首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
At present, the ability of polyunsaturated fatty acids (PUFAs) to regulate individual glutamate transporter subtypes is poorly understood and very little information exists on the mechanism(s) by which PUFAs achieve their effects on the transport process. Here we investigate the effect of cis-4,7,10,13,16,19-docosahexaenoic acid (DHA) on the activity of the mammalian glutamate transporter subtypes, GLT1, GLAST and EAAC1 individually expressed in human embryonic kidney (HEK) cells. Exposure of cells to 100 muM DHA increased the rate of d-[(3)H]aspartate uptake by over 72% of control in HEK(GLT1) cells, and by 45% of control in HEK(EAAC1) cells. In contrast, exposure of HEK(GLAST) cells to 200 muM DHA resulted in almost 40% inhibition of d-[(3)H]aspartate transport. Removal of extracellular calcium increased the inhibitory potential of DHA in HEK(GLAST) cells. In contrast, in the absence of extracellular calcium, the stimulatory effect of DHA on d-[(3)H]aspartate uptake in HEK(GLT1) and HEK(EAAC1) cells was abolished, and significant inhibition of the transport process by DHA was observed. Inhibition of CaM kinase II or PKC had no effect on the ability of DHA to inhibit transport into HEK(GLAST) cells but abolished the stimulatory effect of DHA on d-[(3)H]aspartate transport into HEK(GLT1) and HEK(EAAC1) cells. Inhibition of PKA had no effect on the modulation of d-[(3)H]aspartate transport by DHA in any of the cell lines. We conclude that DHA differentially modulates the GLT1, GLAST and EAAC1 glutamate transporter subtypes via different mechanisms. In the case of GLT1 and EAAC1, DHA appears to stimulate d-[(3)H]aspartate uptake via a mechanism requiring extracellular calcium and involving CaM kinase II and PKC, but not PKA. In contrast, the inhibitory effect of DHA on GLAST does not require extracellular calcium and does not involve CaM kinase II, PKC or PKA.  相似文献   

2.
The role of aquaporin-4 in water transport has been extensively investigated, while little information exists regarding its contribution to astrocytic functions such as the action to glutamatergic transmission. Since aquaporin-4 has been detected widely co-localized with glutamate transporter 1 (GLT-1) and glutamate transporters also present water transport properties, we investigated the regulative role of aquporin-4 on glutamate transporter using primary cultured astrocytes from aquaporin-4 knockout (AQP4(-/-)) mice. It was demonstrated that lack of aquaporin-4 down-regulated astrocytic expression of GLT-1 but not of glutamate/aspartate transporter (GLAST). The result from [(3)H]D,L-glutamate uptake analysis showed a lower uptake capability in AQP4(-/-) astrocytes. Furthermore, MTT and LDH assays indicated less cellular toxicity induced by excessive glutamate in AQP4(-/-) genotype. These findings provide direct evidences for the first time that aquaporin-4 plays an important role in the function of glutamate transporters. And the present study will improve our understanding of aquaporin-4-glutamanergic biology.  相似文献   

3.
The effects of phorbol 12-tetradecanoyl-13-acetate (TPA) and dibutyryl cAMP on the glutamate transport present in chick Bergmann glial cell (BGC) cultures were examined. TPA produced a significant decrease in [3H]-D-aspartate uptake, while dibutyryl cAMP treatment elicited a slight reduction in the transport. This effect was dose and time dependent and sensitive to staurosporine, a Ca2+/diacylglycerol-dependent protein kinase C (PKC) inhibitor. Long-term exposure of the culture to TPA results in a dramatic fall of the transporter activity and a decrease in the amount of the transporter protein. These findings suggest that PKC is involved in transport modulation and possibly in the regulation of the transporter gene expression. J. Neurosci. Res. 50:585–590, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

4.
Endothelin (ET) is a putative pathogenetic mediator associated with brain trauma and ischemia. Because a link between neuronal damage after these injuries and glial Na(+)-dependent L-glutamate transporter activity has been suggested, we investigated the effect of ET on the glutamate clearance ability of astrocytes. Dibutyryl cyclic adenosine monophosphate (dBcAMP), which is widely used to induce differentiation of cultured astrocytes, markedly increased [(3)H]glutamate transport activity in a concentration- and time-dependent manner. In the presence of ET, however, dBcAMP decreased the glutamate uptake. This effect was efficiently prevented by an antagonist of ET(B) receptor, but not of ET(A) receptor. ET per se was virtually ineffective. Eadie-Hofstee analysis demonstrated that dBcAMP increased the V(max) value of glutamate uptake activity by 43.4% in the absence of ET, but decreased it by 41.4% in the presence of ET, without apparent changes in the K(m) value. Accordingly, Western blot analysis indicated that the change in transport activity correlated closely with that in expression level of the glial glutamate transporter GLAST. These results may represent the mechanisms by which ET aggravates trauma- and ischemia-elicited neuronal damage.  相似文献   

