首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 614 毫秒
1.
弓形虫主要表面抗原p30单价及复合基因疫苗的构建   总被引:3,自引:0,他引:3  
目的 构建弓形虫单价基因疫苗 pcDNA3.1-p30及复合基因疫苗 pcDNA3.1-p30-ROP2 ,并比较两种疫苗对小鼠的免疫保护性。 方法 用聚合酶链反应 (PCR)从弓形虫RH株基因组DNA中分别扩增编码弓形虫主要表面抗原 p30和弓形虫棒状体蛋白 2 (ROP2 )的基因片段 ,经T-A克隆 ,将p30单价基因及 p30-ROP2复合基因片段分别插入真核细胞表达载体pcDNA3.1,构建重组真核表达质粒 pcDNA3.1-p30及pcDNA3.1-p30-ROP2。分别免疫BALB/c小鼠 ,设磷酸缓冲盐溶液 (PBS)组、pcDNA3.1空质粒组为对照 ;酶联免疫吸附测定 (ELISA)检测血清特异性IgG抗体 ;弓形虫速殖子腹腔攻击感染观察小鼠生存时间。  结果 获得 pcDNA3.1-p30、pcDNA3.1-p30-ROP2重组表达质粒 ,用 pcDNA3.1-p30-ROP2免疫的小鼠 ,其IgG抗体吸光度 (A490 =2.0 5 1± 0.3 3 7)高于用 pcDNA3.1-p30的吸光度 (A490 =1.892± 0.3 69) (P <0.0 5 )。攻击感染弓形虫后小鼠生存时间 ,用 pcDNA3.1-p30-ROP2免疫的小鼠 ,较用 pcDNA3.1-p30的明显延长 (P <0.0 1)。  结论 弓形虫不同生活阶段的抗原复合基因疫苗较单价基因疫苗具有更好的免疫保护性。  相似文献   

2.
目的构建弓形虫主要表面抗原SAG1单价基因疫苗及其与棒状体蛋白ROP2的复合基因疫苗,接种BALB/c小鼠,观察疫苗的免疫保护性。方法构建重组质粒pcDNA3.1SAG1及pcDNA3.1SAG1ROP2。将两核酸疫苗分别免疫小鼠,ELISA法检测血清IgG抗体、IFNγ、IL4;流式细胞仪测定T细胞亚群;弓形虫速殖子腹腔攻击感染观察小鼠生存时间。结果获得pcDNA3.1SAG1、pcDNA3.1SAG1ROP2重组质粒;pcDNA3.1SAG1ROP2组小鼠IgG抗体(P<0.05)、IFNγ(P<0.01)及CD8+细胞比例(P<0.05)均高于pcDNA3.1SAG1组;实验组组均未测到IL4;复合基因组感染弓形虫后生存时间较单基因组延长(P<0.01)。结论弓形虫不同生活阶段的抗原基因复合疫苗较单基因疫苗具有更好的免疫保护性。  相似文献   

3.
HBsAg真核表达质粒及其诱导的小鼠特异性免疫应答   总被引:5,自引:1,他引:5  
目的 研究HBsAg真核表达质粒pCI-S和pcDNA3.1-S在真核细胞中的表达和质粒DNA的免疫效果。方法 应用基因重组技术构建HBsAg真核表达质粒pCI-S和pcDNA3.1-S;经酶切和测序鉴定无误后,用阳离子脂质体介导的方法将重组质粒转染HepG2和COS-7细胞,48h后,再ELISA的方法检测重组质粒在细胞中HBsAg的表达,同时同质粒DNA免疫小鼠,用ELISA检测免疫小鼠血清抗-HBs抗体水平;用乳酸脱氢酶释放法检测小鼠肿瘤细胞HBsAg特异性CTL反应。结果 重组质粒pCI-S和pcDNA3.1-S转染的HepG2和COS-7细胞培养上清液和sAg均为阳性。DNA免疫小鼠血清可检测到高滴度的抗-HBs抗体,免疫小鼠脾细胞可检测到校强的HBsAg特异性CTL反应。结论 HBsAg真核表达质粒pCI-S和pcDNA3.1-S可在HepG2和COS-7细胞中高效表达,DNA免疫小鼠成功地诱导出抗-HBs和HBsAg特异性CTL反应。  相似文献   

