首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
BackgroundPhosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin pathway is frequently activated in HER2-positive breast cancer and may play a major role in resistance to trastuzumab. Buparlisib is a pan-class-I PI3K inhibitor with potent and selective activity against wild-type and mutant PI3K p110 isoforms.Patients and methodsPIKHER2 phase IB study aimed primarily to determine a maximum tolerated dose (MTD) and propose a recommended phase II dose (RP2D) for buparlisib in combination with lapatinib in HER2-positive, trastuzumab-resistant, advanced breast cancer. Oral buparlisib (40, 60 or 80 mg) and lapatinib (750, 1000 or 1250 mg) were administered daily. A modified continuous reassessment method using an adaptive Bayesian model guided the dose escalation of both agents. Secondary end-points included antitumour activity and pharmacokinetic (PK) assessments.ResultsA total of 24 patients were treated across five dose levels. Dose-limiting toxicities included transaminases elevation, vomiting, stomatitis, hyperglycemia and diarrhoea. MTD was declared at buparlisib 80 mg/d + lapatinib 1250 mg/d, but toxicities and early treatment discontinuation rate beyond cycle 1 led to select buparlisib 80 mg + lapatinib 1000 mg/d as the RP2D. Main drug-related adverse events included diarrhoea, nausea, skin rash, asthenia, depression, anxiety and transaminases increase. There was no significant evidence for drug–drug PK interaction. Disease control rate was 79% [95% confidence interval [CI] 57–92%], one patient obtained a complete remission, and six additional patients experienced stable disease for ≥ 24 weeks (clinical benefit rate of 29% [95% CI 12–51%]).ConclusionCombining buparlisib and lapatinib in HER2-positive trastuzumab-resistant advanced breast cancer was feasible. Preliminary evidence of antitumour activity was observed in this heavily pre-treated population.Trial registration IDNCT01589861.  相似文献   

2.
Objective: Although the development of trastuzumab has improved the outlook for women with human epidermal growth factor receptor 2 (HER2)-positive breast cancer, the resistance to anti-HER2 therapy is a growing clinical dilemma. We aim to determine whether HER2-specific T cells generated from dendritic cells (DCs) modified with HER2 gene could effectively kill the HER2-positive breast cancer cells, especially the trastuzumab-resistant cells. Methods: The peripheral blood mononuclear cells (PBMCs) from healthy donors, whose HLA haplotypes were compatible with the tumor cell lines, were transfected with reconstructive human adeno-association virus (rhAAV/HER2) to obtain the specific killing activities of T cells, and were evaluated by lactate dehydrogenase (LDH) releasing assay. Results: Trastuzumab produced a significant inhibiting effect on SK-BR-3, the IC50 was 100ng /ml. MDA-MB-453 was resistant to trastuzumab even at a concentration of 10,000 ng/ml in vitro. HER2-specific T lymphocytes killed effectively SK-BR-3 [(69.86±13.41)%] and MDA-MB-453 [(78.36±10.68)%] at 40:1 (effector:target ratio, E:T), but had no significant cytotoxicity against HER2-negative breast cancer cell lines MDA-MB-231 or MCF-7 (less than 10%). Conclusion: The study showed that HER2-specific T lymphocytes generated from DCs modified by rhAAV/HER2 could kill HER2-positive breast cancer cell lines in a HER2-dependent manner, and result in significantly high inhibition rates on the intrinsic trastuzumab-resistant cell line MDA-MB-453 and the tastuzumab-sensitive cell line SK-BR-3. These results imply that this immunotherapy might be a potential treatment to HER2-positive breast cancer.  相似文献   

