首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Neuromodulation》2022,25(7):980-988
ObjectivesTo investigate the analgesic effect of high-voltage pulsed radiofrequency (HV-PRF) on the dorsal root ganglion (DRG) for neuropathic pain induced by spared nerve injury (SNI) in rats, especially the influence of this treatment on the DRG ultrastructure and voltage-gated sodium channel 1.7 (Nav1.7) level in the DRG.Materials and MethodsOne hundred fifty adult male Sprague-Dawley rats were randomly divided into five groups: Sham, SNI, Free-PRF, standard-voltage PRF (SV-PRF), and HV-PRF. The 45V-PRF and 85V-PRF procedures applied to the left L5 DRG were performed in SV-PRF group and the HV-PRF group, respectively, on day 7 after SNI, whereas no PRF was concurrently delivered in Free-PRF group. The paw mechanical withdrawal threshold (PMWT) was detected before SNI (baseline) and on days 1, 3, 7, 8, 10, 14, and 21. The changes of left L5 DRG ultrastructure were analyzed with transmission electron microscopy on days 14 and 21. The expression levels of Nav1.7 in left L5 DRG were detected by immunofluorescence and Western blot.ResultsCompared with the Free-PRF group, PMWT in the SV-PRF group and HV-PRF group were both significantly increased after PRF (all p < 0.05). Meanwhile, the PMWT was significantly higher in the HV-PRF group than that in the SV-PRF group on days 14 and 21 (all p < 0.05). There were statistically significant differences between the SV-PRF and Free-PRF groups (p < 0.05). Similarly, statistically significant difference was found between the HV-PRF and Free-PRF groups (p < 0.05). Especially, comparison of the SV-PRF group and the HV-PRF group revealed statistically significant difference (p < 0.05). The Nav1.7 levels were significantly downregulated in the SV-PRF group and HV-PRF groups compared to that in the Free-PRF group (all p < 0.01). A significantly lower Nav1.7 level was also found in the HV-PRF group compared to that in the SV-PRF group (p < 0.05).ConclusionsThe HV-PRF produces a better analgesic effect than SV-PRF applied to the DRG in SNI rats. The underlying mechanisms may be associated with improving the histopathological prognosis and the downregulation of Nav1.7 levels in the DRG.  相似文献   

2.
《Neuromodulation》2022,25(7):970-979
ObjectivesDorsal root ganglion (DRG) stimulation is effective in treating chronic pain. While burst stimulation has been proven to enhance the therapeutic efficacy in spinal cord stimulation, currently only a tonic stimulation waveform is clinically used in DRG stimulation. We hypothesized that burst DRG stimulation might also produce analgesic effect in a preclinical neuropathic pain model. We evaluated both the therapeutic effects of burst DRG stimulation and the possible effects of DRG stimulation upon inflammation within the DRG in a preclinical neuropathic pain model.Materials and MethodsRats received either a painful tibial nerve injury or sham surgery. Analgesic effects of DRG stimulation were evaluated by testing a battery of evoked pain-related behaviors as well as measuring the positive affective state associated with relief of spontaneous pain using conditioned place preference. Histological evidence for neuronal trauma or neuroinflammation was evaluated.ResultsAll of the waveforms tested (20 Hz-tonic, 20 Hz-burst, and 40 Hz-burst) have similar analgesic effects in sensory tests and conditioned place preference. Long-term DRG stimulation for two weeks does not change DRG expression of markers for nerve injury and neuroinflammation.ConclusionsDRG stimulation using burst waveform might be also suitable for treating neuropathic pain.  相似文献   

