and their functional relevance was further assessed by molecular models and research in the literature. The variants have been classified according to the criteria of the American College of Medical Genetics.ResultsWe report on 7 individuals carrying de novo missense variants in CNOT9, p.(Arg46Gly), p.(Pro131Leu), and p.(Arg227His), and, recurrent in 4 unrelated individuals, p.(Arg292Trp). All affected persons have developmental delay/intellectual disability, with 5 of them showing seizures. Other symptoms include muscular hypotonia, facial dysmorphism, and behavioral abnormalities. Molecular modeling predicted that the variants are damaging and would lead to reduced protein stability or impaired recognition of interaction partners. Functional analyses in previous studies showed a pathogenic effect of p.(Pro131Leu) and p.(Arg227His).ConclusionWe propose CNOT9 as a novel gene for neurodevelopmental disorder and epilepsy.  相似文献   

17.
《Genetics in medicine》2019,21(5):1058-1064
PurposeContiguous gene deletions are known to cause several neurodevelopmental syndromes, many of which are caused by recurrent events on chromosome 16. However, chromosomal microarray studies (CMA) still yield copy-number variants (CNVs) of unknown clinical significance. We sought to characterize eight individuals with overlapping 205-kb to 504-kb 16p13.3 microdeletions that are distinct from previously published deletion syndromes.MethodsClinical information on the patients and bioinformatic scores for the deleted genes were analyzed.ResultsAll individuals in our cohort displayed developmental delay, intellectual disability, and various forms of seizures. Six individuals were microcephalic and two had strabismus. The deletion was absent in all 13 parents who were available for testing. The area of overlap encompasses seven genes including TBC1D24, ATP6V0C, and PDPK1 (also known as PDK1). Bi-allelic TBC1D24 pathogenic variants are known to cause nonsyndromic deafness, epileptic disorders, or DOORS syndrome (deafness, onychodystrophy, osteodystrophy, mental retardation, seizures). Sanger sequencing of the nondeleted TBC1D24 allele did not yield any additional pathogenic variants.ConclusionsWe propose that 16p13.3 microdeletions resulting in simultaneous haploinsufficiencies of TBC1D24, ATP6V0C, and PDPK1 cause a novel rare contiguous gene deletion syndrome of microcephaly, developmental delay, intellectual disability, and epilepsy.  相似文献   

18.
PurposePathogenic variants in GABRB3 have been associated with a spectrum of phenotypes from severe developmental disorders and epileptic encephalopathies to milder epilepsy syndromes and mild intellectual disability (ID). In this study, we analyzed a large cohort of individuals with GABRB3 variants to deepen the phenotypic understanding and investigate genotype–phenotype correlations.MethodsThrough an international collaboration, we analyzed electro-clinical data of unpublished individuals with variants in GABRB3, and we reviewed previously published cases. All missense variants were mapped onto the 3-dimensional structure of the GABRB3 subunit, and clinical phenotypes associated with the different key structural domains were investigated.ResultsWe characterized 71 individuals with GABRB3 variants, including 22 novel subjects, expressing a wide spectrum of phenotypes. Interestingly, phenotypes correlated with structural locations of the variants. Generalized epilepsy, with a median age at onset of 12 months, and mild-to-moderate ID were associated with variants in the extracellular domain. Focal epilepsy with earlier onset (median: age 4 months) and severe ID were associated with variants in both the pore-lining helical transmembrane domain and the extracellular domain.ConclusionThese genotype–phenotype correlations will aid the genetic counseling and treatment of individuals affected by GABRB3-related disorders. Future studies may reveal whether functional differences underlie the phenotypic differences.  相似文献   

19.
《Genetics in medicine》2022,24(12):2464-2474
PurposeKLHL20 is part of a CUL3-RING E3 ubiquitin ligase involved in protein ubiquitination. KLHL20 functions as the substrate adaptor that recognizes substrates and mediates the transfer of ubiquitin to the substrates. Although KLHL20 regulates neurite outgrowth and synaptic development in animal models, a role in human neurodevelopment has not yet been described. We report on a neurodevelopmental disorder caused by de novo missense variants in KLHL20.MethodsPatients were ascertained by the investigators through Matchmaker Exchange. Phenotyping of patients with de novo missense variants in KLHL20 was performed.ResultsWe studied 14 patients with de novo missense variants in KLHL20, delineating a genetic syndrome with patients having mild to severe intellectual disability, febrile seizures or epilepsy, autism spectrum disorder, hyperactivity, and subtle dysmorphic facial features. We observed a recurrent de novo missense variant in 11 patients (NM_014458.4:c.1069G>A p.[Gly357Arg]). The recurrent missense and the 3 other missense variants all clustered in the Kelch-type β-propeller domain of the KLHL20 protein, which shapes the substrate binding surface.ConclusionOur findings implicate KLHL20 in a neurodevelopmental disorder characterized by intellectual disability, febrile seizures or epilepsy, autism spectrum disorder, and hyperactivity.  相似文献   

20.
Pathogenic variants in the IQSEC2 gene including nonsense, frameshift, splice-alterations, deletions, and missense changes have been identified in individuals with X-linked mental retardation. Although highly variable, clinical features may include hypotonia, moderate to severe delayed psychomotor development, intellectual disability, speech deficits, refractory seizures, autistic features, and stereotypical movements. Females with de novo variants have been described with classical features. In contrast, the phenotype in carrier females identified through an affected male may range from asymptomatic to mild intellectual disability. We present male (N = 2) and female (N = 3) probands ascertained via diagnostic exome sequencing with distinct variant types in the IQSEC2 gene encompassing a spectrum of phenotypic severity with patient sex, variant type and inheritance hypothesized to drive disease penetrance and expressivity. All of these patients demonstrated epilepsy, global developmental delays, intellectual disability, and constipation. Our data support that de novo, truncating variants correlate with severe disease in both female and male patients harboring an IQSEC2 alteration. Missense variants in male and female patients may account for a milder disease overall, with more severe symptoms in males than females. We also present the first confirmed case of parental mosaicism, which has implications regarding counseling for recurrence risk. These data further delineate a genotype-phenotype correlation of IQSEC2 variation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号