3.
Although HER2 targeted therapies have substantially improved outcomes in HER2 overexpressing (HER2+) breast cancer, resistance to these therapies remains a clinical challenge. To better understand the mechanisms of resistance to lapatinib, a HER2 and EGFR dual kinase inhibitor, we treated HER2+ breast cancer cells with lapatinib for an extended period to generate a lapatinib-resistant (LapR) cell line model and examined cancer-promoting signaling activation in LapR cells. We found that LapR cells possess enhanced mTOR activation, which was independent of PI3K and other known mTOR activators. Lapatinib resistance could be reversed by mTOR kinase inhibition. Intriguingly, LapR cells had constitutive cytosolic cytochrome C, indicating that LapR cells suppress lapatinib-induced apoptosis downstream of cytochrome C release from mitochondria into the cytosol rather than by preventing its release into the cytosol. Consistent with this notion, LapR cells possessed increased levels of 2 of the inhibitors of apoptosis (IAPs), survivin and c-IAP-2, which are reported to block caspase activation downstream of cytosolic cytochrome C release. Further, treatment with the mTOR kinase inhibitor AZD8055 or the Hsp90 inhibitor 17-AAG reversed expression of IAPs and overcame lapatinib resistance in LapR cells. Together, these data suggest that suppression of apoptosis downstream of cytosolic cytochrome C release, possibly through increased expression of IAPs or other caspase-suppressing proteins, may promote lapatinib resistance. Further, PI3K is thought to be the main driver of lapatinib resistance, but our findings indicate that PI3K inhibitors may be ineffective in some lapatinib-resistant HER2+ breast cancers with PI3K-independent activation of mTOR kinase, which may instead benefit from mTOR or Hsp90 inhibitors.  相似文献   

4.
Human epidermal growth factor receptor 2 (HER2) amplification occurs in approximately 20% of gastric and gastroesophageal junction cancers in the United States and European Union. Lapatinib, a dual HER2 and epidermal growth factor receptor tyrosine kinase inhibitor, has demonstrated clinical efficacy in HER2‐amplified cancer cells. However, several studies have shown that some cytokines can mediate resistance to lapatinib using their receptor tyrosine kinase (RTK) pathways. One of these, Heregulin1 (HRG1), can confer resistance to lapatinib‐mediated growth inhibition in HER2‐amplified breast cancer cells, but the underlying mechanisms remain unknown. Here, we investigated whether and how HRG1 causes resistance to lapatinib in gastric and gastroesophageal junction cancers in vitro. HER2‐amplified gastric and gastroesophageal junction cancer cell lines were highly sensitive to lapatinib. Exposure to HRG1 together with lapatinib rescued cells from lapatinib‐induced cell cycle arrest and apoptosis. Downregulation of HER3 with siRNA in the presence of HRG1 re‐sensitized HER2‐amplified cancer cells to lapatinib. Immunoblotting analysis indicated that HRG1 re‐activated HER3 and AKT in the presence of lapatinib, which persisted for at least 72 h. Activation of HER3 and downstream AKT was mediated by residual activity of HER2. HRG1‐mediated resistance could be reduced by PI3K/mTOR inhibitors or by complete inhibition of HER2. Thus, we conclude that HRG1 mediates resistance to lapatinib through HER3 and AKT activation, and that this depends on residual HER2 activity. Lapatinib in combination with anti‐PI3K therapies or more potent HER2 inhibitors would improve the efficacy and avoid the emergence of resistant cells.  相似文献   

5.
6.
The activation of the PI3K signaling pathway resulting from genetic alterations induces carcinogenesis and resistance to anticancer therapies. Breast cancer is a major malignancy that is associated with dysregulation of the PI3K signaling pathway. PIK3CA mutations and PTEN loss occur in every subtype of breast cancer. PI3K inhibitors are being evaluated in breast cancer after the success of an alpha isoform-specific PI3K inhibitor in estrogen receptor (ER)-positive/HER2-negative metastatic breast cancer. Some preclinical data indicate the potential for PI3K/mTOR targeting in combination with trastuzumab for HER2-positive breast cancer with or without expression of the estrogen receptor. However, the role of this therapy in HER2-positive breast cancer with PIK3CA mutations and/or PTEN loss remains unclear. We examined three HER2-positive, ER-negative breast cancer cell lines to determine the efficacy of a novel alpha isoform-specific PI3K inhibitor in combination with trastuzumab. The results indicated that this combination was effective in PIK3CA-mutant or PTEN-deficient breast cancer cells by inducing apoptosis and inhibiting the expression of downstream proteins. PTEN loss by siRNA modulation in parental HER2-positive cancer cells with PI3K signaling pathway alterations could not confer resistance to alpelisib or GDC-0077 plus trastuzumab. We selected the CK-MB-1 cell line without alterations in the PI3K pathway to demonstrate that PI3K inhibitors plus trastuzumab represented a biomarker-specific treatment. In vivo effects of alpelisib plus trastuzumab were tested and confirmed in a mouse model, showing the combination strategy offered the best opportunity to achieve tumor volume reduction. With known safety profiles, this cytotoxic chemotherapy-free regimen warrants further attention as a biomarker-driven strategy for treating HER2-positive breast cancer.  相似文献   

