首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The afferent innervation of the straplike muscles of the infrahyoid region were investigated in two ways. The morphology of spindles and counts of tendon organs were investigated by the gold chloride technique in ten muscles. Spindle counts were made in forty pairs of thyrohyoid and infrahyoid muscles. De-efferenting of the nerves to these muscles was done in three cats and the calibre spectra of the afferent innervation investigated. These were compared with the total counts of fibres in intact nerves.2. In the thyrohyoid, spindles are frequently absent. No tendon organs were seen. In the large infrahyoid (combined sternohyoid and sternothyroid), spindle counts varied from 0 to 20 and the mean spindle count per gram of muscle was 3.5. A maximum of five tendon organs were seen in the muscle. Both spindle and tendon organ counts are low when compared with a limb muscle of similar weight and size.3. In the infrahyoid muscle complex spindles were about equal in number to simple spindles.4. Counts of spindles in the infrahyoid muscle in families of three or more siblings suggest that some families of kittens tend to have higher spindle counts than other families.5. The afferent innervation of the two muscles varied between 21 and 42% of the total fibre population and the fibre diameter spectrum is in keeping with the low counts of encapsulated endings.  相似文献   

2.
The topography of muscle spindles and Golgi tendon organs in the rotator cuff and surrounding shoulder muscles of a small laboratory marsupial (monodelphis domestica) were studied using light microscopy of serial sections. The shoulder joint of monodelphis has a large degree of freedom of movement allowing this animal to use the upper extremities for a wide range of activities like climbing and manipulating food. Thus, similar to the situation in man the shoulder joint is mainly secured by muscles. Silver stained serial paraffin sections were examined under the light microscope and the distribution of muscle spindles and Golgi tendon organs was reconstructed using three-dimensional image processing. In the two animals examined 113 and 131 muscle spindles respectively were found within the 4 rotator cuff muscles. In addition, 76 and 40 Golgi tendon organs respectively were seen at the musculo-tendinous junctions of these muscles preferentially close to the insertion at the humerus head. Also the surrounding shoulder muscles contain both muscle spindles and Golgi tendon organs in large numbers, but the ratio of Golgi tendon organs per muscle spindle appears to be lower. Number and localization of muscle spindles and Golgi tendon organs suggest, that these receptors are important for both reflex control of shoulder muscle tone as well as monitoring of static position and movement in the shoulder joint.  相似文献   

3.
Golgi tendon organs and muscle spindles were identified in serial sections of the temporalis and masseter muscles of kitten and cats. In the kitten, the position of each receptor was plotted in three-dimensional reconstitutions of the muscles. Seventy-four spindles and twenty tendon organs were identified in the temporalis, all in the region of the insertion into the mandible. Thirty-four spindles and six organs were located at the origin of the masseter muscle. The receptors were in deep portions of both muscles. All tendon organs were found to form complexes with one or more spindles.  相似文献   

4.
It has recently been reported (Gregory et al., J. Physiol., 331:367-383, 1982) that cutting a muscle nerve and letting it grow back into the muscle or cross-uniting the muscle with a foreign nerve results in major disruption of the normal response patterns of muscle spindles and tendon organs. Here we report observations on the structure of muscle receptors in cross-reinnervated and self-reinnervated soleus muscles in an attempt to detect abnormalities that might account for their disturbed function. Eight soleus muscles were reinnervated with the extensor digitorum longus nerve for periods up to 449 days and two were self-reinnervated. Following the physiological investigation, the muscle was fixed and stained according to the method of Barker and Ip (J. Physiol., 69:73P-74P, 1963). Spindles and tendon organs were teased from the muscle and photographed. In one cross-reinnervated muscle an attempt was made to isolate all receptors. About two-thirds of the normal number of spindles and tendon organs were found. Three categories of receptor were identified: normal, abnormal, and those having no visible nerve endings. There appeared to be little difference in degree of abnormality of receptors in self- and cross-reinnervated muscles. Of the 180 spindles, 3% were normal, 43% had no visible endings, and 54% had abnormal endings. Of 80 tendon organs, 38% were normally innervated, 33% were without visible innervation, and 29% had abnormal endings. We conclude that following long-term cross-reinnervation and self-reinnervation of soleus there is extensive disruption of the normal innervation pattern of both spindles and tendon organs which could account for their functional abnormalities.  相似文献   