5.
The peptide neurotransmitter, N-acetylaspartylglutamate (NAAG), is a selective agonist at the type 3 metabotropic glutamate receptor (mGluR3) where it acts to decrease cAMP levels. Rat cortical interneurons express both NAAG and glutamic acid decarboxylase, as well as mGluR3 mRNA. In the presence of ionotropic glutamate receptor antagonists, both NAAG and the group II metabotropic glutamate receptor agonist, DCG-IV, reduced the calcium-dependent, KCl-induced [(3)H]-GABA release from rat cortical neurons by 35%. This release process was unaffected by tetrodotoxin. The group II antagonist, ethyl glutamate, reversed the effects of DCG-IV and NAAG. The mGluR3-selective antagonist, beta-N-acetylaspartylglutamate, reversed the effect of NAAG. While pretreatment of cortical neurons with forskolin alone did not significantly affect KCl-stimulated [(3)H]-GABA-release, forskolin abolished the inhibition of release produced by NAAG. The protein kinase A inhibitor, H-89, decreased [(3)H]-GABA release while NAAG produced no additional inhibition in the presence of H-89. In contrast, the protein kinase C inhibitor, Ro 31--8220, had no effect on KCl-stimulated release, nor did it affect the inhibition of release produced by NAAG. The L-type calcium channel blocker, nifedipine, also inhibited the release of [(3)H]-GABA and coapplication with NAAG resulted in no significant additional inhibition of release. These data support the hypothesis that the inhibition of KCl-stimulated [(3)H]-GABA release by NAAG is mediated via presynaptic mGluR3 on GABAergic cortical neurons and that this effect is obtained by decreasing cAMP with a consequent decrease in protein kinase A activity and L-type calcium channel conductance.  相似文献   

6.
7.
We have isolated a 3845 base-pair cDNA (BNGLUAS) encoding a bovine glutamate transporter (bovine GLAST) by screening a bovine retina cDNA library with an oligonucleotide probe corresponding to conserved regions of known glutamate transporters. The cDNA sequence predicted a protein of 542 amino acids and displayed 96% and 97% amino acid identity with the rat GLAST/GluT-1 and human GLAST, respectively. Expression of the bovine GLAST in Xenopus oocytes revealed Na+-dependent [14C]l-glutamate uptake and electrogenic glutamate uptake.  相似文献   

8.
BACKGROUND: Downregulation of serotonin transporter was observed previously after chronic treatment with selective serotonin reuptake inhibitors (SSRIs) but not selective norepinephrine reuptake inhibitors (NRIs). This study investigated if chronic treatment of rats with selective NRIs or SSRIs also affected the norepinephrine transporter (NET). METHODS: Rats were treated for 3 to 6 weeks by osmotic minipumps with either the selective NRIs, desipramine, or the SSRI paroxetine. RESULTS: [(3)H]nisoxetine binding sites as well as [(3)H]norepinephrine uptake were decreased in hippocampus and cortex after treatment with desipramine. By contrast, paroxetine-treated rats showed no alteration in either [(3)H]nisoxetine binding or [(3)H]norepinephrine uptake. NET messenger RNA levels in the locus coeruleus were unchanged by desipramine treatment. CONCLUSIONS: These results demonstrate that the marked decrease in NET density 1) is not a consequence of a decrease in gene expression; 2) was caused only by a selective NRI; and 3) was associated with a parallel decrease in norepinephrine uptake.  相似文献   

9.
10.
The regulation of the Na(+)-dependent high affinity glutamate/aspartate transporter system expressed in cultured Müller glia cells from chick retina was studied. Treatment of the cells with the Ca(2+)/diacylglycerol dependent protein kinase C (PKC) activator, phorbol 12-tetradecanoil-13-acetate (TPA) produced a decrease in [(3)H]D-aspartate uptake which was reversed by staurosporine and partially by H7 [1-(5-isoquinolinesulfonyl)-2-methylpiperazine dihydrochoride], two PKC inhibitors. Long-term treatment with TPA resulted in a drastic decrease in the uptake activity, correlated with a substantial fall in the expression of the transporter protein. These findings suggest that PKC is involved in transport modulation at two different levels: phosphorylation and transporter expression in retinal Müller glial cells.  相似文献   