7.
Drug resistance is a major barrier to successful cancer treatment. For patients with HER2-positive breast cancer who initially respond to therapy, the majority develop resistance within one year of treatment. Patient outcomes could improve significantly if we can find and exploit common mechanisms of acquired resistance to different targeted therapies. Overexpression of t-Darpp, a truncated form of the dual kinase/phosphatase inhibitor Darpp-32, has been linked to acquired resistance to trastuzumab, a front-line therapy for HER2-positive breast cancer. Darpp-32 reverses t-Darpp''s effect on trastuzumab resistance. In this study, we examined whether t-Darpp could be involved in resistance to lapatinib, another HER2-targeted therapeutic. Lapatinib-resistant SKBR3 cells (SK/LapR) showed a marked change in the Darpp-32:t-Darpp ratio toward a predominance of t-Darpp. Overexpression of t-Darpp alone was not sufficient to confer lapatinib resistance, but cells that overexpress t-Darpp partially mimicked the molecular resistance phenotype observed in SK/LapR cells exposed to lapatinib. SK/LapR cells failed to down-regulate Survivin and failed to induce BIM accumulation in response to lapatinib; cells overexpressing t-Darpp exhibited only the failed BIM accumulation. t-Darpp knock-down reversed this phenotype. Using a fluorescence-based co-culture system, we found that cells overexpressing t-Darpp formed colonies in lapatinib within 3–4 weeks, whereas parental cells in the same co-culture did not. Overall, t-Darpp appears to mediate a survival advantage in lapatinib, possibly linked to failed lapatinib-induced BIM accumulation. t-Darpp might also be relevant to acquired resistance to other cancer drugs that rely on BIM accumulation to induce apoptosis.  相似文献   

8.
Lapatinib, a dual tyrosine kinase inhibitor of the epidermal growth factor receptor and human epidermal growth factor receptor 2 (HER2), is clinically active in patients with breast cancer positive for HER2 amplification. The mechanism of this anti-tumor action has remained unclear, however. We have now investigated the effects of lapatinib in HER2 amplification-positive breast cancer cells with or without an activating PIK3CA mutation. Lapatinib induced apoptosis in association with upregulation of the pro-apoptotic protein Bcl-2 interacting mediator of cell death (BIM) through inhibition of the MEK-ERK signaling pathway in breast cancer cells with HER2 amplification. RNA interference (RNAi)-mediated depletion of BIM inhibited lapatinib-induced apoptosis, implicating BIM induction in this process. The pro-apoptotic effect of lapatinib was less pronounced in cells with a PIK3CA mutation than in those without one. Lapatinib failed to inhibit AKT phosphorylation in PIK3CA mutant cells, likely because of hyperactivation of the phosphatidylinositol 3-kinase (PI3K) signaling pathway by the mutation. Depletion of PIK3CA (a catalytic subunit of PI3K) revealed that survivin expression is regulated by the PI3K pathway in these cells, suggesting that insufficient inhibition of PI3K-survivin signaling is responsible for the limited pro-apoptotic effect of lapatinib in HER2 amplification-positive cells with a PIK3CA mutation. Consistent with this notion, depletion of survivin by RNAi or treatment with a PI3K inhibitor markedly increased the level of apoptosis in PIK3CA mutant cells treated with lapatinib. Our results thus suggest that inhibition of both PI3K-survivin and MEK-ERK-BIM pathways is required for effective induction of apoptosis in breast cancer cells with HER2 amplification.  相似文献   