5.
Muscle spindles in 2 synergistic avian skeletal muscles, the anterior (ALD) and posterior (PLD) latissimus dorsi, were studied by light and electron microscopy to determine whether morphological or quantitative differences existed between these sensory receptors. Differences were found in the density, distribution and location of muscle spindles in the 2 muscles. They also differed with respect to the morphology of their capsules and intracapsular components. The slow ALD possessed muscle spindles which were evenly distributed throughout the muscle, whereas in the fast PLD they were mainly concentrated around the single nerve entry point into the muscle. The muscle spindle index (number of spindles per gram wet muscle weight) in the ALD was more than double that of its fast-twitch PLD counterpart (130.5±2.0 vs 55.4±2.0 respectively, n=6). The number of intrafusal fibres per spindle ranged from 1 to 8 in the ALD and 2 to 9 in the PLD, and their diameters varied from 5.0 to 16.0 μm and 4.5 to 18.5 μm, respectively. Large diameter intrafusal fibres were more frequently encountered in spindles of the PLD. Unique to the ALD was the presence of monofibre muscle spindles (12.7% of total spindles observed in ALD) which contained a solitary intrafusal fibre. In muscle spindles of both the ALD and PLD, sensory nerve endings terminated in a spiral fashion on the intrafusal fibres in their equatorial regions. Motor innervation was restricted to either juxtaequatorial or polar regions of the intrafusal fibres. Outer capsule components were extensive in polar and juxtaequatorial regions of ALD spindles, whereas inner capsule cells of PLD spindles were more numerous in juxtaequatorial and equatorial regions. Overall, muscle spindles of the PLD exhibited greater complexity with respect to the number of intrafusal fibres per spindle, range of intrafusal fibre diameters and development of their inner capsules. It is postulated that the differences in muscle spindle density and structure observed in this study reflect the function of the muscles in which they reside.  相似文献   

6.
The encapsulated sensory endings of mammalian skeletal muscles are all mechanoreceptors. At the most basic functional level they serve as length sensors (muscle spindle primary and secondary endings), tension sensors (tendon organs), and pressure or vibration sensors (lamellated corpuscles). At a higher functional level, the differing roles of individual muscles in, for example, postural adjustment and locomotion might be expected to be reflected in characteristic complements of the various end‐organs, their sensory endings and afferent nerve fibres. This has previously been demonstrated with regard to the number of muscle‐spindle capsules; however, information on the other types of end‐organ, as well as the complements of primary and secondary endings of the spindles themselves, is sporadic and inconclusive regarding their comparative provision in different muscles. Our general conclusion that muscle‐specific variability in the provision of encapsulated sensory endings does exist demonstrates the necessity for the acquisition of more data of this type if we are to understand the underlying adaptive relationships between motor control and the structure and function of skeletal muscle. The present quantitative and comparative analysis of encapsulated muscle afferents is based on teased, silver‐impregnated preparations. We begin with a statistical analysis of the number and distribution of muscle‐spindle afferents in hind‐limb muscles of the cat, particularly tenuissimus. We show that: (i) taking account of the necessity for at least one primary ending to be present, muscles differ significantly in the mean number of additional afferents per spindle capsule; (ii) the frequency of occurrence of spindles with different sensory complements is consistent with a stochastic, rather than deterministic, developmental process; and (iii) notwithstanding the previous finding, there is a differential distribution of spindles intramuscularly such that the more complex ones tend to be located closer to the main divisions of the nerve. Next, based on a sample of tendon organs from several hind‐foot muscles of the cat, we demonstrate the existence in at least a large proportion of tendon organs of a structural substrate to account for multiple spike‐initiation sites and pacemaker switching, namely the distribution of sensory terminals supplied by the different first‐order branches of the Ib afferent to separate, parallel, tendinous compartments of individual tendon organs. We then show that the numbers of spindles, tendon organs and paciniform corpuscles vary independently in a sample of (mainly) hind‐foot muscles of the cat. Grouping muscles by anatomical region in the cat indicated the existence of a gradual proximo‐distal decline in the overall average size of the afferent complement of muscle spindles from axial through hind limb to intrinsic foot muscles, but with considerable muscle‐specific variability. Finally, we present some comparative data on muscle‐spindle afferent complements of rat, rabbit and guinea pig, one particularly notable feature being the high incidence of multiple primary endings in the rat.  相似文献   