3.
Emerging evidence indicates that CXCL12/CXCR4 signaling is involved in chronic pain. However, few studies have systemically assessed its role in direct nerve injury-induced neuropathic pain and the underlying mechanism. Here, we determined that spared nerve injury(SNI)increased the expression of CXCL12 and its cognate receptor CXCR4 in lumbar 5 dorsal root ganglia(DRG)neurons and satellite glial cells. SNI also induced longlasting upregulation of CXCL12 and CXCR4 in the ipsilateral L4–5 spinal cord dorsal horn, characterized by CXCL12 expression in neurons and microglia, and CXCR4 expression in neurons and astrocytes. Moreover, SNIinduced a sustained increase in TNF-a expression in the DRG and spinal cord. Intraperitoneal injection(i.p.) of the TNF-a synthesis inhibitor thalidomide reduced the SNI-induced mechanical hypersensitivity and inhibited the expression of CXCL12 in the DRG and spinal cord.Intrathecal injection(i.t.) of the CXCR4 antagonist AMD3100, both 30 min before and 7 days after SNI,reduced the behavioral signs of allodynia. Rats given an i.t.or i.p. bolus of AMD3100 on day 8 of SNI exhibited attenuated abnormal pain behaviors. The neuropathic pain established following SNI was also impaired by i.t. administration of a CXCL12-neutralizing antibody. Moreover,repetitive i.t. AMD3100 administration prevented the activation of ERK in the spinal cord. The mechanical hypersensitivity induced in na?¨ve rats by i.t. CXCL12 was alleviated by pretreatment with the MEK inhibitor PD98059. Collectively, our results revealed that TNF-a might mediate the upregulation of CXCL12 in the DRG and spinal cord following SNI, and that CXCL12/CXCR4 signaling via ERK activation contributes to the development and maintenance of neuropathic pain.  相似文献   

4.
《Neuromodulation》2022,25(7):1040-1044
IntroductionDorsal root ganglion (DRG) stimulation is a form of neuromodulation used to treat neuropathic pain due to a myriad of etiologies. Though this relatively new therapy has been shown to be quite effective, complications associated with the implantation of this therapy have not been well documented.ObjectivesThe primary objective of this study was to describe the device-related complications associated with DRG stimulator implantations.Materials and MethodsThis was a single-center retrospective analysis of 31 patients who underwent full implantation of neuromodulation hardware marketed for DRG stimulation. The predefined endpoints included device-related complications associated with DRG implantations, such as hardware failure, explantation procedures, and revision surgery. Additional endpoints included percentage of patients receiving therapy and pain as measured using the visual analog scale (VAS) pain scale at initial, six-month, and 12-month follow-up after hardware implantation.ResultsThirty-one patients were included out of 42 patients trialed. Baseline VAS in patients was 7.7 (31 patients). At initial follow-up, six-month follow-up, and one-year follow-up, VAS scores were 4.7 (31 patients), 5.3 (20 patients), and 5.5 (13 patients), respectively. Paired t-test between preoperative VAS (mean 7.3) and one-year follow-up VAS (5.5) demonstrated statistical significance (p = 0.027). At initial, six-month, and one-year follow-up, 30/31 (97%), 19/24 (79%), and 18/23 (78%) patients were confirmed to be receiving DRG stimulation therapy after permanent implant. Of the 31 patients who were implanted with a permanent system, 8 (26%) were explanted and an additional 10 (29%) required revision surgery.ConclusionIn this study, we examine the various device-related complications associated with DRG stimulation requiring repeat surgery. High rates of hardware failure, revision surgery, and explantation of stimulators illustrate the need for hardware optimization to improve patient outcomes.  相似文献   

5.
《Neuromodulation》2022,25(7):965-969
IntroductionChronic neuropathic groin pain develops in a significant number of postsurgical patients; however, multiple etiologies have been identified, and this makes it a challenging condition to treat. While treatment often involves a multimodal approach, advancements in neuromodulation technology, particularly dorsal root ganglion (DRG) stimulation, have benefited patients plagued by chronic pain refractory to standard treatment modalities. Our goal was to provide a definitive source of information for interventional pain physicians regarding groin pain and the use of DRG stimulation for its treatment.Materials and MethodsIn this narrative review, we provide an overview of groin pain and discuss potential pain generators. We also outline appropriate treatment options with particular interest on DRG stimulation. Lastly, we provide a narrative review of the published literature regarding DRG stimulation for chronic groin pain from a variety of etiologies.ConclusionDRG stimulation has emerged as an alternative neuromodulatory technique for patients with chronic groin pain. While previous studies suggest substantial sustained pain relief with DRG stimulation in this patient population, prospective randomized controlled studies are necessary before formal recommendations can be made.  相似文献   

