首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BackgroundAlthough molecular tests are considered the reference standard for coronavirus disease 2019 (COVID-19) diagnostics, serological and immunological tests may be useful in specific settings.ObjectivesThis review summarizes the underlying principles and performance of COVID-19 serological and immunological testing.SourcesSelected peer-reviewed publications on COVID-19 related serology and immunology published between December 2019 and March 2021.ContentSerological tests are highly specific but heterogeneous in their sensitivity for the diagnosis of COVID-19. For certain indications, including delayed disease presentations, serological tests can have added value. The presence of antibodies against SARS-CoV-2 may indicate a recent or past COVID-19 infection. Lateral flow immunoassay (LFIA) antibody tests have the advantages of being easy and fast to perform, but many have a low sensitivity in acute settings. Enzyme-linked immunosorbent assay (ELISA) and chemiluminescence immunoassays (CLIAs) have higher sensitivities. Besides humoral immunity, cellular immunity is also essential for successful host defences against viruses. Enzyme-linked immunospot (ELISpot) assays can be used to measure T-cell responses against SARS-CoV-2. The presence of cross-reactive SARS-CoV-2-specific T cells in never exposed patients suggests the possibility of cellular immunity induced by other circulating coronaviruses. T-cell responses against SARS-CoV-2 have also been detected in recovered COVID-19 patients with no detectable antibodies.ImplicationsSerological and immunological tests are primarily applied for population-based seroprevalence studies to evaluate the effectiveness of COVID-19 control measures and increase our understanding of the immunology behind COVID-19. Combining molecular diagnostics with serological tests may optimize the detection of COVID-19. As not all infected patients will develop antibodies against SARS-CoV-2, assessment of cellular immunity may provide complementary information on whether a patient has been previously infected with COVID-19. More studies are needed to understand the correlations of these serological and immunological parameters with protective immunity, taking into account the different circulating virus variants.  相似文献   

2.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the current coronavirus disease 2019 (COVID-19) pandemic. Understanding the immune response that provides specific immunity but may also lead to immunopathology is crucial for the design of potential preventive and therapeutic strategies. Here, we characterized and quantified SARS-CoV-2-specific immune responses in patients with different clinical courses. Compared to individuals with a mild clinical presentation, CD4+ T-cell responses were qualitatively impaired in critically ill patients. Strikingly, however, in these patients the specific IgG antibody response was remarkably strong. Furthermore, in these critically ill patients, a massive influx of circulating T cells into the lungs was observed, overwhelming the local T-cell compartment, and indicative of vascular leakage. The observed disparate T- and B-cell responses could be indicative of a deregulated immune response in critically ill COVID-19 patients.  相似文献   

3.
In addition to CD4+ T cells and neutralizing antibodies, CD8+ T cells contribute to protective immune responses against SARS-CoV-2 in patients with coronavirus disease 2019 (COVID-19), an ongoing pandemic disease. In patients with COVID-19, CD8+ T cells exhibiting activated phenotypes are commonly observed, although the absolute number of CD8+ T cells is decreased. In addition, several studies have reported an upregulation of inhibitory immune checkpoint receptors, such as PD-1, and the expression of exhaustion-associated gene signatures in CD8+ T cells from patients with COVID-19. However, whether CD8+ T cells are truly exhausted during COVID-19 has been a controversial issue. In the present review, we summarize the current understanding of CD8+ T-cell exhaustion and describe the available knowledge on the phenotypes and functions of CD8+ T cells in the context of activation and exhaustion. We also summarize recent reports regarding phenotypical and functional analyses of SARS-CoV-2-specific CD8+ T cells and discuss long-term SARS-CoV-2-specific CD8+ T-cell memory.Keywords: CD8+ T cell, Activation, T-cell exhaustion, SARS-CoV-2, COVID-19Subject terms: Cellular immunity, Infection  相似文献   