9.
ERBB2/HER2 belongs to the EGFR-family of receptor tyrosine kinases and its overexpression can promote tumor progression. Breast cancer patients with ERBB2 amplifications are currently treated with lapatinib, a small-molecule kinase inhibitor that specifically blocks EGFR/ERBB2 signaling. Here, we show that hypoxia, via HIF-1, induces resistance to lapatinib-mediated effects in ERBB2-expressing mammary epithelial and ERBB2-positive breast cancer cells. Lapatinib-mediated growth inhibition and apoptosis in three-dimensional (3D) cultures are decreased under hypoxic conditions. Hypoxia can maintain activation of signaling pathways downstream from ERBB2 including AKT and ERK in the presence of lapatinib. HIF-1 is both required and sufficient to induce lapatinib resistance as overexpression of stable HIF-1 in ERBB2-expressing cells blocks lapatinib-mediated effects and maintains ERBB2-downstream signaling under normoxic conditions. Under hypoxia, activation of ERK signaling is required for lapatinib resistance as treatment with MEK inhibitor trametinib reverses hypoxia-mediated lapatinib resistance. HIF-1 can bypass the lapatinib-treated inhibition of the ERK pathway via inhibition of the dual-specificity phosphatase 2 (DUSP2). Indeed, overexpression of DUSP2 in ErbB2-positve breast cancer cells reverses hypoxia-mediated lapatinib resistance. Thus, our results provide rationale for therapeutic evaluation of the treatment of hypoxic ERBB2 expressing breast tumors with a combination of lapatinib and MEK inhibitors.  相似文献   

10.
The anti-HER2 monoclonal antibody trastuzumab is the mainstay of treatment for HER2-positive breast and gastric cancer, and its combination with multiple chemotherapeutic agents has represented an effective and rational strategy in the clinic. In this study, we report that trastuzumab in combination with PEGylated interferon-α1b (IFN-α1b), a polyethylene glycol (PEG)-conjugated form of a subtype of interferon alpha (IFN-α), synergistically inhibited the proliferation of HER2-positive cells, including BT-474 and SK-BR-3 breast cancer cells and NCI-N87 gastric cancer cells, and also induced their apoptosis, but had no effect on HER2-negative MDA-MB-231 breast cancer cells. Trastuzumab inhibited phosphorylation of HER2, AKT and ERK, an effect that was enhanced by PEGylated IFN-α1b, likely owing to PEGylated IFN-α1b-mediated downregulation of HER2 through the lysosomal degradation pathway. Moreover, PEGylated IFN-α1b significantly enhanced trastuzumab-mediated antibody-dependent cellular cytotoxicity (ADCC) in HER2-positive cells. Importantly, trastuzumab combined with PEGylated IFN-α1b exhibited significant synergistic antitumor activity in HER2-positive BT-474 xenografts, an effect that was associated with enhanced inhibition of HER2 expression and AKT and ERK phosphorylation. Strikingly, depletion of natural killer cells with anti-Asialo GM1 antibody abrogated the synergistic antitumor activity, indicating that augmented ADCC is essential for this synergy. Taken together, our findings indicate that both enhanced inhibition of HER2 downstream signaling and augmented ADCC contribute to the synergistic antitumor activity of trastuzumab with PEGylated IFN-α1b, and imply that combining trastuzumab with PEGylated IFN-α1b could be a promising strategy for HER2-positive cancers.  相似文献   

11.
Lapatinib is an oral dual erbB 1/2 tyrosine kinase inhibitor that inhibits human EGF receptor 2 (HER2) and blocks the EGF receptor. Studies have shown that in patients with metastatic HER2-positive breast cancer that is resistant to trastuzumab, the addition of lapatinib to capecitabine improves progression-free survival and appears to lengthen overall survival. Furthermore, lapatinib has been studied in patients with involvement of the CNS and has been associated with stable disease and some responses. Its combination with letrozole provided an improvement in progression-free survival compared with single-agent letrozole in women with hormone receptor-positive, HER2-positive metastatic breast cancer. More recently, data suggested that the combination of lapatinib with trastuzumab significantly improves overall survival in women with metastatic breast cancer compared with single-agent lapatinib. Current indications in the USA for the use of lapatinib are for the treatment of metastatic HER2-positive breast cancer, both in combination with capecitabine in patients who have received taxane, anthracycline and traztuzumab, and in combination with letrozole for postmenopausal patients with hormone receptor- and HER2-overexpressing breast cancer. Common side effects of lapatinib include diarrhea and rash. Studies to date have found a less than 2% risk for cardiotoxicity, although most cardiac events that occurred during the studies were not attributed to lapatinib. It is important to consider that most of the patients in existing studies had already been treated with trastuzumab with no significant cardiotoxicity; therefore, future studies will show how trastuzumab-naive patients tolerate lapatinib. Ongoing research is evaluating the role of lapatinib in the adjuvant setting as a single agent or in combination with trastuzumab.  相似文献   

