首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Structural eye disorders are increasingly recognised as having a genetic basis, although current genetic testing is limited in its success. De novo missense variants in WDR37 are a recently described cause of a multisystemic syndromic disorder featuring ocular coloboma. This study characterises the phenotypic spectrum of this disorder and reports 2 de novo heterozygous variants (p.Thr115Ile, p.Ser119Tyr) in three unrelated Caucasian individuals. All had a clinical phenotype consisting of bilateral iris and retinal coloboma, developmental delay and additional, variable multisystem features. The variants fall within a highly conserved region upstream of the WD-repeat domains, within an apparent mutation cluster. Consistent with the literature, intellectual disability, structural eye disorders, epilepsy, congenital heart disease, genitorenal anomalies and dysmorphic facial features were observed. In addition, a broader developmental profile is reported with a more specific musculoskeletal phenotype described in association with the novel variant (p.Thr115Ile). We further expand the phenotypic spectrum of WDR37-related disorders to include those with milder developmental delay and strengthen the association of ocular coloboma and musculoskeletal features. We promote the inclusion of WDR37 on gene panels for intellectual disability, epilepsy and structural eye disorders.  相似文献   

3.
4.
Identification of rare genetic variants in patients with intellectual disability (ID) has been greatly accelerated by advances in next generation sequencing technologies. However, due to small numbers of patients, the complete phenotypic spectrum associated with pathogenic variants in single genes is still emerging. Among these genes is ZBTB18 (ZNF238), which is deleted in patients with 1q43q44 microdeletions who typically present with ID, microcephaly, corpus callosum (CC) abnormalities, and seizures. Here we provide additional evidence for haploinsufficiency or dysfunction of the ZBTB18 gene as the cause of ID in five unrelated patients with variable syndromic features who underwent whole exome sequencing revealing separate de novo pathogenic or likely pathogenic variants in ZBTB18 (two missense alterations and three truncating alterations). The neuroimaging findings in our cohort (CC hypoplasia seen in 4/4 of our patients who underwent MRI) lend further support for ZBTB18 as a critical gene for CC abnormalities. A similar phenotype of microcephaly, CC agenesis, and cerebellar vermis hypoplasia has been reported in mice with central nervous system‐specific knockout of Zbtb18. Our five patients, in addition to the previously described cases of de novo ZBTB18 variants, add to knowledge about the phenotypic spectrum associated with ZBTB18 haploinsufficiency/dysfunction.  相似文献   

5.
MED13L haploinsufficiency has recently been described as responsible for syndromic intellectual disability. We planned a search for causative gene variants in seven subjects with intellectual disability and overlapping dysmorphic facial features such as bulbous nasal tip, short mouth and straight eyebrows. We found two de novo frameshift variants in MED13L, consisting in single-nucleotide deletion (c.3765delC) and duplication (c.607dupT). A de novo nonsense variant (c.4420A>T) in MED13L was detected in a further subject in the course of routine whole-exome sequencing. By analyzing the clinical data of our patients along with those recently described in the literature, we confirm that there is a common, recognizable phenotype associated with MED13L haploinsufficiency, which includes intellectual disability and a distinctive facial appearance. Congenital heart diseases are found in some subjects with various degree of severity. Our observation of cleft palate, ataxia, epilepsy and childhood leukemia observed in single cases broadens the known clinical spectrum. Haploinsufficiency for MED13L should be considered in the differential diagnosis of the 1p36 microdeletion syndrome, due to overlapping dysmorphic facial features in some patients. The introduction of massive parallel-sequencing techniques into clinical practice is expected to allow for detection of other causative point variants in MED13L. Analysis of genomic data in connection with deep clinical evaluation of patients could elucidate genetic heterogeneity of the MED13L haploinsufficiency phenotype.  相似文献   

