首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
黄晓菲  袁苏健  杨成 《医药导报》2012,31(9):1128-1131
摘要 目的 探讨骨碎补总黄酮对大鼠牙髓干细胞(DPSCs)增殖和细胞周期的影响。方法采用组织块消化法获得大鼠牙髓细胞,克隆化分离培养大鼠DPSCs并进行鉴定。以含0.01,0.05和0.10 g·L-1骨碎补总黄酮的培养基分别培养大鼠DPSCs,采用噻唑蓝(MTT)比色法检测各组细胞的增殖情况,流式细胞术检测各组细胞周期的变化。结果经单克隆化分离培养得到的DPSCs细胞CD44、CD29和Stro 1均呈阳性表达。骨碎补总黄酮组DPSCs增殖速度较对照组加快(P<0.05),且随骨碎补总黄酮浓度的增加而升高。流式细胞术分析表明S期细胞比例明显多于对照组(P<0.05),G0/G1期细胞明显减少(P<0.05),且表现出剂量依赖性。 结论骨碎补总黄酮对大鼠DPSCs增殖具有促进作用,这一作用可能是通过促进DPSCs从G0/G1进入S期来实现。  相似文献   

2.
Dental pulp stem cells (DPSCs) derived from the human dental pulp tissue have multiple differentiation capabilities, such as osteo/odontogenic differentiation. Therefore, DPSCs are deemed as ideal stem cell sources for tissue regeneration. As new nanomaterials based on DNA, tetrahedral DNA nanostructures (TDNs) have tremendous potential for biomedical applications. Here, the authors aimed to explore the part played by TDNs in proliferation and osteo/odontogenic differentiation of DPSCs, and attempted to investigate if these cellular responses could be driven by activating the canonical Notch signaling pathway. Upon exposure to TDNs, proliferation and osteo/odontogenic differentiation of DPSCs were dramatically enhanced, accompanied by up regulation of Notch signaling. In general, our study suggested that TDNs can significantly promote proliferation and osteo/odontogenic differentiation of DPSCs, and this remarkable discovery can be applied in tissue engineering and regenerative medicine to develop a significant and novel method for bone and dental tissue regeneration.  相似文献   

3.
It has been established that human dental pulp and periodontal ligament contain a population of mesenchymal stem cells (MSCs). However, the phenotypic analysis in terms of putative stem cell markers expressed by these stem cell populations is incomplete. It is relevant to understand whether stem cells derived from closely related tissues are programmed differently. The aim of the present study is to analyze whether these stem cells depict distinct characteristics by gaining insight into differences in their immunophenotype. Dental pulp and periodontal ligament tissue samples were obtained from extracted impacted wisdom teeth. Cell cultures were analyzed for surface and intracellular markers by indirect immunoflourescence. Detailed immunophenotype analysis was carried out by flow cytometry using relevant markers. The present study data shows dental pulp stem cells (DPSCs) and periodontal ligament stem cells (PDLSCs) expressed embryonic stem (ES) cell markers Oct-4, Nanog and mesodermal marker Vimentin by indirect immunoflourescence. PDLSCs, however, had a weak expression of Nanog. Immunophenotyping revealed strong expression of MSC markers (CD73, CD90) in DPSCs and PDLSCs. Differences were observed in expression of stemness-related markers. DPSCs displayed increased percentages of SSEA4, CD13 and CD166 and decreased CD9 expression compared to PDLSCs. Both stem cells express common MSC markers, different levels of expression suggests there might be more than one stem cell population existing within these tissues which differ in their embryonic status, and DPSCs are a more primitive stem cell population in comparison to PDLSCs.  相似文献   