6.
《Neuromodulation》2021,24(4):729-737
ObjectivesDorsal root ganglion (DRG) stimulation is a novel treatment of chronic neuropathic pain and has been shown to be efficacious across several case reports and randomized trials. However, long-term follow-up is limited, as are reports of complication rates. This study presents efficacy and complications for patients treated with DRG stimulation.Materials and MethodsWe performed an observational, multicenter cohort study of all patients in Denmark implanted with FDA-approved DRG stimulation systems to treat chronic, neuropathic pain between 2014 and 2018. Follow-up period was one to three years.ResultsForty-three patients underwent trial DRG stimulation; 33 were subsequently fully implanted. Pain location: 58% lower extremity; 21% upper extremity; 21% thoracic/abdominal. At the end of the observation period, 58% of fully implanted patients were still implanted; 42% had fully functional systems.In these patients, average Numerical Rating Scale (NRS)-score of pain was reduced from 6.8 to 3.5 (p = 0.00049) and worst NRS-score was reduced from 8.6 to 6.0 (p = 0.0039) at 12 months follow-up. Pain Catastrophizing Score was reduced from 32 to 15 (p = 0.0039).Thirteen patients experienced complications related to defect leads (39% of implanted systems). In four patients (12%), lead removal left fragments in the root canal due to lead fracture, and three patients suffered permanent nerve damage during attempts to replace broken leads.ConclusionsThis study suggests a significant, clinically relevant effect of DRG stimulation on neuropathic pain, but also demonstrates substantial problems with maintenance and revision of currently available systems. Consequently, treatment with equipment marketed specifically for DRG stimulation is currently paused in Denmark.  相似文献   

7.
《Neuromodulation》2021,24(6):983-991
ObjectivesImplantable peripheral nerve stimulation has been increasingly used to treat neuropathic pain. This neuromodulation strategy may be an alternative option for intractable trigeminal neuropathic pain; however, evidence for this treatment approach remains limited. A systematic review was conducted to identify studies of patients that underwent peripheral nerve stimulation implantation for trigeminal neuropathic pain.Materials and MethodsDatabases including, PubMed, EMBASE, and Cochrane Library were searched up to October 5, 2020. The primary outcomes were changes in pain scores and response rates of neuromodulation therapy. A random effects model was used for meta-analysis. Subgroup analysis was performed to examine the source of heterogeneity.ResultsThirteen studies including 221 participants were evaluated. The estimated response rate of neuromodulation treatment was 61.3% (95% CI: 44.4–75.9%, I2 = 70.733%, p < 0.0001) at the last follow-up. The overall reduction in pain scores was 2.363 (95% CI: 1.408–3.319, I2 = 85.723%, p < 0.0001). Subgroup analysis further confirmed that stimulation target (peripheral branch vs. trigeminal ganglion vs. trigeminal nerve root) contributed the heterogeneity across enrolled studies. Better clinical outcome was associated with stimulation of the trigeminal peripheral branch (p < 0.0001).ConclusionPeripheral nerve stimulation may be a promising approach in the management of trigeminal neuropathic pain, especially for patients intractable to conventional therapy.  相似文献   

8.
《Brain stimulation》2021,14(6):1576-1585
BackgroundDorsal root ganglion (DRG) stimulation, an invasive method of neuromodulation, and transcranial direct current stimulation (tDCS), a non-invasive method of altering cortical excitability, have both proven effective in relieving chronic pain.ObjectiveWe employed a randomized, sham-controlled crossover study design to investigate whether single-session tDCS would have an additive therapeutic effect alongside DRG stimulation (DRGS) in the treatment of chronic pain.MethodsSixteen neuropathic pain patients who were previously implanted with DRG stimulators were recruited. Baseline pain scores were established with DRGS-OFF. Pain scores were then recorded with DRGS-ON, after paired sham tDCS stimulation, and after paired active anodal tDCS (a-tDCS) stimulation. For active tDCS, patients were randomized to ‘MEG (magnetoencephalography) localized’ tDCS or contralateral motor cortex (M1) tDCS for 30 min. EEG recordings and evaluations of tDCS adverse effects were also collected.ResultsAll participants reported the interventions to be tolerable with no significant adverse effects during the session. Paired DRGS/active tDCS resulted in a significant reduction in pain scores compared to paired DRGS-ON/sham tDCS or DRGS alone. There was no difference in the additive effect of M1 vs. MEG-localized tDCS. Significant augmentation of beta activity was observed between DRGS-OFF and DRGS-ON conditions, as well as between paired DRGS-ON/sham tDCS and paired DRGS-ON/active tDCS.ConclusionOur results indicate that a single session of tDCS alongside DRGS is safe and can significantly reduce pain acutely in neuropathic pain patients. Paired invasive/non-invasive neuromodulation is a promising new treatment strategy for pain management and should be evaluated further to assess long-term benefits.  相似文献   