4.
目的 构建弓形虫RH株 pcDNA3.1 P30 ROP2 真核表达重组质粒,为进一步表达及 DNA疫苗的研制作准备。 方法 用PCR技术从弓形虫RH分离株的基因组DNA中扩增编码 P30基因片段和棒状体蛋白(ROP2)的基因片段,重组入 pUC18克隆载体,然后将 pUC18 P30 ROP2中的 P30 ROP2 外源基因片段经酶切、连接等反应,亚克隆入pcDNA3.1真核表达载体,再经含氨苄青霉素的LB培养基筛选、酶切及PCR鉴定。 结果 从弓形虫RH株基因组中扩增出特异的 P30、ROP2 片段,克隆成功 pUC18 P30 ROP2 重组质粒;经亚克隆、筛选鉴定获得了 pcDNA3. 1 P30 ROP2重组表达质粒。 结论 成功构建了弓形虫 pUC18 P30 ROP2重组克隆质粒,亚克隆成功 pcDNA3.1 P30 ROP2真核表达重组质粒,为下一步DNA疫苗的研究奠定了基础。  相似文献   

5.
目的研究弓形虫复合抗原真核表达质粒pcDNA3.1-P30-P22-CTXA2/B在哺乳动物细胞中的表达情况。方法利用脂质体介导的转染技术,将真核表达质粒pcDNA3.1-P30-P22-CTXA2/B和空载体pcDNA3.1分别转染He-la细胞,400μg/mlG418加压筛选和200μg/mlG418维持筛选,获得稳定转染的Hela细胞。采用SDS-PAGE和West-ern-blot方法对复合基因P30-P22-CTXA2/B的表达产物进行鉴定。结果SDS-PAGE结果显示,重组质粒转染Hela细胞后的表达产物分子质量单位为64ku,Western-blot显示此蛋白条带能被抗P30抗体识别。结论构建的真核表达质粒pcDNA3.1-P30-P22-CTXA2/B能在哺乳动物细胞中成功表达插入基因所编码的融合蛋白,为进一步动物实验提供了实验依据。  相似文献   

6.
目的构建弓形虫核苷三磷酸水解酶-Ⅱ(NTPase-Ⅱ)基因真核表达质粒pcDNA3.1(+)-NTPase-Ⅱ并在COS-7细胞中进行瞬时表达。方法以pBAD-HisB-NTPase-Ⅱ质粒为模板,PCR扩增NTPase-Ⅱ目的基因,将其克隆到pcDNA3.1(+)真核表达载体中,双酶切及测序鉴定重组质粒。阳离子脂质体法转染COS-7细胞并经SDS-PAGE和Western Blot检测目的蛋白的表达。结果经鉴定,弓形虫pcDNA3.1(+)-NTPase-Ⅱ核酸疫苗质粒构建成功。以脂质体法转染COS-7细胞后,转染细胞可成功地表达弓形虫NTPase-Ⅱ蛋白。结论证实了弓形虫NTPase-Ⅱ蛋白能在真核细胞中表达,为该基因的核酸疫苗研究提供了实验依据。  相似文献   

7.
弓形虫棒状体蛋白2和膜表面蛋白1融合基因的克隆与表达   总被引:2,自引:1,他引:2  
目的 进行弓形虫棒状体蛋白2(ROP2)和膜表面蛋白1(P30)融合基因的克隆与表达,为弓形虫ROP2?鄄P30基因工程复合抗原的制备做准备。 方法 半套式PCR扩增编码弓形虫P30的基因片段,克隆至已构建成功的重组质粒pUC119/ROP2中,经PCR和酶切鉴定正确的重组质粒pUC119/ROP2-P30再以SacⅠ/HindⅢ双酶切克隆至表达载体pET28b上,鉴定正确的重组质粒pET28b/ROP2-P30转化大肠埃希菌表达菌株BL21-Codon Plus(DE3)-RIL,经异丙基-β-D-硫代半乳糖苷(IPTG)诱导表达。 结果 从弓形虫RH株基因组DNA中扩增出700 bp P30基因片段,成功构建重组质粒pET28b/ROP2-P30,该质粒经PCR和酶切鉴定,与预期结果一致,并在大肠埃希菌中高效表达,产生相对分子质量(Mr)约为 69 000的重组目的蛋白。 结论 弓形虫ROP2和P301融合基因克隆成功,并表达出预期的复合重组蛋白ROP2-P30。  相似文献   