4.
Pulpitis suppressed the level of let‐7c‐5p that promotes osteogenesis and bone formation by repressing HMGA2. In the current study, the function of let‐7c‐5p in the inflammation and osteogenesis in dental pulp stem cells (DPSCs) was explored. The level of let‐7c‐5p in DPSCs was up‐regulated, and the cells were subjected to lipopolysaccharide (LPS) to induce inflammation. The effect of let‐7c‐5p on cell proliferation potential, osteogenic differentiation potential, and activity of HMGA2/PI3K/Akt pathway was detected. The administration of LPS suppressed the cell proliferation of DPSCs and suppressed calcium deposition, activity of alkaline phosphatase (ALP), and levels of OCN, OPN, OSX, MSX2, and RUNX2 in inflamed DPSCs. The impaired osteogenic differentiation of inflamed DPSCs was associated with the increased levels of HMGA2, p‐PI3K, and p‐Akt. In let‐7c‐5p‐overexpressed inflamed DPSCs, the proliferation and osteogenic differentiation potential of DPSCs were restored, and the activation of HMGA2/PI3K/Akt signalling was inhibited. In rat pulpitis models, the injection of let‐7c‐5p agomir restored the osteogenic differentiation potential of dental pulp cells and inhibited HMGA2/PI3K/Akt signalling. The findings demonstrated the anti‐inflammation and pro‐osteogenesis effect of let‐7c‐5p during the attack of pulpitis, which depended on the inhibition of HMGA2/PI3K/Akt signalling.  相似文献   

5.
Mounting effective anti-tumor immune responses by cytotoxic effectors is important for the clearance of tumors. However, accumulated evidence suggests that the cytotoxic function of immune effectors is largely suppressed in the tumor microenvironment by a number of distinct effectors and their secreted factors. The aims of this review are to provide a rationale and potential mechanism for immunosuppression in cancer, and to demonstrate the significance of such immunosuppression in cellular differentiation and tissue regeneration in pathological conditions, and progression of cancer. We have recently shown that increased NK cell function was seen when they were cultured with primary oral squamous carcinoma stem cells (OSCSCs) as compared to their more differentiated oral squamous carcinoma cells (OSCCs). In addition, human embryonic stem cells (hESCs), Mesenchymal Stem Cells (hMSCs), dental pulp stem cells (hDPSCs) and induced pluripotent stem cells (hiPSCs) were significantly more susceptible to NK cell mediated cytotoxicity than their differentiated counterparts or parental cells from which they were derived. We have also reported that inhibition of differentiation or reversion of cells to a less-differentiated phenotype by blocking NFκB or targeted knock down of COX2 augmented NK cell function significantly. Total population of monocytes and those depleted of CD16(+) subsets were able to substantially prevent NK cell mediated lysis of OSCSCs, MSCs and DPSCs. Taken together, our results suggest that stem cells are significant targets of the NK cell cytotoxicity. The concept of split anergy in NK cells and its contribution to tissue repair and regeneration and in tumor resistance and progression will be discussed in this review. Therefore, patients with cancer may benefit from repeated allogeneic NK cell transplantation at the site of the tumor for specific elimination of cancer stem cells.  相似文献   

6.
Uncaria rhynchophylla induces angiogenesis in vitro and in vivo   总被引:2,自引:0,他引:2  
Angiogenesis consists of the proliferation, migration, and differentiation of endothelial cells, and angiogenic factors and matrix protein interactions modulate this process. The aim of this study was to determine the angiogenic properties of Uncaria rhynchophylla. Uncaria rhynchophylla significantly enhanced human umbilical vein endothelial cells (HUVECs) proliferation in a dose-dependent manner. Neutralization of vascular endothelial growth factor (VEGF) or basic fibroblast growth factor (bFGF) by monoclonal antibody suppressed the Uncaria rhynchophylla stimulatory effect on proliferation. In addition, Uncaria rhynchophylla significantly increased chemotactic-migration on gelatin and tubular structures on Matrigel of HUVECs in a dose-dependent manner. Interestingly, Uncaria rhynchophylla dose-dependently increased VEGF, and bFGF gene expression and protein secretion of HUVEC. The angiogenic activity of Uncaria rhynchophylla was confirmed using an in vivo Matrigel angiogenesis model, showing promotion of blood vessel formation. These results suggest that Uncaria rhynchophylla could potentially used to accelerate vascular wound healing or to promote the growth of collateral blood vessel in ischemic tissues.  相似文献   