6.
《Genetics in medicine》2023,25(11):100944
PurposeZellweger spectrum disorders (ZSDs) are known as autosomal recessive disorders caused by defective peroxisome biogenesis due to bi-allelic pathogenic variants in any of at least 13 different PEX genes. Here, we report 2 unrelated patients who present with an autosomal dominant ZSD.MethodsWe performed biochemical and genetic studies in blood and skin fibroblasts of the patients and demonstrated the pathogenicity of the identified PEX14 variants by functional cell studies.ResultsWe identified 2 different single heterozygous de novo variants in the PEX14 genes of 2 patients diagnosed with ZSD. Both variants cause messenger RNA mis-splicing, leading to stable expression of similar C-terminally truncated PEX14 proteins. Functional studies indicated that the truncated PEX14 proteins lost their function in peroxisomal matrix protein import and cause increased degradation of peroxisomes, ie, pexophagy, thus exerting a dominant-negative effect on peroxisome functioning. Inhibition of pexophagy by different autophagy inhibitors or genetic knockdown of the peroxisomal autophagy receptor NBR1 resulted in restoration of peroxisomal functions in the patients’ fibroblasts.ConclusionOur finding of an autosomal dominant ZSD expands the genetic repertoire of ZSDs. Our study underscores that single heterozygous variants should not be ignored as possible genetic cause of diseases with an established autosomal recessive mode of inheritance.  相似文献   

7.
Mutations in the postsynaptic scaffolding gene SHANK2 have recently been identified in individuals with autism spectrum disorder (ASD) and intellectual disability. However, the cellular and physiological consequences of these mutations in neurons remain unknown. We have analyzed the functional impact caused by two inherited and one de novo SHANK2 mutations from ASD individuals (L1008_P1009dup, T1127M, R462X). Although all three variants affect spine volume and have smaller SHANK2 cluster sizes, T1127M additionally fails to rescue spine volume in Shank2 knock-down neurons. R462X is not able to rescue spine volume and dendritic branching and lacks postsynaptic clustering, indicating the most severe dysfunction. To demonstrate that R462X when expressed in mouse can be linked to physiological effects, we analyzed synaptic transmission and behavior. Principal neurons of mice expressing rAAV-transduced SHANK2-R462X present a specific, long-lasting reduction in miniature postsynaptic AMPA receptor currents. This dominant negative effect translates into dose-dependent altered cognitive behavior of SHANK2-R462X-expressing mice, with an impact on the penetrance of ASD.  相似文献   

8.
Gemma L. Carvill  Katherine L. Helbig  Candace T. Myers  Marcello Scala  Robert Huether  Sara Lewis  Tyler N. Kruer  Brandon S. Guida  Somayeh Bakhtiari  Joy Sebe  Sha Tang  Heather Stickney  Sehribani Ulusoy Oktay  Ashwin A. Bhandiwad  Keri Ramsey  Vinodh Narayanan  Timothy Feyma  Luis O. Rohena  Andrea Accogli  Mariasavina Severino  Georgina Hollingsworth  Deepak Gill  Christel Depienne  Caroline Nava  Lynette G. Sadleir  Paul A. Caruso  Angela E. Lin  Floor E. Jansen  Bobby Koeleman  Eva Brilstra  Marjolein H. Willemsen  Tjitske Kleefstra  Joaquim Sa  Marie‐Laure Mathieu  Laurine Perrin  Gaetan Lesca  Pasquale Striano  Giorgio Casari  Ingrid E. Scheffer  David Raible  Evelyn Sattlegger  Valeria Capra  Sergio Padilla‐Lopez  Heather C. Mefford  Michael C. Kruer 《Human mutation》2020,41(7):1263-1279
Heterozygous de novo variants in the eukaryotic elongation factor EEF1A2 have previously been described in association with intellectual disability and epilepsy but never functionally validated. Here we report 14 new individuals with heterozygous EEF1A2 variants. We functionally validate multiple variants as protein‐damaging using heterologous expression and complementation analysis. Our findings allow us to confirm multiple variants as pathogenic and broaden the phenotypic spectrum to include dystonia/choreoathetosis, and in some cases a degenerative course with cerebral and cerebellar atrophy. Pathogenic variants appear to act via a haploinsufficiency mechanism, disrupting both the protein synthesis and integrated stress response functions of EEF1A2. Our studies provide evidence that EEF1A2 is highly intolerant to variation and that de novo pathogenic variants lead to an epileptic‐dyskinetic encephalopathy with both neurodevelopmental and neurodegenerative features. Developmental features may be driven by impaired synaptic protein synthesis during early brain development while progressive symptoms may be linked to an impaired ability to handle cytotoxic stressors.  相似文献   