9.
《Neuromodulation》2021,24(4):700-707
ObjectivesTraumatic peripheral nerve injuries (PNI) often result in severe neuropathic pain which typically becomes chronic, is recalcitrant to common analgesics, and is associated with sleep disturbances, anxiety, and depression. Pharmacological treatments proven to be effective against neuropathic pain are not well tolerated due to side effects. Neuromodulative interventions such as peripheral nerve or spinal cord stimulation have generated mixed results and may be limited by reduced somatotopic specificity. Dorsal root ganglion (DRG) stimulation may be more effective in this etiology.Materials and MethodsTwenty-seven patients were trialed with a DRG neurostimulation system for PNI; trial success (defined as ≥50% pain relief) was 85%, and 23 patients received a permanent stimulator. However, 36-month outcome data was only available for 21 patients. Pain, quality of life, mental and physical function, and opioid usage were assessed at baseline and at 3-, 6-, 12-, 18-, 24-, and 36 months post-permanent implant. Implant-related complications were also documented.ResultsCompared to baseline, we observed a significant pain relief (p < 0.001) at 3 (58%), 12 (66%), 18 (69%), 24 (71%), and 36 months (73%) in 21 patients (52.5 ± 14.2 years; 12 female), respectively. Mental and physical function showed immediate and sustained improvements. Participants reported improvements in quality of life. Opioid dosage reduced significantly (p < 0.001) at 3 (30%), 12 (93%), 18 (98%), 24 (99%), and 36 months (99%), and 20 of 21 patients were completely opioid-free after 36 months. There were five lead migrations and two electrode fractures (corrected by surgical intervention) and one wound infection (conservatively managed).ConclusionsDRG neuromodulation appears to be a safe, effective, and durable option for treating neuropathic pain caused by PNI. The treatment allows cessation of often ineffective pharmacotherapy (including opioid misuse) and significantly improves quality of life.  相似文献   

10.
BackgroundMotor cortex stimulation (MCS) was introduced in 1985 and has been tested extensively for different types of peripheral and central neuropathic pain syndromes (eg, central poststroke pain, phantom limb pain, trigeminal neuropathic pain, migraines, etc). The motor cortex can be stimulated through different routes, including subdural, epidural, and transcranial.ObjectivesIn this review, we discuss the current uses, surgical techniques, localization techniques, stimulation parameters, and clinical outcomes of patients who underwent chronic MCS for treatment-resistant pain syndromes.Materials and MethodsA broad literature search was conducted through PubMed to include all articles focusing on MCS for pain relief (keywords: subdural, epidural, repetitive transcranial magnetic stimulation, transcranial direct current stimulation, motor cortex stimulation, pain).Literature ReviewEpidural MCS was the most widely used technique and had varying response rates across studies. Long-term efficacy was limited, and pain relief tended to decrease over time. Subdural MCS using similar stimulation parameters demonstrated similar efficacy to epidural stimulation and less invasive methods, such as repetitive transcranial magnetic stimulation (rTMS), which have been shown to provide adequate pain relief. rTMS and certain medications (ketamine and morphine) have been shown to predict the long-term response to epidural MCS. Complications tend to be rare, the most reported being seizures during subdural or epidural stimulation or hardware infection.ConclusionsScientific evidence supports the use of MCS for treatment of refractory neuropathic pain syndromes. Further studies are warranted to elucidate the specific indications and stimulation protocols that are most amenable to the different types of MCS.  相似文献   

11.
Background and purposeDespite the rapid development of neuropharmacotherapy, medical treatment of neuropathic pain (NP) still constitutes a significant socioeconomic problem. The authors herein present a group of patients treated with motor cortex stimulation (MCS) for NP of various types and aetiologies.Material and methodsOur cohort included 12 female and 11 male NP patients aged 53 ± 16 treated with MCS. Eleven patients were diagnosed with neuropathic facial pain (NFP), 8 with hemi-body neuropathic pain (HNP), and 4 with deafferentation pain (DP). Prior to surgery, 16 out of 23 patients were treated with repetitive transcranial magnetic stimulation (rTMS), with a positive response in 10 cases. Pain intensity in our group was evaluated with the visual analogue scale (VAS) one month before and three months after MCS implantation.ResultsImprovement on the VAS was reported in the whole group of patients (p < 0.001). The best results were reported in the NFP group (p < 0.001) while the worst ones were noted in the DP group (p = 0.04). Anamnesis duration positively correlated with outcome. Infection forced the authors to permanently remove the system in one case. There were no other complications in the group.ConclusionsMinimally invasive, safe neuromodulative treatment with MCS permits neuropathic pain control with good efficacy. The type of neuropathic pain might be a prognostic factor.  相似文献   