7.
The dysmorphogenic effects of 2-nitrosofluorene (NF) in vitro were modulated in Day 10 rat embryos by agents which regulate intracellular glutathione (GSH) levels. The incidence of abnormal axial rotation caused by NF alone increased in a dose-dependent manner at NF concentrations in excess of 25 microM. No effects were observed at 15 microM NF and doses of 100 microM resulted in a 100% incidence of mortality. L-Buthionine-S,R-sulfoximine (BSO), an inhibitor of GSH synthesis, produced malformations (50%) in embryos exposed to 15 microM NF but produced no additional effects on embryos at higher NF concentrations. BSO treatment alone resulted in a greater than 50% decrease in GSH content in visceral yolk sacs and had a lesser but likewise significant effect (15% decrease) on the GSH content of embryos. Protein content was inversely affected as embryonic levels were increased by 20% and yolk sac levels were unchanged. When BSO was added in combination with NF at the onset of the culture period, embryonic GSH decreased in a dose-dependent manner, suggesting a relatively low rate of embryonic GSH turnover that could be increased by addition of an exogenous substrate capable of forming adducts with and removing GSH from the cells. 2-Oxothiazolidine-4-carboxylate (OTC), a compound which is enzymatically modified to provide an additional source of intracellular cysteine and increase GSH synthesis, produced no significant changes in embryonic or yolk sac GSH when added alone to the culture medium. When OTC (5 mM) was added in combination with NF, however, NF-elicited malformations were eliminated. This was also the case at 100 microM NF in which OTC not only prevented malformations but completely protected embryos against the loss in viability. The GSH and protein levels were indistinguishable from controls when OTC and NF were added simultaneously except for the 41 microM NF dose at which a highly significant increase in both embryonic and yolk sac protein was observed. This study clearly demonstrates the potential importance of GSH in the modulation of chemical dysmorphogenesis and provides an important new tool for the study of mechanisms of developmental toxicity.  相似文献   

8.
In spite of the vast knowledge of tooth development and of the various kinds of specialized bone/tooth-associated cells, the characteristics and properties of their precursor cell populations present in the postnatal organism are little known, as is their possible therapeutic use. Taken together dental pulp stem cells (DPSCs) and periodontal ligament stem cells (PDLSCs) possess stem-cell-like qualities, including self-renewal capability and multi-lineage differentiation. Regenerative medicine is based on stem cells, signals and scaffolds. Transplantation of those cells, which can be obtained from an easily accessible tissue resource and expanded in vitro, holds promise as a therapeutic approach for reconstruction of tissues and bone in vivo.  相似文献   

9.
In the normal mature brain, blood vessel formation is tightly downregulated. However, pathologic processes such as ischemia can induce cerebral vascular regeneration. Angiogenesis is one of the major styles of new vessel formation. In this article, we summarize the major angiogenic factors in the brain, discuss the significant changes of angiogenic factors and endothelial progenitor cells (EPCs) in response to brain ischemia, and finally, review the therapeutic potential of angiogenic factors and EPCs in experimental cerebral ischemia based on the concept of neurovascular unit.  相似文献   

10.
Choi S  Kim KW  Choi JS  Han ST  Park YI  Lee SK  Kim JS  Chung MH 《Planta medica》2002,68(4):330-335
Aloe vera continues to be used for wound healing as a folk medicine. We previously reported that A. vera gel has angiogenic activity. In this study, we report upon the isolation of an angiogenic component beta-sitosterol from A. vera and examination of its effect upon damaged blood vessels of the Mongolian gerbil. In a chick embryo chorioallantoic membrane assay, beta-sitosterol was found to have an angiogenic effect. It enhanced new vessel formation in gerbil brains damaged by ischaemia/reperfusion, especially in the cingulated cortex and septal regions, in a dose-dependent fashion (up to 500 microg/kg, p < 0.05, n = 34 - 40). beta-Sitosterol also enhanced the expressions of proteins related to angiogenesis, namely von Willebrand factors, vascular endothelial growth factor (VEGF), VEGF receptor Flk-1, and blood vessel matrix laminin (p < 0.05, n = 6). In addition, the intraperitoneal administration of beta-sitosterol at 500 microg/kg/day for a period of 19 days significantly improved the motion recovery of ischaemia/reperfusion-damaged gerbils as assessed by rota-rod testing (p < 0.001, n = 10). Our results suggest that beta-sitosterol has therapeutic angiogenic effects on damaged blood vessels.  相似文献   