4.
ObjectivesThe immunogenicity of the Comirnaty® vaccine against coronavirus disease 2019 (COVID-19) has not been adequately studied in elderly people with comorbidities. We assessed antibody and T-cell responses targeted to the S protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) following full vaccination in nursing-home residents.MethodsSixty nursing-home residents (44 female, age 53–100 years), of whom ten had previously been diagnosed with COVID-19, and 18 healthy controls (15 female, age 27–54 years) were recruited. Pre- and post-vaccination blood specimens were available for quantification of total antibodies binding the SARS-CoV-2 S protein and for enumeration of SARS-CoV-2 S-reactive IFN-γ CD4+ and CD8+ T cells by flow cytometry.ResultsThe seroconversion rate in (presumably) SARS-CoV-2-naïve nursing-home residents (41/43, 95.3%) was similar to that in controls (17/18, 94.4%). A booster effect was documented in post-vaccination samples of nursing-home residents with prior COVID-19. Plasma antibody levels were higher (p < 0.01) in recovered nursing-home residents (all 2500 IU/mL) than in individuals across the other two groups (median 1120 IU/mL in naïve nursing-home residents and 2211 IU/ml in controls). A large percentage of nursing-home residents had SARS-CoV-2 S-reactive IFN-γ CD8+ (naïve 31/49, 63.2%; recovered 8/10, 80%) or CD4+ T cells (naïve 35/49, 71.4%; recovered 7/10, 70%) at baseline, in contrast to healthy controls (3/17, 17.6% and 5/17, 29%, respectively). SARS-CoV-2 IFN-γ CD8+ and CD4+ T-cell responses were documented in 88% (15/17) and all control subjects after vaccination, respectively, but only in 65.5% (38/58) and 22.4% (13/58) of nursing-home residents. Overall, the median frequency of SARS-CoV-2 IFN-γ CD8+ and CD4+ T cells in nursing-home residents decreased in post-vaccination specimens, whereas it increased in controls.ConclusionThe Comirnaty COVID-19 vaccine elicits robust SARS-CoV-2 S antibody responses in nursing-home residents. Nevertheless, the rate and frequency of detectable SARS-CoV-2 IFN-γ T-cell responses after vaccination was lower in nursing-home residents than in controls.  相似文献   

5.
PurposeHost genetic variants in activating natural killer (NK) cell receptors may contribute to differences in severity of COVID-19. NK cell-mediated antibody-mediated cellular cytotoxicity (ADCC) responses play, however, a controversial role in SARS-CoV-2 infections. It is unclear whether proinflammatory and cytotoxic SARS-CoV-2-specific ADCC responses limit disease severity or rather contribute to the immunopathogenesis of severe COVID-19.MethodsUsing a genetic association approach and subsequent in vitro antibody-dependent NK cell activation experiments, we investigated whether genetic variants in the FcγRIIIa-encoding FCGR3A gene, resulting in expression of either a low-affinity or high-affinity variant, and individual SARS-CoV-2-specific ADCC response contribute to COVID-19 severity.ResultsIn our study, we showed that the high-affinity variant of the FcγRIIIa receptor, 158-V/V, is significantly over-represented in hospitalized and deceased patients with COVID-19, whereas the low-affinity FcγRIIIa-158-F/F variant occurs more frequently in patients with mild COVID-19 (P < .0001). Furthermore, functional SARS-CoV-2 antibody-specific NK cell-mediated ADCC assays revealed that significantly higher proinflammatory ADCC responses occur in hospitalized patients with COVID-19, and are especially observed in NK cells expressing the FcγRIIIa-158-V/V variant (P < .0001).ConclusionOur study provides evidence that pronounced SARS-CoV-2-specific NK cell-mediated ADCC responses are influenced by NK cell FcγRIIIa genetic variants and are a hallmark of severe COVID-19.  相似文献   

6.
Fully automated immunoassays for detecting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies that are strongly correlated with neutralization antibodies (nAbs) are clinically important because they enable the assessment of humoral immunity after infection and vaccination. Access SARS-CoV-2 immunoglobulin M (IgM) and immunoglobulin G (IgG) II antibody tests are semi-quantitative, fully automated immunoassays that detect anti-receptor-binding domain (RBD) antibodies and might reflect nAb levels in coronavirus disease 2019 (COVID-19). However, no studies have investigated the clinical utility of these tests in association with nAbs to date. To evaluate the clinical utility of Access SARS-CoV-2 IgM and IgG II antibody tests and their correlation with the SARS-CoV-2 surrogate virus neutralization test (sVNT) that measures nAbs in patients with COVID-19, we analyzed 54 convalescent serum samples from COVID-19 patients and 89 serum samples from non-COVID-19 patients. The presence of anti-RBD antibodies was detected using Access SARS-CoV-2 IgM and IgG II antibody tests, while nAbs were measured by sVNT. The sensitivity and specificity of sVNT were 94.4% and 98.9%, respectively. There were strong positive correlations between the inhibition values of sVNT and the results of the Access SARS-CoV-2 IgM (R = 0.95, R2 = 0.90, p < 0.001) and IgG II antibody tests (R = 0.96, R2 = 0.92, p < 0.001). In terms of the presence of nAbs, the sensitivity and specificity were 98.1% and 98.9% in the IgM assay and 100.0% and 100.0% in the IgG II assay, respectively. The Access SARS-CoV-2 IgM and IgG II antibody tests showed high sensitivity and specificity for the detection of nAbs in COVID-19 patients and might be alternatives for measuring nAbs.  相似文献   