12.
The small molecule HER2 tyrosine kinase inhibitor (TKI) lapatinib (Tykerb®) is approved for the therapy of patients with HER2-positive breast carcinomas who have progressed on trastuzumab (Herceptin®). Unfortunately, the efficacy of this HER2 TKI is limited by both primary (inherent) and acquired resistance, the latter typically occurring within 12 months of starting therapy. One of the key factors limiting our understanding of the mechanisms involved in lapatinib resistance is the lack of published preclinical models. We herein review lapatinib-refractory models recently developed at the bench and the survival pathways discovered. As hyperactivation of the pharmacologically targetable PI3K/mTOR/p70S6K1 axis appears to be central to the occurrence of lapatinib resistance, preclinical data showing enhanced antitumour effects when combining lapatinib with mTOR inhibitors (e.g., rapamycin analogues and NVP-BEZ235) highlight the importance of translational work to yield clinically useful regimens capable of delaying or treating lapatinib resistance. The unexpected ability of the anti-type II diabetes drug metformin to inactivate mTOR and decrease p70S6K1 activity further reveals that this biguanide, generally considered non-toxic and remarkably inexpensive, might be considered for new combinatorial lapatinib-based protocols in HER2-overexpressing breast cancer patients.  相似文献   

13.
In breast cancer cells, heterodimerization of HER2 and HER3 plays important and dominant roles in the functionality and transformation of HER-mediated pathways, in particular the PI3K/Akt survival pathway. HER3 was considered as a major signaling hub in HER2-amplified cancers. Inhibition of HER3 expression may therefore represent a rational therapeutic approach to breast cancers where HER2/HER3-mediated signaling plays a role in tumorigenesis and progression. miRNAs exerts important roles in regulating gene expressions by binding to and repressing target mRNAs. Here we reported that miRNA-450b-3p inhibits HER3 expression by directly targeting 3′ UTR of HER3 mRNA and represses the downstream signal transductions of HER family. Overexpression of miRNA-450b-3p in SKBR3 cells inhibits cells clonogenic potential and enhances their sensitivity to trastuzumab, a monoclonal antibody that binds to the HER2 receptor, or doxorubicin through repressing proliferative signal pathways mediated by HER3/HER2/PI3K/AKT. Furthermore, we found that breast cancer patients with tumors that demonstrating upregulated HER3 (>2-fold) and downregulated miR-450b-3p (>2-fold) expressions compared with the paired adjacent non-tumorous tissues showed significantly poorer overall survival (P < 0.05). Our study identified miRNA-450b-3p as a new tumor repressor and also provided some evidences suggesting that downregulation of miR-450b-3p expression with concurrent overexpression of HER3 may serve as a prognostic biomarker for poor overall survival in breast cancer patients.  相似文献   

14.
目的 观察小鼠成纤维细胞系3T3来源的外泌小体(exosome)对小鼠乳腺癌细胞4T1增殖能力的影响,并探索其中可能的机制。方法 PureExo Exosome提取试剂盒提取3T3细胞上清液中的exosome,按照不同浓度及时间作用于4T1细胞,CCK8法检测4T1细胞的增殖能力,BrdU/PI双掺入法测定细胞DNA合成及细胞周期;免疫印迹法(Western blot)及荧光定量实时PCR(qPCR)检测人表皮生长因子受体2(epidermal growth factor receptor-2, EGFR2,也称HER2)及下游PI3K/AKT信号转导通路相关蛋白的变化。利用HER2单克隆抗体靶向药物赫赛汀(Herceptin),观察exosome是否影响4T1细胞对于Herceptin敏感度。结果 exosome处理组OD450吸光度值显著高于对照组(P<0.05),细胞增殖及细胞周期进程加快。Western blot及qPCR实验提示随着exosome浓度的增加,HER2表达逐渐升高, AKT磷酸化水平增加。而同时给予exosome可明显增加4T1细胞对Herceptin的敏感度。结论 小鼠成纤维细胞系3T3来源exosome可促进小鼠乳腺癌细胞4T1增殖及周期进程,并且可能通过HER2激活其下游PI3K/AKT信号通路发挥上述作用。  相似文献   