11.
In the present study we evaluated the effect of acute and chronic homocysteine administrations on glutamate uptake in parietal cortex of rats. The immunocontent of glial glutamate transporter (GLAST) and sodium-dependent glutamate/aspartate transporter (GLT-1) in the same cerebral structure was also investigated. For acute treatment, neonate or young rats received a single injection of homocysteine or saline (control) and were sacrificed 1, 8, 12 h, 7 or 30 days later. For chronic treatment, homocysteine was administered to rats twice a day at 8 h interval from their 6th to their 28th days old; controls and treated rats were sacrificed 12 h, 1, 7 or 30 days after the last injection. Results show that acute hyperhomocysteinemia caused a reduction on glutamate uptake in parietal cortex of neonate and young rats, and that 12 h after homocysteine administration the glutamate uptake returned to normal levels in young rats, but not in neonate. Chronic hyperhomocysteinemia reduced glutamate uptake, and GLAST and GLT-1 immunocontent. According to our results, it seems reasonable to postulate that the reduction on glutamate uptake in cerebral cortex of rats caused by homocysteine may be mediated by the reduction of GLAST and GLT-1 immunocontent, leading to increased extracellular glutamate concentrations, promoting excitotoxicity.  相似文献   

12.
Membrane-localized transporter proteins, expressed in both neurons and glial cells, are responsible for removal of extracellular glutamate in the mammalian CNS. The amounts and activities of these transporters may be under regulatory control. We demonstrate here that cortical lesions, which decrease striatal glutamate uptake in synaptosome-containing homogenates by ∼50%, also decrease the striatal concentrations of the astrocytic glutamate transporter proteins, GLT-1 and GLAST by ∼20–30%. Since GABA uptake activity was not decreased and glial fibrillary acidic protein was increased in the same samples, the lesion-induced losses of GLT-1 and GLAST were not caused by a general impairment of neuronal or glial function. The observed reduction in the two astrocytic glutamate transporters after corticostriatal nerve terminal degeneration indicates that their levels of expression are dependent on glutamatergic innervation.  相似文献   

13.
Glutamate transporters clear glutamate from the extracellular space by high-affinity binding and uptake. Factors that regulate glutamate transporter expression and activity can thereby influence excitatory neurotransmission. Transporter function in GABAergic and other systems has been shown to be regulated by transporter substrates. Here, glutamate regulation of glutamate transport was studied using primary murine astrocyte cultures that express the GLAST (EAAT1) and GLT-1 (EAAT2) transporter subtypes. Glutamate was found to stimulate glutamate transport capacity (V(max)) in a dose- and time-dependent manner. The maximal increase was 100%, with an ED(50) of 40 microM glutamate and with onset beginning approximately 15 min after onset of glutamate exposure. The uptake stimulation was reproduced by D-aspartate, which is also a transporter substrate, but not by nontransported glutamate receptor agonists. Moreover, glutamate incubation did not stimulate transport when performed in a sodium-free medium, suggesting that the stimulatory effect of glutamate is triggered by increased transporter activity rather than receptor activation. Treatment with the actin-disrupting agents cytochalasin B or cytochalasin D prevented the glutamate-induced increase in glutamate uptake. Biotinylation labeling of membrane surface proteins showed that glutamate incubation produced an increase in GLAST expression at the astrocyte cell surface. These results suggest that cell-surface expression of GLAST can be rapidly regulated by glutamate through a process triggered by GLAST activity and involving the actin cytoskeleton. This feedback loop provides a mechanism by which changes in extracellular glutamate concentrations could rapidly modulate astrocyte glutamate transport capacity.  相似文献   