7.
ObjectivesSARS-CoV-2 T-cell response characterization represents a crucial issue for defining the role of immune protection against COVID-19. The aim of the study was to assess the SARS-CoV-2 T-cell response in a cohort of COVID-19 convalescent patients and in a group of unexposed subjects.MethodsSARS-CoV-2 T-cell response was quantified from peripheral blood mononuclear cells (PBMCs) of 87 COVID-19 convalescent subjects (range 7–239 days after symptom onset) and 33 unexposed donors by ex vivo ELISpot assay. Follow-up of SARS-CoV-2 T-cell response was performed in ten subjects up to 12 months after symptom onset. The role of SARS-CoV-2 specific CD4 and CD8 T cells was characterized in a group of COVID-19 convalescent subjects. Moreover, neutralizing antibodies were determined in serum samples.ResultsIn 14/33 (42.4%) unexposed donors and 85/87 (97.7%) COVID-19 convalescent subjects a positive result for at least one SARS-CoV-2 antigen was observed. A positive response was observed up to 12 months after COVID-19 infection (median 246 days after symptom onset; range 118–362 days). Of note, SARS-CoV-2 T-cell response seems to be mainly mediated by CD4 T cells. A weak positive correlation was observed between Spike-specific T-cell response and neutralizing antibody titre (p 0.0028; r2 = 0.2891) and positive SARS-CoV-2 T-cell response was observed in 8/9 (88.9%) COVID-19 convalescent subjects with undetectable SARS-CoV-2 neutralizing antibodies.DiscussionCross-reactive SARS-CoV-2 T-cell response in uninfected patients may be due to previous infections with other common coronaviruses. Our data suggest that long-term SARS-CoV-2 T-cell response might accompany a waning humoral response.  相似文献   

8.
Both B cells and T cells are involved in an effective immune response to SARS-CoV-2, the disease-causing virus of COVID-19. While B cells—with the indispensable help of CD4+ T cells—are essential to generate neutralizing antibodies, T cells on their own have been recognized as another major player in effective anti-SARS-CoV-2 immunity. In this report, we provide insights into the characteristics of individual HLA-A*02:01- and HLA-A*24:02-restricted SARS-CoV-2-reactive TCRs, isolated from convalescent COVID-19 patients. We observed that SARS-CoV-2-reactive T-cell populations were clearly detectable in convalescent samples and that TCRs isolated from these T cell clones were highly functional upon ectopic re-expression. The SARS-CoV-2-reactive TCRs described in this report mediated potent TCR signaling in reporter assays with low nanomolar EC50 values. We further demonstrate that these SARS-CoV-2-reactive TCRs conferred powerful T-cell effector function to primary CD8+ T cells as evident by a robust anti-SARS-CoV-2 IFN-γ response and in vitro cytotoxicity. We also provide an example of a long-lasting anti-SARS-CoV-2 memory response by reisolation of one of the retrieved TCRs 5 months after initial sampling. Taken together, these findings contribute to a better understanding of anti-SARS-CoV-2 T-cell immunity and may contribute to paving the way toward immunotherapeutics approaches targeting SARS-CoV-2.  相似文献   