15.
Acquired resistance to lapatinib, an inhibitor of EGFR and HER2 kinases, is common. We found that reactivation of EGFR, HER2 and HER3 occurred within 24 hours of lapatinib treatment after their initial dephosphorylation. This was associated with increased expression of NRG1 in cells treated with lapatinib. Exogenous NRG1 partially rescued breast cancer cells from growth inhibition by lapatinib. In addition, both parental and lapatinib-resistant breast cancer cells were sensitive to SGP1, which inhibits binding of NRG1 and other HER3 ligands. Addition of pertuzumab to lapatinib further inhibited NRG1-induced signalling, which was not fully inhibited by either drug alone. In animal model, a combination of pertuzumab to lapatinib induced a greater tumor regression than either lapatinib or pertuzumab monotherapy. This novel combination treatment may provide a promising strategy in clinical HER2-targeted therapy and may inhibit a subset of lapatinib-resistant breast cancer, although the group of patients that will respond to this therapy requires further stratification.  相似文献   

16.

Background.

The CHER-LOB randomized phase II study showed that the combination of lapatinib and trastuzumab plus chemotherapy increases the pathologic complete remission (pCR) rate compared with chemotherapy plus either trastuzumab or lapatinib. A biomarker program was prospectively planned to identify potential predictors of sensitivity to different treatments and to evaluate treatment effect on tumor biomarkers.

Materials and Methods.

Overall, 121 breast cancer patients positive for human epidermal growth factor 2 (HER2) were randomly assigned to neoadjuvant chemotherapy plus trastuzumab, lapatinib, or both trastuzumab and lapatinib. Pre- and post-treatment samples were centrally evaluated for HER2, p95-HER2, phosphorylated AKT (pAKT), phosphatase and tensin homolog, Ki67, apoptosis, and PIK3CA mutations. Fresh-frozen tissue samples were collected for genomic analyses.

Results.

A mutation in PIK3CA exon 20 or 9 was documented in 20% of cases. Overall, the pCR rates were similar in PIK3CA wild-type and PIK3CA-mutated patients (33.3% vs. 22.7%; p = .323). For patients receiving trastuzumab plus lapatinib, the probability of pCR was higher in PIK3CA wild-type tumors (48.4% vs. 12.5%; p = .06). Ki67, pAKT, and apoptosis measured on the residual disease were significantly reduced from baseline. The degree of Ki67 inhibition was significantly higher in patients receiving the dual anti-HER2 blockade. The integrated analysis of gene expression and copy number data demonstrated that a 50-gene signature specifically predicted the lapatinib-induced pCR.

Conclusion.

PIK3CA mutations seem to identify patients who are less likely to benefit from dual anti-HER2 inhibition. p95-HER2 and markers of phosphoinositide 3-kinase pathway deregulation are not confirmed as markers of different sensitivity to trastuzumab or lapatinib.

Implications for Practice:

HER2 is currently the only validated marker to select breast cancer patients for anti-HER2 treatment; however, it is becoming evident that HER2-positive breast cancer is a heterogeneous disease. In addition, more and more new anti-HER2 treatments are becoming available. There is a need to identify markers of sensitivity to different treatments to move in the direction of treatment personalization. This study identified PIK3CA mutations as a potential predictive marker of resistance to dual anti-HER2 treatment that should be further studied in breast cancer.  相似文献   

17.
人表皮生长因子受体2(HER2)阳性乳腺癌因其侵袭性高、预后差而一直备受关注。随着曲妥珠单抗的应用,早期HER2阳性乳腺癌患者的预后已得到显著改善,由于其仍存在耐药性和不良反应,在标准治疗中加入新的抗HER2药物又成为新的研究重点,这些药物包括帕妥珠单抗、抗体药物偶联物曲妥珠单抗-美坦新(T-DM1)和各种小分子抑制剂(拉帕替尼、来那替尼、吡咯替尼)。同时PD1及PD-L1抑制剂如帕博利珠单抗在HER2阳性乳腺癌中的研究也在进行中,并有部分基础研究和病例报道已经证实了其疗效和安全性。本文旨在对目前HER2阳性乳腺癌的治疗方案和支持HER2阳性乳腺癌治疗的最新证据进行综述。  相似文献   

