首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Retaining zonal chondrocyte phenotype by means of novel growth environments   总被引:5,自引:0,他引:5  
The loss of phenotype in articular chondrocytes expanded in monolayer has been established as a possible contributor to the deficiencies associated with in vitro cartilage engineering and autologous cell transplantation procedures. We cultured zonal articular chondrocytes on tissue culture plastic, collagen II-coated polystyrene, and aggrecan-coated polystyrene in an effort to find a surface that can either prevent or slow the loss of phenotype. In addition, we encapsulated passaged cells in agarose to examine the effect of three-dimensional culture on redifferentiating zonal chondrocytes. We used real-time polymerase chain reaction to measure the relative gene expression levels of collagen I and II, aggrecan, and superficial zone protein over relevant passages (P0-P4). Results showed that tissue culture plastic and the collagen II-coated surface induced rapid loss of phenotype in zonal articular chondrocytes. The aggrecan-coated surface had a less detrimental effect on the chondrocytic phenotype of seeded cells, inducing gene expression characteristics comparable to those of agarose-encapsulated cells. Furthermore, when chondrocytes that had been previously passaged on a collagen II surface were placed on an aggrecan surface, the zonal cells showed a dramatic change in gene expression from fibroblastic to chondrocytic. These results indicate that a culture environment using aggrecan as a substratum or agarose as a scaffold is crucial to the development of phenotypically correct articular cartilage.  相似文献   

2.
3.
Hybrid constructs associating a biodegradable matrix and autologous chondrocytes hold promise for the treatment of articular cartilage defects. In this context, our objective was to investigate the potential use of nasal chondrocytes associated with a fibrin sealant for the treatment of articular cartilage defects. The phenotype of primary nasal chondrocytes (NC) from human (HNC) and rabbit (RNC) origin were characterized by RT-PCR. The ability of constructs associating fibrin sealant and NC to form a cartilaginous tissue in vivo was investigated, firstly in a subcutaneous site in nude mice and secondly in an articular cartilage defect in rabbit. HNC express type II collagen and aggrecan, the two major hallmarks of a chondrocytic phenotype. Furthermore, when injected subcutaneously into nude mice within a fibrin sealant, these chondrocytes were able to form a cartilage-like tissue. Our data indicate that RNC also express type II collagen and aggrecan and maintained their phenotype in three-dimensional culture within a fibrin sealant. Moreover, treatment of rabbit articular cartilage defects with autologous RNC embedded in a fibrin sealant led to the formation of a hyalin-like repair tissue. The use of fibrin sealant containing hybrid autologous NC therefore appears as a promising approach for cell-based therapy of articular cartilage.  相似文献   

4.
Hydrogels are a promising type of biomaterial for articular cartilage constructs since they have been shown to enable encapsulated chondrocytes to express their predominant phenotypic marker, type II collagen. Endogenously expressed signaling molecules, such as insulin-like growth factor-1 (IGF-1), are also known to facilitate the retention of this chondrocytic phenotype. Recent investigations have attempted to enhance the ability of encapsulated chondrocytes to regenerate cartilage through delivery of exogenous signaling molecules. However, we hypothesize that by altering construct properties, such as cell density and polymer concentration, we can augment the expression of endogenous IGF-1 in chondrocytes. To this end, bovine articular chondrocytes were encapsulated within alginate hydrogels at two different cell densities (25,000 and 100,000 cells/bead) and various alginate concentrations (0.8%, 1.2%, and 2.0% w/v). These parameters were chosen to simultaneously investigate cell-to-cell distance on paracrine signaling and water content on IGF-1 diffusion by chondrocytes. At 1, 4, and 8d, chondrocytes were analyzed for protein and mRNA expression of IGF-1 as well as type II collagen. Results suggest that cell density and alginate concentration at high cell density can significantly affect the endogenous IGF-1 expression by chondrocytes. Therefore, these results indicate that construct properties can impact chondrocyte gene expression and should be considered in order to create a proper engineered articular cartilage construct.  相似文献   

5.
Research into articular cartilage repair, a tissue unable to spontaneously regenerate once injured, has focused on the generation of a biomechanically functional repair tissue with the characteristics of hyaline cartilage. This study was undertaken to provide insight into how to improve ex vivo chondrocyte amplification, without cellular dedifferentiation for cell-based methods of cartilage repair. We investigated the effects of insulin-like growth factor 1 (IGF-1) and transforming growth factor beta 1 (TGFbeta1) on cell proliferation and the de novo synthesis of sulfated glycosaminoglycans and collagen in chondrocytes isolated from skeletally mature bovine articular cartilage, whilst maintaining their chondrocytic phenotype. Here we demonstrate that mature differentiated chondrocytes respond to growth factor stimulation to promote de novo synthesis of matrix macromolecules. Additionally, chondrocytes stimulated with IGF-1 or TGFbeta1 induced receptor expression. We conclude that IGF-1 and TGFbeta1 in addition to autoregulatory effects have differential effects on each other when used in combination. This may be mediated by regulation of receptor expression or endogenous factors; these findings offer further options for improving strategies for repair of cartilage defects.  相似文献   