9.
《Genetics in medicine》2022,24(12):2464-2474
PurposeKLHL20 is part of a CUL3-RING E3 ubiquitin ligase involved in protein ubiquitination. KLHL20 functions as the substrate adaptor that recognizes substrates and mediates the transfer of ubiquitin to the substrates. Although KLHL20 regulates neurite outgrowth and synaptic development in animal models, a role in human neurodevelopment has not yet been described. We report on a neurodevelopmental disorder caused by de novo missense variants in KLHL20.MethodsPatients were ascertained by the investigators through Matchmaker Exchange. Phenotyping of patients with de novo missense variants in KLHL20 was performed.ResultsWe studied 14 patients with de novo missense variants in KLHL20, delineating a genetic syndrome with patients having mild to severe intellectual disability, febrile seizures or epilepsy, autism spectrum disorder, hyperactivity, and subtle dysmorphic facial features. We observed a recurrent de novo missense variant in 11 patients (NM_014458.4:c.1069G>A p.[Gly357Arg]). The recurrent missense and the 3 other missense variants all clustered in the Kelch-type β-propeller domain of the KLHL20 protein, which shapes the substrate binding surface.ConclusionOur findings implicate KLHL20 in a neurodevelopmental disorder characterized by intellectual disability, febrile seizures or epilepsy, autism spectrum disorder, and hyperactivity.  相似文献   

10.
Defects in the motor domain of kinesin family member 1A (KIF1A), a neuron‐specific ATP‐dependent anterograde axonal transporter of synaptic cargo, are well‐recognized to cause a spectrum of neurological conditions, commonly known as KIF1A‐associated neurological disorders (KAND). Here, we report one mutation‐negative female with classic Rett syndrome (RTT) harboring a de novo heterozygous novel variant [NP_001230937.1:p.(Asp248Glu)] in the highly conserved motor domain of KIF1A. In addition, three individuals with severe neurodevelopmental disorder along with clinical features overlapping with KAND are also reported carrying de novo heterozygous novel [NP_001230937.1:p.(Cys92Arg) and p.(Pro305Leu)] or previously reported [NP_001230937.1:p.(Thr99Met)] variants in KIF1A. In silico tools predicted these variants to be likely pathogenic, and 3D molecular modeling predicted defective ATP hydrolysis and/or microtubule binding. Using the neurite tip accumulation assay, we demonstrated that all novel KIF1A variants significantly reduced the ability of the motor domain of KIF1A to accumulate along the neurite lengths of differentiated SH‐SY5Y cells. In vitro microtubule gliding assays showed significantly reduced velocities for the variant p.(Asp248Glu) and reduced microtubule binding for the p.(Cys92Arg) and p.(Pro305Leu) variants, suggesting a decreased ability of KIF1A to move along microtubules. Thus, this study further expanded the phenotypic characteristics of KAND individuals with pathogenic variants in the KIF1A motor domain to include clinical features commonly seen in RTT individuals.  相似文献   

11.
The gamma-1 isoform of casein kinase 1, the protein encoded by CSNK1G1, is involved in the growth and morphogenesis of cells. This protein is expressed ubiquitously among many tissue types, including the brain, where it regulates the phosphorylation of N-methyl-D-aspartate receptors and plays a role in synaptic transmission. One prior individual with a de novo variant in CSNK1G presenting with severe developmental delay and early-onset epilepsy has been reported. Here we report an updated clinical history of this previously published case, as well as four additional individuals with de novo variants in CSNK1G1 identified via microarray-based comparative genomic hybridization, exome, or genome sequencing. All individuals (n = 5) had developmental delay. At least three individuals had diagnoses of autism spectrum disorder. All participants were noted to have dysmorphic facial features, although the reported findings varied widely and therefore may not clearly be recognizable. None of the participants had additional major malformations. Taken together, our data suggest that CSNK1G1 may be a cause of syndromic developmental delay and possibly autism spectrum disorder.  相似文献   