11.
Mycophenolate mofetil is a widely used immunosuppressive drug that recently has been categorized as a human teratogen. Animal experiments indicate a teratogenic potential of the drug, but so far, it has not been studied in embryotoxicity in vitro assays. The aim of this study was to evaluate the in vitro embryotoxic potential of mycophenolic acid and investigate the ability of such tests to detect its embryotoxic potential. We used two validated assays: the rat whole embryo culture and the murine embryonic stem cell test. Rat embryos cultured from gestational day 9.5 for 48 h with the drug showed dysmorphogenic development already at a concentration of 250 μg mycophenolic acid/l medium. At concentrations of 750 μg/l and more, all rat embryos exhibited malformations. The main effects were defective yolk sac blood circulation, neural tube defects (open cranial neural pore), malformations of the head with missing eye anlagen and heart anomalies. Moreover, the exposed embryos showed a concentration-dependent decrease in protein content, crown-rump length, number of somites and morphological score. The murine embryonic stem cell test was slightly more sensitive. Proliferation and differentiation of the ES-D3-cells were significantly impaired at concentrations of 31 and 125 μg mycophenolic acid/l medium, respectively. In the differentiation assay, at a concentration of 125 μg mycophenolic acid/l medium and more, the number of wells with differentiated cardiomyocytes significantly decreased. Additionally, a cytotoxicity assay with balb/c 3T3 mouse fibroblasts was used to compare the proliferation and vitality of embryonic cells with adult cells. In the balb/c 3T3 cytotoxicity assay, the number of vital mouse fibroblasts significantly decreased at a mycophenolic acid concentration of 62 μg/l and more. In conclusion, by using the two validated in vitro tests, we showed that mycophenolic acid exhibits a pronounced embryotoxic potential at cytotoxic concentrations. This result from validated in vitro tests is of special interest, because it supports the use of the tests to detect human teratogens.  相似文献   

12.
Large bone defects constitute a major challenge in bone tissue engineering and usually fail to heal due to the incomplete differentiation of recruited mesenchymal stem cells (MSCs) into osteogenic precursor cells. As previously proposed, metformin (MET) induces differentiation of MSCs into osteoblastic lineages in vitro. We fabricated a Poly (lactic acid) and Polycaprolactone (PLA/PCL) scaffold to deliver metformin loaded gelatin nanocarriers (MET/GNs) to critical-sized calvarial bone defects in a rat model. The scaffolds were evaluated regarding their morphology, porosity, contact angle, degradation rate, blood compatibility, biomechanical, cell viability and their osteogenic differentiation. In animal study, the defects were filled with autograft, scaffolds and a group was left empty. qRT-PCR analyses showed the expression level of osteogenic and angiogenic markers considerably increased in MET/GNs-PLA/PCL. The in vivo results showed that MET/GNs-PLA/PCL improved bone ingrowth, angiogenesis and defect reconstruction. Our results represent the applicability of MET/GNs-PLA/PCL for successful bone regeneration.  相似文献   

13.
The placenta and the yolk sac play critical roles in fetal development, including protection from oxidative stress through the presence of detoxifying enzymes. Glutathione (GSH; gamma-glutamylcysteinylglycine), a crucial molecule in the maintenance of cellular redox status, plays a critical role in development, and it is also protective against methylmercury toxicity. Glutamate-cysteine ligase (GCL), the enzyme that catalyzes the rate-limiting step in GSH synthesis, is widely expressed in the mouse embryo and extraembryonic membranes throughout development. The aim of this study was to investigate the effect of low-level subchronic methylmercury exposure on GCL expression in the mouse placenta and yolk sac, after describing the basal developmental expression of the enzyme in these tissues. We found that basal mRNA expression levels increased dramatically in the placenta and the yolk sac at gd 18, whereas protein levels did not increase in parallel with the mRNA. We also found that methylmercury induced GCLc mRNA expression in the placenta at gd 18 in a dose-dependent manner, suggesting an important role for this enzyme in the response of the placenta to toxicants. These changes in expression may be useful as a biomarker of MeHg exposure during development.  相似文献   