9.
BackgroundAs of 14 October 2021, coronavirus disease 2019 (COVID-19) has affected more than 246 million individuals and caused more than 4.9 million deaths worldwide. COVID-19 has caused significant damage to the health, economy and lives of people worldwide. Although severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is not as lethal as SARS coronavirus or Middle East respiratory syndrome coronavirus, its high transmissibility has had disastrous consequences for public health and health-care systems worldwide given the lack of effective treatment at present.ObjectivesTo clarify the mechanisms by which SARS-CoV-2 caused lung inflammation and injury, from the molecular mechanism to lung damage and tissue repair, from research to clinical practice, and then presented clinical requirements.SourcesReferences for this review were identified through searches ‘(COVID-19 [Title]) OR (SARS-CoV-2 [Title])’ on PubMed, and focused on the pathological damage and clinical practice of COVID-19.ContentWe comprehensively reviewed the process of lung inflammation and injury during SARS-CoV-2 infection, including pyroptosis of alveolar epithelial cells, cytokine storm and thrombotic inflammatory mechanisms.ImplicationsThis review describes SARS-CoV-2 in comparison to SARS and explores why most people have mild inflammatory responses, even asymptomatic infections, and only a few develop severe disease. It suggests that future therapeutic strategies may be targeted antiviral therapy, the pathogenic pathways in the lung inflammatory response, and enhancing repair and regeneration in lung injury.  相似文献   

10.
Accumulating evidence suggests that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) impairs the adaptive immune system during acute infection. Still, it remains largely unclear whether the frequency and functions of T and B cells return to normal after the recovery of Coronavirus Disease 2019 (COVID-19). Here, we analyzed immune repertoires and SARS-CoV-2-specific neutralization antibodies in a prospective cohort of 40 COVID-19 survivors with a 6-month follow-up after hospital discharge. Immune repertoire sequencing revealed abnormal T- and B-cell expression and function with large T cell receptor/B cell receptor clones, decreased diversity, abnormal class-switch recombination, and somatic hypermutation. A decreased number of B cells but an increased proportion of CD19+CD138+ B cells were found in COVID-19 survivors. The proportion of CD4+ T cells, especially circulating follicular helper T (cTfh) cells, was increased, whereas the frequency of CD3+CD4 T cells was decreased. SARS-CoV-2-specific neutralization IgG and IgM antibodies were identified in all survivors, especially those recorded with severe COVID-19 who showed a higher inhibition rate of neutralization antibodies. All severe cases complained of more than one COVID-19 sequelae after 6 months of recovery. Overall, our findings indicate that SARS-CoV-2-specific antibodies remain detectable even after 6 months of recovery. Because of their abnormal adaptive immune system with a low number of CD3+CD4 T cells and high susceptibility to infections, COVID-19 patients might need more time and medical care to fully recover from immune abnormalities and tissue damage.  相似文献   

11.
The durability of infection-induced severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immunity has crucial implications for reinfection and vaccine effectiveness. However, the relationship between coronavirus disease 2019 (COVID-19) severity and long-term anti-SARS-CoV-2 immunoglobulin G (IgG) antibody level is poorly understood. Here, we measured the longevity of SARS-CoV-2-specific IgG antibodies in survivors who had recovered from COVID-19 1 year previously. In a cohort of 473 survivors with varying disease severity (asymptomatic, mild, moderate, or severe), we observed a positive correlation between virus-specific IgG antibody titers and COVID-19 severity. In particular, the highest virus-specific IgG antibody titers were observed in patients with severe COVID-19. By contrast, 74.4% of recovered asymptomatic carriers had negative anti-SARS-CoV-2 IgG test results, while many others had very low virus-specific IgG antibody titers. Our results demonstrate that SARS-CoV-2-specific IgG persistence and titer depend on COVID-19 severity.  相似文献   

12.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced cytokine storm is closely associated with coronavirus disease 2019 (COVID-19) severity and lethality. However, drugs that are effective against inflammation to treat lethal COVID-19 are still urgently needed. Here, we constructed a SARS-CoV-2 spike protein-specific CAR, and human T cells infected with this CAR (SARS-CoV-2-S CAR-T) and stimulated with spike protein mimicked the T-cell responses seen in COVID-19 patients, causing cytokine storm and displaying a distinct memory, exhausted, and regulatory T-cell phenotype. THP1 remarkably augmented cytokine release in SARS-CoV-2-S CAR-T cells when they were in coculture. Based on this “two-cell” (CAR-T and THP1 cells) model, we screened an FDA-approved drug library and found that felodipine, fasudil, imatinib, and caspofungin were effective in suppressing the release of cytokines, which was likely due to their ability to suppress the NF-κB pathway in vitro. Felodipine, fasudil, imatinib, and caspofungin were further demonstrated, although to different extents, to attenuate lethal inflammation, ameliorate severe pneumonia, and prevent mortality in a SARS-CoV-2-infected Syrian hamster model, which were also linked to their suppressive role in inflammation. In summary, we established a SARS-CoV-2-specific CAR-T-cell model that can be utilized as a tool for anti-inflammatory drug screening in a fast and high-throughput manner. The drugs identified herein have great potential for early treatment to prevent COVID-19 patients from cytokine storm-induced lethality in the clinic because they are safe, inexpensive, and easily accessible for immediate use in most countries.  相似文献   