12.
ObjectivesCentral poststroke pain (CPSP), a neuropathic pain condition, is difficult to treat. Repetitive transcranial magnetic stimulation (rTMS) targeted to the primary motor cortex (M1) can alleviate the condition, but not all patients respond. We aimed to assess a promising alternative rTMS target, the secondary somatosensory cortex (S2), for CPSP treatment.Materials and MethodsThis prospective, randomized, double-blind, sham-controlled three-arm crossover trial assessed navigated rTMS (nrTMS) targeted to M1 and S2 (10 sessions, 5050 pulses per session at 10 Hz). Participants were evaluated for pain, depression, anxiety, health-related quality of life, upper limb function, and three plasticity-related gene polymorphisms including Dopamine D2 Receptor (DRD2). We monitored pain intensity and interference before and during stimulations and at one month. A conditioned pain modulation test was performed using the cold pressor test. This assessed the efficacy of the descending inhibitory system, which may transmit TMS effects in pain control.ResultsWe prescreened 73 patients, screened 29, and included 21, of whom 17 completed the trial. NrTMS targeted to S2 resulted in long-term (from baseline to one-month follow-up) pain intensity reduction of ≥30% in 18% (3/17) of participants. All stimulations showed a short-term effect on pain (17–20% pain relief), with no difference between M1, S2, or sham stimulations, indicating a strong placebo effect. Only nrTMS targeted to S2 resulted in a significant long-term pain intensity reduction (15% pain relief). The cold pressor test reduced CPSP pain intensity significantly (p = 0.001), indicating functioning descending inhibitory controls. The homozygous DRD2 T/T genotype is associated with the M1 stimulation response.ConclusionsS2 is a promising nrTMS target in the treatment of CPSP. The DRD2 T/T genotype might be a biomarker for M1 nrTMS response, but this needs confirmation from a larger study.  相似文献   

13.
《Neuromodulation》2022,25(7):1033-1039
IntroductionDorsal root ganglion (DRG) stimulation demonstrated superiority over traditional spinal cord stimulation with better pain relief and greater improvement of quality of life. However, leads specifically designed for DRG stimulation are difficult to implant in patients who previously underwent spinal surgery and show epidural scarring at the desired site of implantation because of the reduced stiffness of the lead. Nevertheless, recurrent leg or arm pain after spinal surgery usually manifests as a single level radiculopathy, which should theoretically be amenable to DRG stimulation.Materials and MethodsWe present the percutaneous transforaminal placement of cylindrical leads through a lateral endoscopic approach for DRG stimulation in burst mode.ResultsWe could successfully show that percutaneous transforaminal lead placement is feasible in three illustrative cases.ConclusionThis technical note combines two innovations, one linked to the other. The first innovation involves a novel endoscopic lateral transforaminal approach to insert a cylindrical lead to the DRG. Because this electrode is compatible with burst stimulation-enabled devices, a second innovation consists of the application of burst stimulation on the DRG.  相似文献   

14.
Objective: The thiamin is often used in the treatment of neuropathy, and pregabalin is often used to treat neuropathic pain. Our study examined the influence of thiamin on the efficacy of pregabalin in a rat model of spinal nerve ligation (SNL)-induced neuropathic pain.

Methods: Sprague-Dawley male rats were randomly divided into six groups. The neuropathic pain-relieving properties were measured by plantar test, cold plate test, and hot plate test after administration of pregabalin (i.v) and/or thiamin (i.p) in SNL rats 14 days after operation.

Results: In the therapy period, pregabalin, or thiamin alone all produced antinociceptive effects in rats with neuropathic pain. And combination treatment of thiamin and pregabalin resulted in an enhanced pain relief compared to the administration of pregabalin or thiamin alone.