7.
8.
During anatomy practice in 1999 at Kumamoto University School of Medicine, the anomalous lumbrical muscles originating in the forearm were observed in both arms of a cadaver. These muscles, originating from the intermediate tendon of the deep layer of the flexor digitorum superficialis for the index finger (FDS-II), passed through the carpal tunnel to join the insertion of the first lumbrical muscle, and formed a muscle belly near the origin in the left and at the insertion in the right. The left anomalous muscle was innervated by a branch of the median nerve just proximal to the carpal tunnel. The right one received a twig from the nerve to the first lumbrical muscle. Tracing the nerve fibers by peeling off the epi- and perineurium clarified that the nerve fibers supplying the left anomalous muscle formed a common bundle with the fibers to the first lumbrical muscle. Therefore, these anomalous muscles are considered to be the accessory lumbrical muscles arising from the forearm. The three accessory lumbricalis, including one case reported by Yamada (1986), received branches which had slightly different origins from proximally (nerve to the distal belly of FDS-II) to distally (nerve to the first lumbricalis). Accordingly the position of the muscle belly shifted distally. The occurrence of these unusual accessory lumbrical muscles indicates that the distal belly of FDS-III and the first lumbricalis are derived from a common muscle origin and presents an important clue to the phylogenetic origin of the flexor digitorum superficialis.  相似文献   

9.
10.
Motor nerve supplies to 15 poles of rat lumbrical spindle were reconstructed from serial, 1-micron transverse sections of muscle embedded in resin. Neural and muscular elements associated with the modulation of static sensitivity of afferents were deficient in these spindles relative to cat tenuissimus and rat soleus spindles. Rat lumbrical spindles contained fewer static fusimotor axons, fewer static chain intrafusal fibers, fewer motor-innervated static bag2 and chain fibers and fewer secondary afferents. The sparsity of static elements in spindles of the rat lumbrical muscle may correlate with the distal location or with the delicate motor tasks performed by the muscle.  相似文献   

11.
Forty-two complete spindle poles of cat superficial lumbrical muscles were analyzed with particular regard to the length and the diameter of intrafusal fiber types. Poles were reconstructed from serial transverse sections of fresh-frozen muscles. The staining module, which was repeated throughout the whole muscle, comprised sections treated for glycogen detection and sections treated for detecting myofibrillar ATPase activity after preincubation at three different pH's (see METHODS). The identification of intrafusal fiber types was essentially based on the ATPase activity of the B region of the intrafusal fibers. Long-chain fibers, i.e., chain fibers that have at least one pole that extends by more than one millimeter beyond the end of the spindle capsule (6), were very commonly observed. Of 42 spindle poles analyzed, 30 (71%) contained at least one long-chain fiber (one in 17 spindle poles, 2 in 11 poles, and 3 in 2 poles). Of 246 poles of chain fibers, 45 (18%) were "long". In four spindles, in which both poles could be completely examined, 10 long-chain fibers were observed. In eight of these, only one pole was long; the opposite pole ended either intracapsularly or at a short distance outside the capsule. Since long-chain fiber poles, presently considered to be among the effectors of static skeletofusimotor (beta) axons, are present in a large proportion of muscle spindles of lumbrical muscles, it would be of particular interest to reevaluate the beta-supply of these muscles by physiological methods.  相似文献   