14.
15.
Bacterial infection alters placental ABC transporters expression. These transporters provide fetal protection against circulating xenobiotics and environmental toxins present in maternal blood. We hypothesized that lipopolysaccharide (LPS-bacterial mimic) alters the yolk sac morphology and expression of key ABC transporters in a gestational-age dependent manner. Yolk sac samples from C57BL/6 mice were obtained at gestational ages (GD) 15.5 and GD18.5, 4 or 24 h after LPS exposure (150ug/kg; n = 8/group). Samples underwent morphometrical, qPCR and immunohistochemistry analysis. The volumetric proportions of the histological components of the yolk sac did not change in response to LPS. LPS increased Abcg2 expression at GD15.5, after 4 h of treatment (p < 0.05). No changes in Abca1, Abcb1a/b, Abcg1, Glut1, Snat1, Il-1β, Ccl2 and Mif were observed. Il-6 and Cxcl1 were undetectable in the yolk sac throughout pregnancy. Abca1, breast cancer resistance protein (Bcrp, encoded by Abcg2) and P-glycoprotein (P-gp/ Abcb1a/b) were localized in the endodermal (uterine-facing) epithelium and to a lesser extent in the mesothelium (amnion-facing), whereas Abca1 was also localized to the endothelium of the yolk sac blood vessels. LPS increased the labeling area and intensity of Bcrp in the yolk sac’s mesothelial cells at GD15.5 (4 h), whereas at GD18.5, the area of Bcrp labeling in the mesothelium (4 and 24 h) was decreased (p < 0.05). Bacterial infection has the potential to change yolk sac barrier function by affecting Bcrp and Abcg2 expression in a gestational-age dependent-manner. These changes may alter fetal exposure to xenobiotics and toxic substances present in the maternal circulation and in the uterine cavity.  相似文献   

16.
Kaempferol (3,4′,5,7-tetrahydroxyflavone) is a natural flavonoid with several beneficial and protective effects. It has been demonstrated that kaempferol has anticancer properties, particularly due to its effects on proliferation, apoptosis and the cell cycle. However, possible effects on pluripotent embryonic stem cell function have not yet been addressed. Embryonic stem cells have the ability to self-renew and to differentiate into all three germ layers with potential applications in regenerative medicine and in vitro toxicology. We show that exposure of murine embryonic stem cells (mESC) to high concentrations of kaempferol (200 μM) leads to decreased cell numbers, although the resulting smaller cell colonies remain pluripotent. However, lower concentrations of this compound (20 μM) increase the expression of pluripotency markers in mESCs. Mitochondrial membrane potential and mitochondrial mass are not affected, but a dose-dependent increase in apoptosis takes place. Moreover, mESC differentiation is impaired by kaempferol, which was not related to apoptosis induction. Our results show that low concentrations of kaempferol can be beneficial for pluripotency, but inhibit proper differentiation of mESCs. Additionally, high concentrations induce apoptosis and increase mitochondrial reactive oxygen species (ROS).  相似文献   

17.
During embryogenesis, coronary vessels develop via vasculogenesis and angiogenesis. Vasculogenesis is formation in situ of primary vessels from angioblasts - endothelial cell progenitors, and angiogenesis is formation of vessels from the existing ones. In the embryonic heart vasculogenesis precedes and overlaps angiogenesis and lasts till the end of the fetal life. What is unique about heart vasculogenesis is the fact that nucleated blood cells accompany early angioblasts in a spatiotemporal way. Morphologically these structures resemble yolk sac blood islands, thus, they have been called blood-island-like structures. In addition, these early vascular structures (blood-island-like) are found in the heart before coronary vessel system connects with the systemic circulation. We present the recent data regarding endothelial cell properties and derivation during coronary vessel formation and hypotheses concerning a source of blood cells in early vascular structures of the heart; the latter has received little attention in the literature. This review summarizes current knowledge on the endothelial cell origination from epicardial mesothelium or liver primordium. This review also focuses on blood cell contribution to coronary vessel vasculogenesis. The role of proepicardium in the epicardial cover formation and the epicardium as a source of cellular components of coronary vasculature and interstitial fibroblasts is presented. It seems that blood cells and angioblasts, which form the early vascular structures do not derive from the same hemangioblastic precursor.  相似文献   