13.
《Clinical microbiology and infection》2021,27(10):1520.e7-1520.e10
ObjectivesDexamethasone has become the standard of care for severe coronavirus disease 2019 (COVID-19), but its virological impact is poorly understood. The objectives of this work were to characterize the kinetics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) concentration in the upper respiratory tract (URT) and the antibody response in patients with (D+) and without (D) dexamethasone treatment.MethodsData and biosamples from hospitalized patients with severe COVID-19, enrolled between 4th March and 11th December 2020 in a prospective observational study, were analysed. SARS-CoV-2 virus concentration in serial URT samples was measured using RT-PCR. SARS-CoV-2-specific immunoglobulins A and G (IgA and IgG) were measured in serum samples using S1-ELISA.ResultsWe compared 101 immunocompetent patients who received dexamethasone (according to the inclusion criteria and dosage determined in the RECOVERY trial) to 93 immunocompetent patients with comparable disease severity from the first months of the pandemic, who had not been treated with dexamethasone or other glucocorticoids. We found no inter-group differences in virus concentration kinetics, duration of presence of viral loads >106 viral copies/mL (D+ median 17 days (IQR 13–24), D 19 days (IQR 13–29)), or time from symptom onset until seroconversion (IgA: D+ median 11.5 days (IQR 11–12), D 14 days (IQR 11.5–15.75); IgG: D+ 13 days (IQR 12–14.5), D 12 days (IQR 11–15)).ConclusionDexamethasone does not appear to lead to a change in virus clearance or a delay in antibody response in immunocompetent patients hospitalized with severe COVID-19.  相似文献   

14.
《Clinical microbiology and infection》2021,27(9):1349.e1-1349.e6
ObjectivesThe worldwide spread of coronavirus disease 2019 (COVID-19) highlights the need for assessment of long-term humoral immunity in convalescent subjects. Our objectives were to evaluate long-term IgG antibody response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and B-cell memory response in COVID-19 convalescent subjects.MethodsBlood samples were collected from a cohort of subjects recovering from COVID-19 and from healthy subjects who donated blood. SARS-CoV-2 IgG antibodies were quantitatively detected by ELISA using anti-S1 spike IgG. SARS-CoV-2 spike-specific IgG memory B cells were evaluated by reversed B-cell FluroSpot based on human IgG SARS-CoV-2 receptor-binding domain in a randomly selected group of subjects recovering from COVID-19. Statistical analysis was performed with clinical variables and time post COVID-19 infection.ResultsAntibody response was not detected in 26 of 392 COVID-19 convalescent subjects (6.6%). Over a period of 9 months, the level of antibodies decreased by 50% but stabilized at 6 months, and a protective level prevailed for up to 9 months. No differences were found regarding IgG SARS-CoV-2 antibody levels for age, gender, and major blood types over time. Over time, asymptomatic COVID-19 subjects did not differ in antibody level from subjects with mild to severe disease. Repeated paired IgG SARS-CoV-2 antibody level analyses disclosed that, over 6 and 9 months, 15.3% (nine of 59) and 15.8% (three of 19) of subjects became SARS-CoV-2 IgG-seronegative, respectively, all with a low antibody level at 3 months. Rate of antibody decline was not affected by age, gender, or clinical symptomatology. In a subgroup of recovering subjects, memory B-cell response up to 9 months post-COVID-19 infection was undetectable in 31.8% of subjects (14/44), and there was no correlation with age, SARS-CoV-2 antibody level, or time post infection.ConclusionsThe majority of convalescent COVID-19 subjects develop an IgG SARS-CoV-2 antibody response and a protective level prevails over a period of up to 9 months, regardless of age, gender, major blood types or clinical symptomatology.  相似文献   