6.
Chitosan [beta(1-4)-2 amino-2-deoxy-D-glucose], the natural polyaminosaccharide derived from N-deacetylation of chitin [beta(1-4)-2 acetamide-2-deoxy-D-glucose], has been shown to possess attractive biological and cell interactive properties. Recently chitosan and chitosan analogs have also been shown to support the growth and continued function of chondrocytes. In the present study, chitosan substrates are crosslinked with a functional diepoxide (1,4 butanediol diglycidyl ether) to alter its mechanical property, and the viability and proliferation of the canine articular chondrocytes seeded on the crosslinked surface are further assayed. Of interest is the impact of substrate stiffness on the growth and proliferation of articular canine chondrocytes. Crosslinked scaffolds were also subjected to degradation by chitosanase to examine the impact of crosslinking on enzyme-assisted degradation. The hydrophilicity and compression modulus of the crosslinked surfaces were measured via contact-angle measurements and compression tests, respectively. Scanning electron microscopy (SEM) and fluorescent staining were used to observe the proliferation and morphology of chondrocyte cells on noncrosslinked and crosslinked surfaces. The crosslinked chitosan was found to be nontoxic to chondrocytes and more hydrophilic. Its compression modulus and stiffness increased, which may improve the scaffold resistance to wear and in vivo shrinkage once implanted. The increased stiffness also seemed to serve as an additional mechanical stimulus to promote chondrocyte growth and proliferation. The cell morphology on crosslinked scaffolds seen by SEM and fluorescent stain was the typical chondrocytic rounded shape. The method proposed provides a nontoxic way to increase the mechanical strength of the chitosan scaffolds.  相似文献   

7.
8.
Suh JK  Matthew HW 《Biomaterials》2000,21(24):2589-2598
Once damaged, articular cartilage has very little capacity for spontaneous healing because of the avascular nature of the tissue. Although many repair techniques have been proposed over the past four decades, none has sucessfully regenerated long-lasting hyaline cartilage tissue to replace damaged cartilage. Tissue engineering approaches, such as transplantation of isolated chondrocytes, have recently demonstrated tremendous clinical potential for regeneration of hyaline-like cartilage tissue and treatment of chondral lesions. As such a new approach emerges, new important questions arise. One of such questions is: what kinds of biomaterials can be used with chondrocytes to tissue-engineer articular cartilage? The success of chondrocyte transplantation and/or the quality of neocartilage formation strongly depend on the specific cell-carrier material. The present article reviews some of those biomaterials, which have been suggested to promote chondrogenesis and to have potentials for tissue engineering of articular cartilage. A new biomaterial, a chitosan-based polysaccharide hydrogel, is also introduced and discussed in terms of the biocompatibility with chondrocytes.  相似文献   

9.
10.
In this study, we hypothesized that hyaluronic acid could provide superior biological effects on the chondrocytes in a three-dimensional culture system. To test this hypothesis, we investigated the in vitro behavior of rabbit chondrocytes on a novel chitosan-based hyaluronic acid hybrid polymer fiber. The goal of the current study was to show the superiority of this novel fiber as a scaffold biomaterial for cartilage tissue engineering. Chitosan polymer fibers (chitosan group) and chitosan-based hyaluronic acid hybrid polymer fibers (HA 0.04% and HA 0.07% groups, chitosan coated with hyaluronic acid 0.04% and 0.07%, respectively) were originally developed by the wetspinning method. Articular chondrocytes were isolated from Japanese white rabbits and cultured in the sheets consisting of each polymer fiber. The effects of each polymer fiber on cell adhesivity, proliferation, morphological changes, and synthesis of the extracellular matrix were analyzed by quantitative a cell attachment test, DNA quantification, light and scanning electron microscopy, semi-quantitative RT-PCR, and immunohistochemical analysis. Cell adhesivity, proliferation and the synthesis of aggrecan were significantly higher in the hybrid fiber (HA 0.04% and 0.07%) groups than in the chitosan group. On the cultured hybrid polymer materials, scanning electron microscopic observation showed that chondrocytes proliferated while maintaining their morphological phenotype and with a rich extracellular matrix synthesis around the cells. Immunohistochemical staining with an anti-type II collagen antibody demonstrated rich production of the type II collagen in the pericellular matrix from the chondrocytes. The chitosan-based hyaluronic acid hybrid polymer fibers show great potential as a desirable biomaterial for cartilaginous tissue scaffolds.  相似文献   