8.
目的以弓形虫多表位抗原基因DNA疫苗免疫小鼠,评价该疫苗对弓形虫感染产生的免疫保护作用。方法利用PCR技术和亚克隆技术,构建弓形虫多表位抗原基因真核表达重组质粒pcDNA3-MAG,以质粒纯化试剂盒大量制备质粒,同时分别以载体质粒pcDNA3和PBS液为空质粒对照和空白对照,与lipofectin按5∶2的比例混合后,经股四头肌注射免疫小鼠,间隔两周,连续免疫3次,通过检测小鼠血清中特异的IgG抗体、IFN-γ和IL-4含量,评价疫苗产生的体液免疫和细胞免疫水平。以强毒型RH株弓形虫感染免疫小鼠,统计小鼠的存活时间,评价疫苗产生的免疫保护性。结果经双酶切及DNA测序鉴定,所构建的重组质粒pcDNA3-MAG读码框架正确。与免疫前及载体质粒和空白对照组相比,小鼠免疫后产生特异性IgG抗体,并引发高水平IFN-γ。攻虫后,实验组较对照组小鼠存活时间明显延长。结论弓形虫多表位抗原基因DNA能诱导BALB/c系小鼠产生特异的细胞免疫和体液免疫,对弓形虫感染可产生一定的免疫保护性。  相似文献   

9.
目的 构建弓形虫RH株pcDNA3.1-P30-ROP2真核表达重组质粒,为进一步表达及DNA疫苗的研制作准备。方法 用PCR技术从弓形虫RH分离株的基因组DNA中扩增编码P30基因片段和棒状体蛋白(ROP2)的基因片段,重组人puC18克隆载体,然后将pUC18-P30-ROP2中的P30-ROP2外源基因片段经酶切、连接等反应,亚克隆入pcDNA3.1真核表达载体,再经含氨苄青霉素的LB培养基筛选、酶切及PCR鉴定。结果 从弓形虫RH株基因组中扩增m特异的P30、ROP2片段,克隆成功pUC18-P30-ROP2重组质粒;经亚克隆、筛选鉴定获得了pcDNA3.1-P30-ROP2重组表达质粒。结论 成功构建了弓形虫puC18P30-ROP2重组克隆质粒,亚克隆成功pcDNA3.1-P30-ROP2直核表达重组质粒,为下一步DNA疫苗的研究奠定了基础。  相似文献   

10.
目的 研究刚地弓形虫RH株主要表面抗原1(P30)DNA疫苗诱导BALB/c小鼠的保护性免疫作用。方法 根据弓形虫P30基因的DNA序列设计一对引物,,将PCR扩增到的P30基因克隆到真核表达载体pcDNA.3.1中。大量制备pcDNA3. 1-P30和pcDNA3.1质粒DNA。将48只 BALB/c小鼠随机分成4组,每组1 2只,空质粒对照组(A组)第O、2、4周经小鼠股四头肌注射100 μg pcDNA3.1质粒DNA;重组P30抗原免疫组(B组)第0、2、4周每鼠经背部皮下多点注射50 μg rP30+福氏完全佐剂;P30 DNA疫苗免疫组(C组)第O、2、4周经小鼠股四头肌注射100 μg pcD- NA3. 1-P30质粒DNA;P30 DNA疫苗和重组P30抗原联合免疫组(D组)第O、2周经小鼠股四头肌洼射100 μg pcDNA3. 1-P30质粒DNA,第4周每鼠经背部皮下多点注射50 μg rP30+福氏完全佐剂。末次免疫4周后每鼠用100个弓形虫速殖子经腹腔感染,观察小鼠存活时间。结果 成功构建刚地弓形虫RH株P30DNA疫苗,动物保护性实验表明,虽然与对照组相比实验组小鼠的存活时间有一定的延长,但差异无显著性。结论 pcDNA3.1-P30 DNA疫苗具有弓形虫病候选DNA疫苗分子的潜力。  相似文献   

11.
目的用刚地弓形虫ROP2-P30复合重组蛋白疫苗免疫BALB/c小鼠观察对机体的影响,为研制安全有效的弓形虫疫苗奠定基础。方法PCR方法从刚地弓形虫基因组中扩增出ROP2和P30片段,将这两个片段分别亚克隆至pET-30a原核表达载体中,表达出ROP2-P30复合重组蛋白。用蛋白疫苗免疫BALB/c小鼠,ELISA检测免疫小鼠后体液中抗体和细胞因子的变化,观察攻击试验小鼠的的死亡率。结果ROP2-P30复合重组蛋白疫苗免疫BALB/c小鼠诱导机体产生大量的IgM、IgG抗体和IFN-γ、IL-2及IL-4细胞因子。攻击试验表明,复合重组蛋白免疫组和对照组相比,小鼠的存活时间明显延长。结论ROP2-P30复合重组蛋白免疫BALB/c小鼠诱导其产生高水平的体液和细胞免疫应答,该复合重组蛋白是抗刚地弓形虫感染的候选疫苗之一。  相似文献   