14.
We examined the regulation of glutamate transporter protein expression after stimulation with selective metabotropic glutamate receptor (mGluR) agonists in cultured human glial cells. mGluR3 and mGluR5 are expressed in human astrocytes and in human glioma cells in vivo as well as in vitro, as shown by either RT-PCR or western blot analysis. The selective group I agonist (S)-3,5-dihydroxyphenylglycine produced a significant down-regulation of both GLAST and GLT-1 protein expression in astrocytes cultured in the presence of growth factors. This condition mimics the morphology of reactive glial cells in vivo including an increased expression of mGluR5 protein (observed in pathological conditions). In contrast, (2S,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl)glycine, a selective agonist of group II metabotropic glutamate receptors, positively modulates the expression of GLAST and GLT-1 proteins. A similar opposite effect of (S)-3,5-dihydroxyphenylglycine and (2S,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl)glycine was observed for the expression of EAAT3 protein in U373 glioblastoma cell line. Selective group I and II antagonists prevented these effects. Pharmacological inhibition of mitogen-activated protein kinase and phosphatidylinositol-3-K pathways reduces the induction of GLT-1 observed in response to the group II metabotropic glutamate receptor agonist (2S,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl)glycine. Thus, mGluR3 and mGluR5 can critically and differentially modulate the expression of glutamate transporters and may represent interesting pharmacological targets to regulate the extracellular levels of glutamate in pathological conditions.  相似文献   

15.
16.
Altered glial function that leads to oxidative stress and excitotoxicity may contribute to the initiation or progression of neuronal death in neurodegenerative diseases. We report the pivotal role of astroglial Group II and III metabotropic glutamate receptors (mGluR) against neurotoxicity. Activation of Group II or III mGluR on astrocytes with selective agonists DCG-IV or L-AP4 respectively inhibited astroglial lipopolysaccharide (LPS)-conditioned medium induced apoptosis of primary cultured mesencephalic neurons. Specific Group II or III mGluR antagonists APICA or MSOP completely abolished the neuroprotective effects of DCG-IV and L-AP4. Morphologic analysis showed that DCG-IV or L-AP4 could also attenuate the astroglial neurotoxicity to dopaminergic neurons. Measurement of extracellular glutamate concentration and [(3)H]-glutamate uptake showed that the restoration of glutamate uptake capability in LPS-treated astrocytes might be involved in the neuroprotective effects of activating astroglial Group II or III mGluR. Furthermore, we found that the repression of astroglial uptake function could be revived by GSH, and both Group II and III mGluR agonists could recover the endogenous reduced glutathione (GSH) level in LPS-treated astrocytes. These results suggested that the possible mechanisms of neuroprotection by either Type II or Type III mGluR activation may involve restoration of endogenous GSH, in turn affording recovery of astroglial capability to take up glutamate.  相似文献   

17.
Retinal amacrine cells express metabotropic glutamate receptors (mGluRs), but their physiological role is unknown. We investigated the effect of mGluR on [(3)H]acetylcholine release ([(3)H]ACh) from cultured chick amacrine-like neurons. Activation of group III mGluR with the agonist L(+)-2-amino-4-phosphonobutyric acid (L-AP4) inhibited [(3)H]ACh release evoked by 25 mM KCl in a dose-dependent manner, and this effect was sensitive to pertussis toxin. In contrast, activation of group I or II mGluR with (S)-3, 5-dihydroxyphenylglycine (DHPG) and (2S,2'R,3'R)-2-(2', 3'-dicarboxycyclopropyl)glycine (DCG-IV), respectively, did not affect significantly [(3)H]ACh release. The effect of L-AP4 on [(3)H]ACh release was sensitive to nitrendipine, suggesting that it is, at least in part, due to inhibition of L-type Ca(2+) channels. Activation of group III mGluR also partly inhibited omega-conotoxin GVIA-sensitive Ca(2+) channels, coupled to [(3)H]ACh release. The L-AP4 did not affect the cAMP levels measured in amacrine-like neurons depolarized with 25 mM KCl or stimulated with forskolin, indicating that the effect of group III mGluR on [(3)H]ACh release is not due to inhibition of adenylyl cyclase activity. Inhibition of protein kinase A with KT-5720 was without effect on [(3)H]ACh release evoked by 25 mM KCl, further indicating that the effect of group III mGluR on [(3)H]ACh release cannot be attributed to the inhibition of the kinase. The effect of L-AP4 on [(3)H]ACh release was reversed by DHPG or by DCG-IV, and activation of group II mGluR also partially inhibited cAMP production stimulated by forskolin. Taken together, our results show that the effect of group III mGluR on [(3)H]ACh release may be due to a direct inhibition of L- and N-type Ca(2+) channels and is modulated by group I and group II mGluR.  相似文献   