12.
Summary The properties of some receptors with afferent fibres in the cat's posterior knee joint nerve have been examined, especially those discharging tonically with the joint in intermediate positions between full flexion and extension. Some of these receptors behave like muscle spindles, and respond to manoeuvres which stretch popliteus muscle. Both in single unit and whole nerve recordings their discharge pauses during a popliteus twitch, and can be strikingly augmented by tetanic stimulation of a number of popliteus fusimotor fibres isolated from ventral root filaments. The action of succinylcholine on these receptors closely resembles its effect on popliteus spindle units with fibres sited normally in the popliteus nerve. Other units with properties suggesting origin from popliteus tendon organs were also observed; their fibres and those of the spindle units conducted at Group I velocity. It is concluded that some afferent fibres from popliteus spindles and possibly tendon organs commonly pursue an aberrant course in the posterior articular nerve of the knee joint.  相似文献   

13.
Summary Extracellular recording was made from 77 primary afferent fibres, 106 cells in the external cuneate nucleus, and 60 cells in the main cuneate nucleus, all activated by slowly adapting muscle stretch receptors. The nature of the muscle receptors responsible for the activation was determined by various types of receptor stimulation.Primary group I afferents from muscle spindles and tendon organs in distal forelimb muscles showed complete overlap of conduction velocities and thresholds to electrical stimulation. Both types of group I afferents as well as group II muscle spindle afferents were shown to ascend through the dorsal funiculus to the level of the cuneate nuclei.Three groups of cells were identified in the external cuneate nucleus, activated by group I muscle spindle afferents, tendon organ afferents and group II muscle spindle afferents, respectively.Almost all group I activated cells in the main cuneate nucleus, including all 34 cells identified as cuneo-thalamic relay cells, received their afferent input from muscle spindle afferents. Three cells were activated by tendon organ afferents.  相似文献   

14.
Announcement     
The lumbrical muscle is clearly one of several possible extensors of the interphalangeal joints. With an origin on the flexor digitorum profundus tendon it is credited with unloading the elastic tension across the interphalangeal joints and thereby facilitating their extension. Its role at the metacarpophalangeal joint is not a matter of universal aggreement. Attempts to simulate its action with weights over pulleys have not clarified this role, since true simulation would require the development of a means of applying force along the course of the lumbrical without pre-determining which end would move. Such a system is herein described; it uses a Bowden cable, which is commonly used to activate the brakes of a bicycle. After constructing length-tension curves of the profundus muscle in four fresh cadavers prior to the onset of rigor mortis, the interaction of realistic lumbrical loads with profundus elastic tension was studied. By contraction a lumbrical muscle adds a small but significant flexor force at the metacarpophalangeal joint, and thereby it is also capable of contributing to radial deviation and possibly rotation. As it runs from a flexor tendon to an extensor tendon and is endowed with a great many muscle spindles the lumbrical could play a part in the control of finger movement by monitoring the rate of hand closing during grasp.  相似文献   