11.
Different methods have been used to improve chondrocyte transplantation for the repair of articular cartilage defects. Several groups of biomaterials have been proposed as support for in vitro cell growth and for in vivo implantation. Here. we describe a new approach investigating the healing of rabbit cartilage by means of autologous chondrocytes seeded on a hyaluronan derivative referred to as Hyaff-11. Full thickness defects were created bilaterally in the weight-bearing surface of the medial femoral condyle of both femora of New Zealand male rabbits. The wounds were then repaired using both chondrocytes seeded on the biomaterial and biomaterial alone. Controls were similarly treated but received either no treatment or implants of the delivery substance. Histologic samples from in and around the defect sites were examined 1, 3 and 6 months after surgery and were scored from 0 to 16. Statistically significant differences in the quality of the regenerated tissue were found between the grafts carried out with biomaterial carrying chondrocyte cells compared to the biomaterial alone or controls. This study demonstrates the efficacy of this hyaluronan-based scaffold for autologous chondrocytes transplantation.  相似文献   

12.
13.
The local microenvironment may change the ultimate fate of engineered cartilage differentiated from bone marrow stromal cells (BMSCs) after subcutaneous implantation. Chondrogenically differentiated BMSCs directed by growth factors or low-intensity ultrasound are apt to fibrose or vascularize in the subcutaneous environment, while BMSCs implanted in articular cartilage defects can form stable cartilage. We hypothesized that chondrocytes would provide an ideal chondrogenic environment, and thus promote the maintenance of the chondrocytic phenotype in ectopia. To test this hypothesis, we developed a new method to promote chondrocyte development from BMSCs in a chondrogenic environment produced by xenogeneic chondrocytes and compared the subcutaneous chondrogenesis of BMSCs mediated by xenogeneic chondrocytes with that produced by growth factors. These results indicate that subcutaneous chondrogenesis of BMSCs directed by xenogeneic chondrocytes is more effective than that induced by growth factors. BMSCs induced by xenogeneic chondrocytes formed relatively mature cartilage before or after implantation, following 4 weeks of culture, which reduced the induction time in?vitro and led to maintenance of a stable cartilage phenotype after subcutaneous implantation.  相似文献   

14.
背景:壳聚糖与胶原联合可更有效地止血。 目的:评价胶原/壳聚糖止血敷料的材料学性能及应用于外科伤口的生物相容性。 方法:以“生物材料,止血敷料,纱布,胶原/壳聚糖,生物相容性”为中文关键词,以“biomaterial;hemostatic material;bioresorbable material;hemostasis effect;hemostatic mechanism”为英文关键词,采用计算机检索2000-01/2010-06与生物敷料、胶原/壳聚糖止血材料在伤口或创面止血过程中应用相关的文献。 结果与结论:壳聚糖独特的生物学特性,具有广谱抑菌、促进上皮细胞生长及止血,促进创面愈合的作用,在体内具有良好的生物降解性与组织相容性,可用于指端损伤和肉芽创面的治疗,如制成伤口敷料、可吸收缝线、止血材料、防粘连剂、药物缓释及组织工程支架,用于平战时伤口的处理。  相似文献   

15.
Cultured rabbit peritoneal macrophages, after stimulation with lipopolysaccharides (LPS), produce a factor that induces normal rabbit articular cartilage cells (chondrocytes) to release collagenase and other neutral proteases in their culture medium. The release of the factor as well as the activation of chondrocytes can be significantly inhibited by paramethasone (10(-6) M). Rabbit peripheral blood monocytes produce this factor in smaller quantities. Activation with LPS does not enhance the release of factor any further by these cells. Lymphocytes have no direct effect on the chondrocytic protease synthesis. Furthermore, conditioned medium of activated lymphocytes failed to stimulate monocytes or macrophages in the absence of LPS. The macrophage medium exhibits mitogenic and phytohaemagglutinin-enhancing activity towards thymocytes of C3H/HeJ mice, but not against species-specific rabbit lymphocytes. The lymphocyte-activating factor, derived from a mouse macrophage cell line, P388D1 cells, or from other sources, was unable to stimulate chondrocytic protease secretion. Such specific induction of chondrocytic proteases by a macrophage-derived factor may have an important role in cartilage destruction in arthritic conditions, where synovium is only marginally involved.  相似文献   