15.
16.
ObjectivesThe current study was aimed at examining SARS-CoV-2 immune responses following two doses of Comirnaty® COVID-19 vaccine among elderly people in nursing homes.MethodsA prospective cohort study in a representative sample from nursing homes in Valencia (n = 881; males: 271, females 610; median age, 86 years) recruited residents using a random one-stage cluster sampling approach. A lateral flow immunochromatography device (LFIC) (OnSite COVID-19 IgG/IgM Rapid Test; CTK BIOTECH, Poway, CA, USA) was used as the front-line test for detecting SARS-CoV-2-Spike (S)-specific antibodies in whole blood obtained using a fingerstick. Residents returning negative LFIC results underwent venipuncture and testing for presence of SARS-CoV-2-S-reactive antibodies and T cells using the Roche Elecsys® Anti-SARS-CoV-2 S (Roche Diagnostics, Pleasanton, CA, USA), the LIAISON® SARS-CoV-2 TrimericS IgG assay (Diasorin S.p.A, Saluggia, Italy) and by flow cytometry, respectively.ResultsThe SARS-CoV-2-S antibody detection rate in nursing home residents was 99.6% (283/284) and 98.3% (587/597) for SARS-CoV-2 recovered and naïve residents, respectively, within a median of 99 days (range 17–125 days) after full vaccination. Three out of five residents lacking SARS-CoV-2-S antibodies had detectable S-reactive CD8+ and/or CD4+ T cells. In addition, 50/50 and 40/50 participants with detectable SARS-CoV-2 antibodies also had SARS-CoV-2-S-reactive interferon-γ-producing CD4+ and CD8+ T cells, respectively.DiscussionThe Comirnaty® COVID-19 vaccine is highly immunogenic in nursing home residents.  相似文献   

17.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causing coronavirus disease 2019 (COVID-19) has spread worldwide. Whether antibodies are important for the adaptive immune responses against SARS-CoV-2 infection needs to be determined. Here, 26 cases of COVID-19 in Jinan, China, were examined and shown to be mild or with common clinical symptoms, and no case of severe symptoms was found among these patients. Strikingly, a subset of these patients had SARS-CoV-2 and virus-specific IgG coexist for an unexpectedly long time, with two cases for up to 50 days. One COVID-19 patient who did not produce any SARS-CoV-2–bound IgG successfully cleared SARS-CoV-2 after 46 days of illness, revealing that without antibody-mediated adaptive immunity, innate immunity alone may still be powerful enough to eliminate SARS-CoV-2. This report may provide a basis for further analysis of both innate and adaptive immunity in SARS-CoV-2 clearance, especially in nonsevere cases.  相似文献   

18.
BackgroundA rapid decline in immunity and low neutralizing activity against the delta variant in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccinees has been observed. This study describes an outbreak of coronavirus disease 2019 (COVID-19) breakthrough infections caused by the SARS-CoV-2 delta variant in a psychiatric closed ward.MethodsData from epidemic intelligence service officers were utilized to obtain information regarding demographic, vaccination history, and clinical data along with SARS-CoV-2 PCR test results for a COVID-19 outbreak that occurred in a closed psychiatric ward.ResultsAmong the 164 residents, 144 (87.8%) received two doses of vaccines and 137 (95.1%) of them received ChAdOx1 nCoV-19 vaccine. The mean interval between the second vaccination and COVID-19 diagnosis was 132.77 ± 40.68 days. At the time of detection of the index case, SARS-CoV-2 had spread throughout the ward, infecting 162 of 164 residents. The case-fatality ratio was lower than that in the previously reported outbreak before the vaccination (1.2%, 2/162 vs. 6.9%, P = 0.030). Prolonged hospitalization occurred in 17 patients (11.1%) and was less prevalent in the vaccinated group than in the unvaccinated group (8.5% vs. 25.0%, P = 0.040).ConclusionThe findings of this study highlight that while vaccination can reduce mortality and the duration of hospitalization, it is not sufficient to prevent an outbreak of the SARS-CoV-2 delta variant in the present psychiatric hospital setting.  相似文献   