12.
Developmental and Epileptic encephalopathies (DEE) describe heterogeneous epilepsy syndromes, characterized by early‐onset, refractory seizures and developmental delay (DD). Several DEE associated genes have been reported. With increased access to whole exome sequencing (WES), new candidate genes are being identified although there are fewer large cohort papers describing the clinical phenotype in such patients. We describe 6 unreported individuals and provide updated information on an additional previously reported individual with heterozygous de novo missense variants in YWHAG. We describe a syndromal phenotype, report 5 novel, and a recurrent p.Arg132Cys YWHAG variant and compare developmental trajectory and treatment strategies in this cohort. We provide further evidence of causality in YWHAG variants. WES was performed in five patients via Deciphering Developmental Disorders Study and the remaining two were identified via Genematcher and AnnEX databases. De novo variants identified from exome data were validated using Sanger sequencing. Seven out of seven patients in the cohort have de novo, heterozygous missense variants in YWHAG including 2/7 patients with a recurrent c.394C > T, p.Arg132Cys variant; 1/7 has a second, pathogenic variant in STAG1. Characteristic features included: early‐onset seizures, predominantly generalized tonic–clonic and absence type (7/7) with good response to standard anti‐epileptic medications; moderate DD; Intellectual Disability (ID) (5/7) and Autism Spectrum Disorder (3/7). De novo YWHAG missense variants cause EE, characterized by early‐onset epilepsy, ID and DD, supporting the hypothesis that YWHAG loss‐of‐function causes a neurological phenotype. Although the exact mechanism of disease resulting from alterations in YWHAG is not fully known, it is possible that haploinsufficiency of YWHAG in developing cerebral cortex may lead to abnormal neuronal migration resulting in DEE.  相似文献   

13.
14.
The EMC1 gene, located on 1p36.13, encodes the subunit 1 of the endoplasmic reticulum-membrane protein complex, a highly conserved and ubiquitous multiprotein transmembrane complex. Pathogenic monoallelic and biallelic variants in EMC1 in humans have been reported only in six families, causing isolated visual impairment or in association with psychomotor retardation and cerebellar atrophy. We report a ten-year-old boy, born to unrelated parents, with early-onset severe global development delay due to novel EMC1 biallelic pathogenic variants. A truncating variant, p.(Tyr378*) and a missense variant, p.(Phe953Ser), located in exon 11 and 23 of EMC1 gene respectively, have been found by reanalysis of exome sequencing data. The proband's phenotype included several signs that overlap with the phenotype of previously reported patients, associating severe global developmental delay, abnormal ophthalmological examination, and postnatal slow-down of the head circumference growth. Some distinguishing clinical signs were observed in comparison to patients from literature, such as autism spectrum disorder, absence of seizures, scoliosis or facial dysmorphic features, thus extending the spectrum of EMC1-related phenotypes. Similarly, brain MRI, performed at 2 years, showed normal cerebellar volume and structure, whereas cerebellar atrophy was described in literature. Moreover, difficulties of clinical differential diagnosis between EMC1-associated disease and other etiologies of global development delay support the importance of large-scale genetic investigations. Our diagnostic approach, through reanalysis of exome sequencing data, highlights the importance of reconsidering initial negative results for patients with a strong suspicion of genetic disease, and to update analytic pipelines in order to improve the diagnostic yield of exome sequencing.  相似文献   

15.
The contribution of mosaicism to diagnosed genetic disease and presumed de novo variants (DNV) is under investigated. We determined the contribution of mosaic genetic disease (MGD) and diagnosed parental mosaicism (PM) in parents of offspring with reported DNV (in the same variant) in the (1) Undiagnosed Diseases Network (UDN) (N = 1946) and (2) in 12,472 individuals electronic health records (EHR) who underwent genetic testing at an academic medical center. In the UDN, we found 4.51% of diagnosed probands had MGD, and 2.86% of parents of those with DNV exhibited PM. In the EHR, we found 6.03% and 2.99% and (of diagnosed probands) had MGD detected on chromosomal microarray and exome/genome sequencing, respectively. We found 2.34% (of those with a presumed pathogenic DNV) had a parent with PM for the variant. We detected mosaicism (regardless of pathogenicity) in 4.49% of genetic tests performed. We found a broad phenotypic spectrum of MGD with previously unknown phenotypic phenomena. MGD is highly heterogeneous and provides a significant contribution to genetic diseases. Further work is required to improve the diagnosis of MGD and investigate how PM contributes to DNV risk.  相似文献   