18.
As a class, the biguanides induce lactic acidosis, a hallmark of mitochondrial impairment. To assess potential mitochondrial impairment, we evaluated the effects of metformin, buformin and phenformin on: 1) viability of HepG2 cells grown in galactose, 2) respiration by isolated mitochondria, 3) metabolic poise of HepG2 and primary human hepatocytes, 4) activities of immunocaptured respiratory complexes, and 5) mitochondrial membrane potential and redox status in primary human hepatocytes. Phenformin was the most cytotoxic of the three with buformin showing moderate toxicity, and metformin toxicity only at mM concentrations. Importantly, HepG2 cells grown in galactose are markedly more susceptible to biguanide toxicity compared to cells grown in glucose, indicating mitochondrial toxicity as a primary mode of action. The same rank order of potency was observed for isolated mitochondrial respiration where preincubation (40 min) exacerbated respiratory impairment, and was required to reveal inhibition by metformin, suggesting intramitochondrial bio-accumulation. Metabolic profiling of intact cells corroborated respiratory inhibition, but also revealed compensatory increases in lactate production from accelerated glycolysis. High (mM) concentrations of the drugs were needed to inhibit immunocaptured respiratory complexes, supporting the contention that bioaccumulation is involved. The same rank order was found when monitoring mitochondrial membrane potential, ROS production, and glutathione levels in primary human hepatocytes. In toto, these data indicate that biguanide-induced lactic acidosis can be attributed to acceleration of glycolysis in response to mitochondrial impairment. Indeed, the desired clinical outcome, viz., decreased blood glucose, could be due to increased glucose uptake and glycolytic flux in response to drug-induced mitochondrial dysfunction.  相似文献   

19.
The natural polysaccharides are promising compounds for applications in regenerative medicine. Gellan gum (GG) is the bacteria-derived polysaccharide widely used in food industry. Simple modifications of its chemical properties make GG superior for the development of biocompatible hydrogels. Beside reversible cationic integration of GG chains, more efficient binding is accomplished with 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide (EDC). However, the side-products of polymer cross-linking might affect viability and differentiation of stem cells introduced into the hydrogels. We found that O-acylisourea (EDU) stimulates autophagy-based vacuolation in both periodontal ligament and dental pulp stem cells. 24-h treatment of cells with GG extracts cross-linked with 15 mM EDC developed large cytoplasmic vacuoles. Freshly prepared EDU (2–6 mM) but not 15 mM EDC solutions initiated vacuole development with concomitant reduction of cell viability/metabolism. Most of the vacuoles stained with acridine orange displayed highly acidic environment further confirmed by flow cytometric analysis. Western blot of the LC3 autophagy marker followed by a transmission electron microscopy indicated the process is autophagy-dependent. We propose that the high reactivity of EDU with intracellular components initiates autophagy, although the targets of EDU remain unknown. Nevertheless, a burst release of EDU from GG hydrogels might modulate negatively cellular processes and final effectiveness of tissue regeneration.  相似文献   

20.
Respiratory exposure of mice to carbon nanotubes induces pulmonary toxicity and adverse cardiovascular effects associated with atherosclerosis. We hypothesize that the direct contact of carbon nanotubes with endothelial cells will result in dose-dependent effects related to altered cell function and cytotoxicity which may play a role in potential adverse pulmonary and cardiovascular outcomes. To test this hypothesis, we examined the effects of purified single- and multi-walled carbon nanotubes (SWCNT and MWCNT) on human aortic endothelial cells by evaluating actin filament integrity and VE-cadherin distribution by fluorescence microscopy, membrane permeability by measuring the lactate dehydrogenase (LDH) release, proliferation/viability by WST-1 assay, and overall functionality by tubule formation assay. Marked actin filament and VE-cadherin disruption, cytotoxicity, and reduced tubule formation occurred consistently at 24 h post-exposure to the highest concentrations [50-150 μg/106 cells (1.5-4.5 μg/ml)] for both SWCNT and MWCNT tested in our studies. These effects were not observed with carbon black exposure and carbon nanotube exposure in lower concentrations [1-10 μg/106 cells (0.04-0.4 μg/ml)] or in any tested concentrations at 3 h post-exposure. Overall, the results indicate that SWCNT and MWCNT exposure induce direct effects on endothelial cells in a dose-dependent manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号