15.
In the anesthetized cat we have analyzed the changes in primary afferent depolarization (PAD) evoked in single muscle spindle and tendon organ afferents at different times after their axons were crushed in the periphery and allowed to regenerate. Medial gastrocnemius (MG) afferents were depolarized by stimulation of group I fibers in the posterior biceps and semitendinosus nerve (PBSt), as soon as 2 weeks after crushing their axons in the periphery, in some cases before they could be activated by physiological stimulation of muscle receptors. Two to twelve weeks after crushing the MG nerve, stimulation of the PBSt produced PAD in all MG fibers reconnected with presumed muscle spindles and tendon organs. The mean amplitude of the PAD elicited in afferent fibers reconnected with muscle spindles was increased relative to values obtained from Ia fibers in intact (control) preparations, but remained essentially the same in fibers reconnected with tendon organs. Quite unexpectedly, we found that, between 2 and 12 weeks after crushing the MG nerve, stimulation of the bulbar reticular formation (RF) produced PAD in most afferent fibers reconnected with muscle spindle afferents. The mean amplitude of the PAD elicited in these fibers was significantly increased relative to the PAD elicited in muscle spindle afferents from intact preparations (from 0.08–0.4 to 0.47-0.34 mV). A substantial recovery was observed between 6 months and 2.5 years after the peripheral nerve injury. Stimulation of the sural (SU) nerve produced practically no PAD in muscle spindles from intact preparations, and this remained so in those afferents reconnected with muscle spindles impaled 2–12 weeks after the nerve crush. The mean amplitude of the PAD produced in afferent fibers reconnected with tendon organs by stimulation of the PBSt nerve and of the bulbar RF remained essentially the same as the PAD elicited in intact afferents. However, SU nerve stimulation produced a larger PAD in afferents reconnected with tendon organs 2–12 weeks after the nerve crush (mean PAD changed from 0.05-0.04 to 0.32-0.17 mV). The results obtained indicate that the PAD patterns of the afferent fibers reconnected with muscle spindle and tendon organ afferents are changed after crushing their axons in the periphery: stimulation of the bulbar RF appears to produce larger PAD in fibers reconnected with muscle spindles, and stimulation of cutaneous afferents produces larger PAD in fibers reconnected with tendon organs. It is suggested that these alterations in the patterns of PAD of muscle afferents result from central changes in the balance of excitatory and inhibitory influences acting on the segmental pathways mediating the PAD. Although the functional role of these changes has not been established, they may reflect compensatory changes aimed to adjust information arising from damaged afferents.  相似文献   

16.
The lumbrical muscle is clearly one of several possible extensors of the interphalangeal joints. With an origin on the flexor digitorum profundus tendon it is credited with unloading the elastic tension across the interphalangeal joints and thereby facilitating their extension. Its role at the metacarpophalangeal joint is not a matter of universal agreement. Attempts to simulate its action with weights over pulleys have not clarified this role, since true simulation would require the development of a means of applying force along the course of the lumbrical without pre-determining which end would move. Such a system is herein described; it uses a Bowden cable, which is commonly used to activate the brakes of a bicycle. After constructing length-tension curves of the profundus muscle in four fresh cadavers prior to the onset of rigor mortis, the interaction of realistic lumbrical loads with profundus elastic tension was studied. By contraction a lumbrical muscle adds a small but significant flexor force at the metacarpophalangeal joint, and thereby it is also capable of contributing to radial deviation and possibly rotation. As it runs from a flexor tendon to an extensor tendon and is endowed with a great many muscle spindles, the lumbrical could play a part in the control of finger movement by monitoring the rate of hand closing during grasp.  相似文献   

17.
Summary The ultrastructure of the muscle spindles has been studied in human lumbrical muscles. The findings have been compared with the morphology of muscle spindles of rat and sheep examined with light and electron microscopy. The study is based on cross and longitudinal sections of the entire muscle spindle obtained by dissection. The different components of the spindle are described with special reference to the nuclear bag and nuclear chain fibres. These nuclei have been examined in human adult and newborn material and compared to the animal ones. ADN measurements revealed that although there are morphological differences between the two kinds of nuclei in human newborn spindles, the amount of ADN is the same as well in the nuclear bag as in the nuclear chain nuclei. Special attention is also given to the sensory and motor endings in the muscle spindles and to the presence of Pacinian corpuscules in these receptors. Finally two kinds of leptomeric organelles are described in human material.
  相似文献   