18.
Increased lipogenesis and protein synthesis is a hallmark of cancer cell proliferation, survival, and metastatic progression and is under intense investigation as a potential antineoplastic target. Acetyltanshinone IIA (ATA) is a compound that was obtained from chemical modifications of tanshinone IIA (TIIA), a potent anticancer agent extracted from the dried roots of the Chinese herbal medicine Salvia miltiorrhiza Bunge. A previous investigation indicated that ATA is more effective in inhibiting the growth of breast cancer especially cells with HER2 overexpression. However, the molecular mechanism(s) mediating this cytotoxic effect on HER2-positive breast cancer remained undefined. Studies described here report that ATA induced G1/S phase arrest and apoptosis in the HER2-positive MDA-MB-453, SK-BR-3, and BT-474 breast cancer cell lines. Mechanistic investigations revealed that the ATA-induced apoptosis effect is associated with remarkably down-regulation of receptor tyrosine kinases (RTKs) EGFR/HER2 and inhibition of their downstream pro-survival signaling pathways. Interestingly, ATA was found to trigger oxidative and endoplasmic reticulum (ER) stresses and to activate AMP activated protein kinase (AMPK) leading to inactivation of key enzymes involved in lipid and protein biogenesis. Intraperitoneal administration of ATA significantly inhibited the growth of MDA-MB-453 xenografts in athymic mice without causing weight loss and any other side effects. Additionally, transwell migration, invasion, and wound healing assays revealed that ATA could suppress tumor angiogenesis in vitro. Taken together, our data suggest that ATA may have broad utility in the treatment of HER2-overexpressed breast cancers.  相似文献   

19.
Patients with primary HER2-positive breast cancer benefit from HER2-targeted therapies. Nevertheless, a significant proportion of these patients die of disease progression due to mechanisms of drug resistance. MicroRNAs (miRNAs) are emerging as critical core regulators of drug resistance that act by modulating the epithelial- to-mesenchymal transition (EMT) and cancer-related immune responses. In this study, we investigated the association between the expression of a specific subset of 14 miRNAs involved in EMT processes and immune functions and the response to neoadjuvant trastuzumab and chemotherapy in 52 patients with HER2-overexpressing breast tumors. The expression of only a single miRNA, miR-21, was significantly associated with residual disease (p = 0.030) and increased after trastuzumab-chemotherapy (p = 0.012). A target prediction analysis coupled with in vitro and in vivo validations revealed that miR-21 levels inversely correlated with the expression of PTEN (rs = −0.502; p = 0.005) and PDCD4 (rs = −0.426; p = 0.019), which differentially influenced the drug sensitivity of HER2-positive breast cancer cells. However, PTEN expression was only marginally associated with residual disease. We further demonstrated that miR-21 was able to affect the response to both trastuzumab and chemotherapy, triggering an IL-6/STAT3/NF-κB-mediated signaling loop and activating the PI3K pathway. Our findings support the ability of miR-21 signaling to sustain EMT and shape the tumor immune microenvironment in HER2-positive breast cancer. Collectively, these data provide a rationale for using miR-21 expression as a biomarker to select trastuzumab-chemotherapy-resistant HER2-positive breast cancer patients who may benefit from treatments containing PI3K inhibitors or immunomodulatory drugs.  相似文献   

20.
Despite the initial effectiveness of the tyrosine kinase inhibitor lapatinib against HER2 gene-amplified breast cancers, most patients eventually relapse after treatment, implying that tumors acquire mechanisms of drug resistance. To discover these mechanisms, we generated six lapatinib-resistant HER2-overexpressing human breast cancer cell lines. In cells that grew in the presence of lapatinib, HER2 autophosphorylation was undetectable, whereas active phosphoinositide-3 kinase (PI3K)-Akt and mitogen-activated protein kinase (MAPK) were maintained. To identify networks maintaining these signaling pathways, we profiled the tyrosine phosphoproteome of sensitive and resistant cells using an immunoaffinity-enriched mass spectrometry method. We found increased phosphorylation of Src family kinases (SFKs) and putative Src substrates in several resistant cell lines. Treatment of these resistant cells with Src kinase inhibitors partially blocked PI3K-Akt signaling and restored lapatinib sensitivity. Further, SFK mRNA expression was upregulated in primary HER2+ tumors treated with lapatinib. Finally, the combination of lapatinib and the Src inhibitor AZD0530 was more effective than lapatinib alone at inhibiting pAkt and growth of established HER2-positive BT-474 xenografts in athymic mice. These data suggest that increased Src kinase activity is a mechanism of lapatinib resistance and support the combination of HER2 antagonists with Src inhibitors early in the treatment of HER2+ breast cancers in order to prevent or overcome resistance to HER2 inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号