Conclusion: Combination of thiamin and pregabalin produces an additive antinociceptive effect in neuropathic pain rats, this drug combination may offer a bene?cial treatment option for neuropathic pain.  相似文献   

15.
16.
17.
Objective. Pulsed radiofrequency (PRF) procedure has been used in clinical practice for the treatment of chronic neuropathic pain conditions without neuronal damage. The purpose of this study was to investigate the changes in pain response and glial expression after the application of PRF on a dorsal root ganglion (DRG) in a neuropathic pain model. Design. A neuropathic pain model (14 female Sprague-Dawley [SD] rats; 200-250?g) was made by a unilateral L5 spinal nerve ligation (SNL) and transection on the distal side of the ligation. The development of mechanical and cold hypersensitivity on the hindpaw was established postoperative day 9 (POD 9). The rats were then randomly assigned to the PRF (+) and the PRF (-) groups. Furthermore, PRF (2 bursts/s, duration?=?20?milliseconds, output voltage?=?45?V) was applied on the ipsilateral DRG for 180 seconds, with a maximum temperature of 42°C, at POD 10. Pain behaviors were tested throughout the 12 days after PRF. We also examined the changes of the spinal glial expression by immunohistochemistry. Results. Significant reduction of mechanical hypersensitivity in the PRF (+) group was observed from day 1 after a single PRF procedure and was maintained throughout the following 12 days. Immunoreactivity for OX42 in the ipsilateral dorsal horn also decreased compared with that of the PRF (-) group. However, cold hypersensitivity and glial fibrillary acidic protein (GFAP) immunoreactivity in the dorsal horn was not affected by a PRF procedure. Conclusions. Our result demonstrated that the mechanical hypersensitivity, induced by L5 SNL, was attenuated by a PRF procedure on the ipsilateral DRG. This analgesic effect may be associated with an attenuation of the microglial activation in the dorsal horn.  相似文献   

18.
ObjectivesThe aim of the present study was to investigate the analgesic effects of repetitive transcranial magnetic stimulation over the primary motor cortex (M1-rTMS) using different stimulation parameters to explore the optimal stimulus condition for treating neuropathic pain.Materials and MethodsWe conducted a randomized, blinded, crossover exploratory study. Four single sessions of M1-rTMS at different parameters were administered in random order. The tested stimulation conditions were as follows: 5-Hz with 500 pulses per session, 10-Hz with 500 pulses per session, 10-Hz with 2000 pulses per session, and sham stimulation. Analgesic effects were assessed by determining the visual analog scale (VAS) pain intensity score and Short-Form McGill Pain Questionnaire 2 (SF-MPQ2) score immediately before and immediately after intervention.ResultsWe enrolled 22 adults (age: 59.8 ± 12.1 years) with intractable neuropathic pain. Linear-effects models showed significant effects of the stimulation condition on changes in VAS pain intensity (p = 0.03) and SF-MPQ2 (p = 0.01). Tukey multiple comparison tests revealed that 10-Hz rTMS with 2000 pulses provided better pain relief than sham stimulation, with greater decreases in VAS pain intensity (p = 0.03) and SF-MPQ2 (p = 0.02).ConclusionsThe results of this study suggest that high-dose stimulation (specifically, 10-Hz rTMS at 2000 pulses) is more effective than lower-dose stimulation for treating neuropathic pain.  相似文献   

19.
20.
EFNS guidelines on neurostimulation therapy for neuropathic pain   总被引:1,自引:0,他引:1  
Pharmacological relief of neuropathic pain is often insufficient. Electrical neurostimulation is efficacious in chronic neuropathic pain and other neurological diseases. European Federation of Neurological Societies (EFNS) launched a Task Force to evaluate the evidence for these techniques and to produce relevant recommendations. We searched the literature from 1968 to 2006, looking for neurostimulation in neuropathic pain conditions, and classified the trials according to the EFNS scheme of evidence for therapeutic interventions. Spinal cord stimulation (SCS) is efficacious in failed back surgery syndrome (FBSS) and complex regional pain syndrome (CRPS) type I (level B recommendation). High-frequency transcutaneous electrical nerve stimulation (TENS) may be better than placebo (level C) although worse than electro-acupuncture (level B). One kind of repetitive transcranial magnetic stimulation (rTMS) has transient efficacy in central and peripheral neuropathic pains (level B). Motor cortex stimulation (MCS) is efficacious in central post-stroke and facial pain (level C). Deep brain stimulation (DBS) should only be performed in experienced centres. Evidence for implanted peripheral stimulations is inadequate. TENS and r-TMS are non-invasive and suitable as preliminary or add-on therapies. Further controlled trials are warranted for SCS in conditions other than failed back surgery syndrome and CRPS and for MCS and DBS in general. These chronically implanted techniques provide satisfactory pain relief in many patients, including those resistant to medication or other means.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号