18.
Glutamate transporters have the important function of removing glutamate released from synapses and keeping extracellular glutamate concentrations below excitotoxic levels. Extracellular glutamate increases in portocaval anastomosis (PCA), so we used a portacaval anastomosis model in rats to analyze the expression of glutamate transporters (GLAST, GLT-1 and EAAC1) in rat cerebellum, 1 and 6 months after PCA, using immunohistochemical methods. In controls, EAAC1 immunoreactivity in Purkinje cells and glial GLAST and GLT-1 immunoreactivities in the molecular layer (ML) increased from young to old rats. One month after PCA, Purkinje cell bodies were not immunostained for neuronal EAAC1 glutamate transporter, whereas glial glutamate transporter expressions (GLAST and GLT-1) were decreased when compared to young controls. In rats with long-term PCA (6 months post-PCA), neuronal and glial glutamate transporter expressions were increased. The expression of the neuronal glutamate transporter EAAC1 was less intense than old controls, whereas glial glutamate transporters (GLAST and GLT-1) increased more than their controls. Since the level of the neuronal glutamate transporter (EAAC1) in long-term PCA did not reach that of the controls, GLAST and GLT-1 glutamate transporters seemed to be required to ensure the glutamate uptake in this type of encephalopathy. EAAC1 immunoreactivity also was expressed by Bergmann glial processes in long-term PCA, but this increase did not suffice to reverse the alterations caused at the early stage. The present findings provide evidence that transitory alteration of glutamate transporter expressions could be a significant factor in the accumulation of excess glutamate in the extracellular space in PCA, which probably makes Purkinje cells more vulnerable to glutamate effect.  相似文献   

19.
C6 glioma cells were treated for hours with 100 microM L-glutamate, quisqualate or trans-ACPD. In all cases, phospholipase C-coupled metabotropic glutamate receptors (mGluRs) present in these cells are down-regulated after this agonist treatment. Cell surface metabotropic glutamate receptor density was minimum at 6 h of agonist treatment and reached near control values after 30 h of treatment. This recovery was associated with a progressive increase in mGluR1 and mGluR1a mRNA level between 6 and 24 h and was not due to agonist removal. Specific L-[3H]glutamate or [3H](+/-)trans-ACPD binding decrease detected in C6 cells after 6 h of 100 microM L-glutamate treatment was associated with a remarkable increase of specific L-[3H]glutamate binding detected in clathrin-coated vesicles isolated from these treated cells. Moreover, this decrease was blocked in the presence of 0.5 M sucrose or 1 microM phenylarsine oxide, suggesting that desensitization and down-regulation of mGluR can be due to an endocytosis process through clathrin-coated pits and vesicles.  相似文献   

20.
Glutamate is the major excitatory neurotransmitter in the central nervous system and is tightly regulated by cell surface transporters to avoid increases in concentration and associated neurotoxicity. Selective blockers of glutamate transporter subtypes are sparse and so knock-out animals and antisense techniques have been used to study their specific roles. Here we used WAY-855, a GLT-1-preferring blocker, to assess the role of GLT-1 in rat hippocampus. GLT-1 was the most abundant transporter in the hippocampus at the mRNA level. According to [(3)H]-l-glutamate uptake data, GLT-1 was responsible for approximately 80% of the GLAST-, GLT-1-, and EAAC1-mediated uptake that occurs within dissociated hippocampal tissue, yet when this transporter was preferentially blocked for 120 h with WAY-855 (100 microm), no significant neurotoxicity was observed in hippocampal slices. This is in stark contrast to results obtained with TBOA, a broad-spectrum transport blocker, which, at concentrations that caused a similar inhibition of glutamate uptake (10 and 30 microm), caused substantial neuronal death when exposed to the slices for 24 h or longer. Likewise, WAY-855, did not significantly exacerbate neurotoxicity associated with simulated ischemia, whereas TBOA did. Finally, intrahippocampal microinjection of WAY-855 (200 and 300 nmol) in vivo resulted in marginal damage compared with TBOA (20 and 200 nmol), which killed the majority of both CA1-4 pyramidal cells and dentate gyrus granule cells. These results indicate that selective inhibition of GLT-1 is insufficient to provoke glutamate build-up, leading to NMDA receptor-mediated neurotoxic effects, and suggest a prominent role of GLAST and/or EAAC1 in extracellular glutamate maintenance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号