16.
17.
B chromosomes are dispensable elements that occur in many species, including maize. The maize B chromosome is acrocentric and highly heterochromatic and undergoes nondisjunction during the second pollen mitosis. In this study, we determined the genetic behavior and organization of two naturally occurring B chromosome variants (designated Bta and Btb). The morphology and genetic behavior of the Bta chromosome were similar to those of the typical B chromosome, but the Bta chromosome contained a deletion in the first heterochromatin region and had higher transmission frequencies through both male and female parents. The Btb chromosome was reduced in size, consisted primarily of heterochromatin, and had a lower transmission frequency. The Btb chromosome lacked nondisjunctional behavior, which was restored by the presence of normal B chromosomes in the cell. Furthermore, the Btb chromosome contained two centromeric regions, only one of which was active. The organization of these two naturally occurring B chromosome variants was also determined using fluorescence in situ hybridization with B-associated sequences and by amplification of B-specific molecular markers to create possible evolutionary models.  相似文献   

18.
The recent finding that the neuronal cadherin gene CDH2 confers a highly significant risk for canine compulsive disorder led us to investigate whether missense variants within the human ortholog CDH2 are associated with altered susceptibility to obsessive-compulsive disorder (OCD), Tourette disorder (TD) and related disorders. Exon resequencing of CDH2 in 320 individuals identified four non-synonymous single-nucleotide variants, which were subsequently genotyped in OCD probands, Tourette disorder probands and relatives, and healthy controls (total N=1161). None of the four variants was significantly associated with either OCD or TD. One variant, N706S, was found only in the OCD/TD groups, but not in controls. By examining clinical data, we found there were significant TD-related phenotype differences between those OCD probands with and without the N845S variant with regard to the co-occurrence of TD (Fisher''s exact test P=0.014, OR=6.03). Both N706S and N845S variants conferred reduced CDH2 protein expression in transfected cells. Although our data provide no overall support for association of CDH2 rare variants in these disorders considered as single entities, the clinical features and severity of probands carrying the uncommon non-synonymous variants suggest that CDH2, along with other cadherin and cell adhesion genes, is an interesting gene to pursue as a plausible contributor to OCD, TD and related disorders with repetitive behaviors, including autism spectrum disorders.  相似文献   

19.
DDX3X (Xp11.4) encodes a DEAD‐box RNA helicase that escapes X chromosome inactivation. Pathogenic variants in DDX3X have been shown to cause X‐linked intellectual disability (ID) (MRX102, MIM: 300958). The phenotypes associated with DDX3X variants are heterogeneous and include brain and behavioral abnormalities, microcephaly, hypotonia, and movement disorders and/or spasticity. The majority of DDX3X variants described are de novo mutations in females with ID. In contrast, most male DDX3X variants are inherited from an unaffected mother, with one documented exception being a recently identified de novo splice site variant. It has been suggested, therefore, that DDX3X exerts its effects through haploinsufficiency in females, and that affected males carry hypomorphic alleles that retain partial function. Given the lack of male de novo DDX3X variants, loss‐of‐function variants in this gene are suspected to be male lethal. Through whole‐exome sequencing, we identified three unrelated males with hemizygous missense DDX3X variants and ID. All three variants were confirmed by Sanger sequencing, with two established as de novo. In silico analyses were supportive of pathogenicity. We report the male phenotypes and compare them to phenotypes observed in previously reported male and female patients. In conclusion, we propose that de novo DDX3X variants are not necessarily male lethal and should be considered as a cause of syndromic ID in both males and females.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号