首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
By selective attachment of a DNA cleavage agent to specific residues in the yeast TATA box binding protein (yTBP), we demonstrate that, in solution, yTBP binds to the TATA boxes of both the adenovirus major late promoter and the yeast CYC1 promoter with only a modest preference in orientation and binds well to several overlapping binding sites. The general factors TFIIA and TFIIB each increase the rotational and translational selectivity of yTBP but are not sufficient, at least individually, to confer a unique polarity to the preinitiation complex. We conclude that TBP alone cannot define the productive orientation of general factor assembly on a promoter.  相似文献   

2.
RNA templates of 33 nucleotides containing the brome mosaic virus (BMV) core subgenomic promoter were used to determine the promoter elements recognized by the BMV RNA-dependent RNA polymerase (RdRp) to initiate RNA synthesis. Nucleotides at positions −17, −14, −13, and −11 relative to the subgenomic initiation site must be maintained for interaction with the RdRp. Changes to every other nucleotide at these four positions allow predictions for the base-specific functional groups required for RdRp recognition. RdRp contact of the nucleotide at position −17 was suggested with a template competition assay. Comparison of the BMV subgenomic promoter to those from other plant and animal alphaviruses shows a remarkable degree of conservation of the nucleotides required for BMV subgenomic RNA synthesis. We show that the RdRp of the plant-infecting BMV is capable of accurately, albeit inefficiently, initiating RNA synthesis from the subgenomic promoter of the animal-infecting Semliki Forest virus. The sequence-specific recognition of RNA by the BMV RdRp is analogous to the recognition of DNA promoters by DNA-dependent RNA polymerases.  相似文献   

3.
4.
5.
6.
7.
8.
We have investigated a role for Escherichia coli DNA polymerase II (Pol II) in copying chromosomal and episomal DNA in dividing cells in vivo. Forward mutation frequencies and rates were measured at two chromosomal loci, rpoB and gyrA, and base substitution and frameshift mutation frequencies were measured on an F′(lacZ) episome. To amplify any differences in polymerase error rates, methyl-directed mismatch repair was inactivated. When wild-type Pol II (polB+) was replaced on the chromosome by a proofreading-defective Pol II exo (polBex1), there was a significant increase in mutation frequencies to rifampicin resistance (RifR) (rpoB) and nalidixic acid resistance (NalR) (gyrA). This increased mutagenesis occurred in the presence of an antimutator allele of E. coli DNA polymerase III (Pol III) (dnaE915), but not in the presence of wild-type Pol III (dnaE+), suggesting that Pol II can compete effectively with DnaE915 but not with DnaE+. Sequencing the RifR mutants revealed a G → A hot spot highly specific to Pol II exo. Pol II exo caused a significant increase in the frequency of base substitution and frameshift mutations on F′ episomes, even in dnaE+ cells, suggesting that Pol II is able to compete with Pol III for DNA synthesis on F episomes.  相似文献   

9.
10.
11.
The E3 ubiquitin-protein ligases play an important role in controlling substrate specificity of the ubiquitin proteolysis system. A biochemical approach was taken to identify substrates of Rsp5, an essential hect (homologous to E6-AP carboxyl terminus) E3 of Saccharomyces cerevisiae. We show here that Rsp5 binds and ubiquitinates the largest subunit of RNA polymerase II (Rpb1) in vitro. Stable complex formation between Rsp5 and Rpb1 was also detected in yeast cell extracts, and repression of RSP5 expression in vivo led to an elevated steady-state level of Rpb1. The amino-terminal domain of Rsp5 mediates binding to Rpb1, while the carboxyl-terminal domain of Rpb1, containing the heptapeptide repeats characteristic of polymerase II, is necessary and sufficient for binding to Rsp5. Fusion of the Rpb1 carboxyl-terminal domain to another protein also causes that protein to be ubiquitinated by Rsp5. These findings indicate that Rsp5 targets at least a subset of cellular Rpb1 molecules for ubiquitin-dependent degradation and may therefore play a role in regulating polymerase II activities. In addition, the results support a model for hect E3 function in which the amino-terminal domain mediates substrate binding, while the carboxyl-terminal hect domain catalyzes ubiquitination of bound substrates.  相似文献   

12.
13.
By monitoring the end-to-end extension of a mechanically stretched, supercoiled, single DNA molecule, we have been able directly to observe the change in extension associated with unwinding of approximately one turn of promoter DNA by RNA polymerase (RNAP). By performing parallel experiments with negatively and positively supercoiled DNA, we have been able to deconvolute the change in extension caused by RNAP-dependent DNA unwinding (with approximately 1-bp resolution) and the change in extension caused by RNAP-dependent DNA compaction (with approximately 5-nm resolution). We have used this approach to quantify the extent of unwinding and compaction, the kinetics of unwinding and compaction, and effects of supercoiling, sequence, ppGpp, and nucleotides. We also have used this approach to detect promoter clearance and promoter recycling by successive RNAP molecules. We find that the rate of formation and the stability of the unwound complex depend profoundly on supercoiling and that supercoiling exerts its effects mechanically (through torque), and not structurally (through the number and position of supercoils). The approach should permit analysis of other nucleic-acid-processing factors that cause changes in DNA twist and/or DNA compaction.  相似文献   

14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号