12.
目的 构建编码弓形虫RH株表面抗原P30、P22复合基因的真核表达重组质粒, 为进一步表达融合蛋白及研制核酸疫苗做准备。 方法 用弓形虫RH株腹腔接种小鼠,收集腹水,酚/氯仿法抽提弓形虫基因组 DNA;用 PCR技术从基因组DNA中扩增编码表面抗原 P30、P22 的基因片段,分别重组入 pMD18 T载体中。将 pMD18 T载体中的P30、P22基因片段分别酶切,定向克隆入 pUC18克隆载体中, pUC18 P30 P22 中的 P30 P22 片段经酶切、纯化后,亚克隆入 pcDNA3.1( )真核表达载体,用酶切、PCR及测序的方法对重组子进行鉴定。 结果 从弓形虫 RH株基因组DNA中扩增出特异的P30及P22片段;大小均与预测值相符;克隆 pUC18 P30 P22 重组质粒的酶切片段分别与 P30、P22基因大小一致;经亚克隆、筛选鉴定获得了 pcDNA3.1 P30 P22重组质粒,所测P30、P22基因序列与文献报道一致。结论 成功构建弓形虫 pUC18 P30 P22重组质粒和 pcDNA3.1 P30 P22 重组质粒,为研制弓形虫 DNA疫苗奠定了基础。  相似文献   

13.
目的 观察弓形虫主要表面抗原SAG1、SAG2 与霍乱毒素A2 /B亚基复合基因真核质粒经肌肉免疫小鼠所诱导的免疫反应。方法 将SAG1基因、SAG2 基因及CTXA2 /B基因定向连接插入真核表达质粒pcDNA3.1,经酶切及测序,获得pcDNA3.1 SAG1 SAG2 及pcDNA3.1 SAG1 SAG2 CTXA2 /B的重组子;碱裂解法大量制备经肌肉注射免疫BALB/c鼠,每只鼠经后腿肌肉注射质粒10 0 μg ,每2周免疫1次,共3次,以PcDNA3.1空质粒注射组及PBS组为对照,分别于每次免疫前断尾取血和免疫后4周取小鼠脾脏测定T淋巴细胞增殖活性及NK细胞活性,ELISA法测定IgG抗体。结果 免疫组小鼠的IgG抗体水平明显提高,NK细胞杀伤活性和T细胞增殖活性也明显增强。免疫鼠抗攻击感染的时间延长。结论 含有霍乱毒素的复合基因免疫小鼠后体液免疫和细胞免疫水平均有提高。  相似文献   

14.
目的观察弓形虫新基因WX、WX2的表位疫苗对小鼠的保护作用。方法将昆明小鼠分成5组,分别用pcDNA3-W2b、pcDNA3-W4a、pcDNA3-W2b4a质粒及pcDNA3和NS,肌注3次,每次间隔2周。免疫完成后ELISA法检测血清抗体水平,取脾细胞用流式细胞仪检测CD4 与CD8 淋巴细胞比值,PCR检测肌肉组织中重组质粒。免疫后第3周,小鼠经腹腔注射弓形虫速殖子500个,观察发病情况和存活时间。30d后仍存活的小鼠,取组织匀浆后进行小鼠盲传。结果免疫后第3周,pcDNA3-W2b组小鼠血清抗体水平显著高于pcDNA3和NS对照组(P<0.05);用PCR法从pcDNA3-W2b、pcDNA3-W4a和pcDNA3-W2b4a质粒组小鼠肌肉组织中成功检测到各表位疫苗质粒,且各组小鼠脾脏CD4 与CD8 T淋巴细胞比值显著低于pcDNA3组和NS组(P<0.05)。pcDNA3-W2b、pcDNA3-W2b4a组小鼠存活时间与pcDNA3组及NS组比较明显延长(P<0.05)。结论弓形虫新基因WX、WX2表位疫苗能够诱导小鼠产生抗弓形虫感染保护性免疫,提示DNA类表位疫苗的研制可作为弓形虫疫苗研究的策略之一。  相似文献   

15.
目的观察重组质粒pcDNA3HBsAgGRA1DNA接种诱导的保护性免疫应答。方法质粒DNA免疫BALB/c小鼠;ELISA法检测GRA1、HBsAg抗体及亚类水平;提取各免疫组小鼠肌肉组织DNA进行PCR检测;弓形虫RH强毒株攻击感染各免疫组小鼠。结果经pcDNA3HBsAgGRA1免疫组小鼠产生抗GRA1和HBsAg抗体,且抗GRA1的抗体水平明显高于GRA1单独和GRA1与HBsAg混合免疫组。弓形虫RH强毒株攻击感染pcDNA3HBsAgGRA1免疫组小鼠,其存活时间明显长于其他各组,结果提示HBsAg可能起免疫佐剂作用。结论将GRA1与HBsAg融合明显增强了GRA1的免疫原性和保护性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号