16.
The immunomorphological examinations of 20 biopsy specimens of articular cartilage in rheumatoid arthritis at various stages of the pathological process showed immunoglobulins of different classes and complement (C'3) to penetrate into the articular cartilage. In early stages mostly IgG was detected, and with increasing destructive processes in the matrix IgM was found. A certain tropism in the distribution of immunoglobulins in the cartilage matrix to the zones of chondrocytic capsules was observed which could be associated with the direction of immune reactions towards chondrocytes. The articular cartilage tissue may be the basis for the development of the autoimmune process and maintain permanent inflammatory process in the synovial membrane of the joint with local antibody synthesis. The process of phagocytosis of the antigenic substances of the articular cartilage or immune complexes deposed in it underlies the distribution of pannus.  相似文献   

17.
In this study, we prepared a tri-copolymer porous matrices by natural polymer, collagen (Col), Chitosan (Chi) and Chondroitin (CS). Rabbit articular chondrocytes were isolated from the shoulder articular joints of a rabbit, seeded in Col-Chi-CS scaffold, and implanted subcutaneously in the dorsum of athymic nude mice to tissue engineer articular cartilage in vivo. In vitro studies show that Chondrocytes adhered to the scaffold, where they proliferated and secreted extracellular matrices with time, filling the space within the scaffold. The results of hematoxylin and eosin staining scanning electron microscopy revealed that most of the chondrocytes maintained their typically rounded morphology. After 28 days of culture within Col-Chi-CS scaffold in vitro, the results of histological staining showed forming of cartilage-specific morphological appearance and structural characteristics such as lacunae. Subcutaneous implantation studies in nude mice demonstrated that a homogeneous cartilaginous tissue, which was similar to those of natural cartilage, formed when chondrocytes were seeded in Col-Chi-CS matrix after implant 12 weeks. The tri-copolymer matrix could therefore have potential applications as a three-dimensional scaffold for cartilage tissue engineering.  相似文献   

18.
19.
The purpose of this study was to evaluate the morphologic and biochemical behavior and activity of human chondrocytes taken from nonarthritic and osteoarthritic cartilage and seeded on a three-dimensional matrix consisting of collagen types I, II, and III. Human articular chondrocytes were isolated from either nonarthritic or osteoarthritic cartilage of elderly subjects, and from nonarthritic cartilage of an adolescent subject, seeded on collagen matrices, and cultured for 12 h, 7 days, and 14 days. Histological analysis, immunohistochemistry, and biochemical assays for glycosaminoglycans (GAGs) and DNA content were performed for cell-seeded and unseeded matrices. Chondrocytes of nonarthritic cartilage revealed a larger number of spherical cells, consistent with a chondrocytic phenotype. The biochemical assay showed a net increase in GAG content in nonarthritic chondrocytes, whereas almost no GAGs were seen in osteoarthritic cells. The DNA results suggest that more osteoarthritic cells than chondrocytes from nonarthritic cartilage attached to the matrix within the first week. Human articular chondrocytes isolated from osteoarthritic cartilage seem to have less bioactivity after expansion and culture in a sponge consisting of type I, II, and III collagen compared with chondrocytes from nonarthritic cartilage.  相似文献   

20.
In cartilage research bovine articular cartilage is used as an alternative to human tissue. However, animal material is subject to availability and primary cultures undergo senescence, limiting their use. Here we report the immortalization of primary bovine chondrocytes, which could be used as a surrogate for freshly isolated chondrocytes. Chondrocytes were isolated from cartilage explants and immortalized using 1.0 μg/ml benzo[alpha]pyrene. For 3-dimensional culture, chondrocytes were resuspended in 0.5% low-melt agarose at high density (HD) and cultured for 24 h prior to determining changes in expression profile and morphology. A13/BACii chondrocytes acquired a 'flat' irregular morphology and a foetal-like cell volume (1,509.59 ± 182.04 μm(3)). The human cell line C-20/A4 showed a statistically similar volume and length to A13/BACii. Two-dimensional-cultured A13/BACii expressed elevated levels of type I collagen (col1), reduced levels of type II collagen (col2) compared to freshly isolated chondrocytes and an overall col2 to col1 expression ratio (col2:col1) of 0.11 ± 0.01. Upon 3-dimensional encapsulation, there was a significant rise in col2 expression in both A13/BACii and C-20/A4, suggesting a capacity for redifferentiation in both cell lines with a return of col2:col1 values of A13/BACii to values previously observed in primary chondrocytes. A13/BACii chondrocytes expressed aggrecan, matrix metalloproteinase (MMP)-3, MMP-9 and MMP-13, further supporting indications of the differentiated phenotype. Here we report the creation of a novel chondrocytic cell line and demonstrate its strong potential for redifferentiation upon HD 3-dimensional encapsulation, providing an alternative to conventional dedifferentiated cell lines and primary culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号