19.
AimTo assess the humoral immunity to COVID-19 in nursing home residents six months after vaccination.MethodsThis seroepidemiological research enrolled 118 residents of one nursing home in Zagreb. All participants received two doses of BioNTech/Pfizer COVID-19 and had no previously detected SARS-CoV-2 infection. The samples were tested for the presence of neutralizing antibodies using a virus neutralization test. A SARS-CoV-2 strain isolated in Vero E6 cells from a Croatian COVID-19 patient was used as a stock virus. Neutralizing antibody titer was defined as the reciprocal of the highest serum dilution that showed at least 50% neutralization. Neutralizing antibody titer ≥8 was considered positive.ResultsSixty-four (54%) participants had a positive neutralizing antibody titer, 27 (23%) had a low positive titer (titer 8), and 27 (23%) had a negative titer. Women had a significantly higher median titer than men (16 [interquartile range, IQR 24] vs 8 [IQR 12], Mann-Whitney U = 1033, P = 0.003). Age was negatively but not significantly correlated with neutralizing antibody titer (Spearman’s rho -0.132, P = 0.155).ConclusionAlmost half of the participants (46%) had a negative or low positive titer six months after having been fully vaccinated. This study suggests that humoral immunity among nursing home residents considerably wanes six months after BioNTech/Pfizer COVID-19 vaccination. Our results could contribute to the discussion about the need for a booster dose.

By October 2021, more than 238 million coronavirus disease (COVID-19) cases were confirmed and around 4.9 million deaths recorded across more than 200 countries (1). COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has posed a serious threat to public health systems. In many European countries, COVID-19-related deaths of nursing home residents contribute to more than one third of all COVID-19-related deaths (2). The high morbidity and mortality observed among residents in long-term care facilities are a major challenge for disease prevention and control in such settings (3).The most effective intervention for preventing the spread of infectious diseases is vaccination. Various SARS-CoV-2 vaccine types have been developed, including mRNA vaccines, adenovirus-based vector vaccines, DNA vaccines, inactivated vaccines, and recombinant subunits vaccines. All vaccines so far approved in the European Union are either mRNA vaccines using lipid nanoparticles as vectors for mRNA delivery or adenovirus-based vector vaccines. All these vaccines target the spike protein, which is the main antigen component of SARS-CoV-2 structural proteins (4,5).Humoral immunity acts as an important part of immunity against viral infection, mainly through the production of neutralizing antibodies against viruses. Neutralizing antibodies play a critical role in controlling SARS-CoV-2 infection (6). In addition, the presence of each SARS-CoV-2-specific CD4+ and CD8+ T cells was associated with a milder disease (7). However, there has been much controversy over the role of humoral immune response in COVID-19, including the dynamics of antibody response, correlation with disease severity, and duration of neutralizing antibodies and memory B-cell response (8).Recent studies have shown that the neutralizing antibody level highly predicts immune protection. Croatia started mass vaccination against SARS-CoV-2 on December 27, 2020. Nursing home residents have been prioritized due to a high case fatality. After vaccination, restrictive counter-epidemic measures introduced in nursing homes were eased. However, the number of infected nursing homes residents has recently increased, prompting a discussion about the need for a booster dose. This study aimed to assess the extent of waning immunity in this population by measuring neutralizing antibody titers in one nursing home to assess the need for a third vaccine dose.  相似文献   

20.
ObjectivesEarly in vitro studies have suggested that hydroxychloroquine (HCQ) is a potentially useful drug against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. This study was conducted to determine whether HCQ had a preventive effect on coronavirus disease 2019 (COVID-19) in rheumatic disease patients who were taking HCQ.MethodsWe conducted a population-based retrospective cohort study using the records of the Korean Health Insurance Review and Assessment (HIRA) claim records. The clinical data of patients with rheumatoid arthritis (RA) or systemic lupus erythematosus (SLE) who were tested for SARS-CoV-2 were investigated. We compared the attack rate of COVID-19 between those who underwent HCQ therapy within 14 days before the test for SARS-CoV-2 (HCQ users) and HCQ non-users. Data were analysed using logistic regression models, χ2, and Student's t-tests.ResultsAs of 15th May 2020, 2066 patients with RA or SLE were tested for COVID-19. Among them, 31.4% (649/2066) were treated with HCQ. Most HCQ users (93.7%, 608/649) were taking 200–400 mg/day recommended for the treatment of rheumatic diseases. The attack rate of COVID-19 in the HCQ users (2.3%, 15/649) did not differ from that in the HCQ non-users (2.2%, 31/1417) (p 0.86).ConclusionsHCQ prophylactic use at a usual dose did not prevent COVID-19 in patients with rheumatic disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号