18.
1. Response patterns of 116 muscle stretch receptor units isolated from the sciatic nerve of the duck have been studied, and the units classified as muscle spindles and tendon organs.2. Units classified as spindles had low threshold tensions for maintained discharge. From conduction-velocity measurements, the calculated fibrediameter spectrum appears to be unimodal, ranging from 5 to 11-12 mum.3. Spindle units showed essentially ;in parallel' behaviour, though increase in initial tension often led to the appearance of ;in series' responses. Although apparent ;alpha-excitation' during maximal tetanic contractions was a common occurrence, no direct evidence of alpha-innervation of spindles was obtained.4. Evidence has been obtained for motor innervation of spindles by fibres distinct from those constituting the alpha supply to extrafusal muscle fibres. Afferent response attributable to this fusimotor innervation is influenced by initial tension and stimulus-frequency. Electrical thresholds for fusimotor responses ranged from 1.1 to 4.03 times alpha maximum.5. Tendon organ units consistently showed ;in series' response patterns during muscle contractions. They were not influenced by stimulation of the high-threshold efferent nerve supply to the muscles.6. Threshold tensions required for maintained discharge in tendon organ units from m. gastrocnemius pars lateralis were characteristically high; however, many units from m. flexor perforans et perforatus d. 3 had unexpectedly low mechanical thresholds. The calculated fibre-diameter spectrum for tendon organ units is unimodal, ranging from 4-7 to 10-11 mum. As in mammals, they contribute to the coarse-fibre component in the muscle nerve and include the fastest fibres present.  相似文献   

19.
Muscle spindles and extrafusal fibers in the tenuissimus muscle of mature golden Syrian hamsters were studied morphologically and quantitatively using several light microscopic techniques. Muscle spindles were identified in serial-transvere frozen-sections of whole muscles stained with hematoxylin and eosin. Five tenuissimus muscles were examined from origin to insertion, and the locations of individual receptors were plotted in camera-lucida reconstructions. Spindles were found in proximity to the main neurovascular bundle in the central core of each muscle. A range of 16–20 receptors was noted per muscle. The mean muscle spindle index (the total number of spindles per gram of muscle weight) was 503 and the average spindle length was 7.5 mm. Oxidative enzyme and myosin adenosine-triphosphatase (ATPase) staining profiles were also evaluated in the intrafusal and extrafusal fibers in each muscle. Even numbers of type I and type IIA extrafusal fibers were distributed homogeneously throughout all muscle cross-sections. Histochemical staining patterns varied along the lengths of the three intrafusal fiber types. Nuclear chain fibers possessed staining properties similar to the type IIA extrafusal fibers and exhibited no regional variations. Bag1 fibers displayed staining variability, particularly when treated for myosin ATPase under acid preincubation conditions. Some spindles were isolated under darkfield illumination and then either treated with 7-nitrobenz-2-oxa-1, 3-diazole (NBD)-phallacidin to detect filamentous actin by fluorescence microscopy, or prepared for conventional scanning electron microscopy (SEM). By fluorescence microscopy, a registered actin banding-pattern was observed in the sarcomeres of the intrafusal fibers, and variations in the intensity of banding were noted amongst different fibers. SEM revealed punctaie sensory nerve endings that adhered intimately to the surfaces of underlying intrafusal fibers in the equatorial and juxtaequatorial regions. By transmission electron microscopy (TEM) these endings appeared crescent-shaped and were enveloped by external laminae. Each profile contained numerous mitochondria and cytoskeletal organelles. The high spindle density observed in this muscle suggests that the hamster tenuissimus may function in hindlimb proprioception.  相似文献   

20.
Muscle spindles and extrafusal fibers in the tenuissimus muscle of mature golden Syrian hamsters were studied morphologically and quantitatively using several light microscopic techniques. Muscle spindles were identified in serial-transverse frozen-sections of whole muscles stained with hematoxylin and eosin. Five tenuissimus muscles were examined from origin to insertion, and the locations of individual receptors were plotted in camera-lucida reconstructions. Spindles were found in proximity to the main neurovascular bundle in the central core of each muscle. A range of 16-20 receptors was noted per muscle. The mean muscle spindle index (the total number of spindles per gram of muscle weight) was 503 and the average spindle length was 7.5 mm. Oxidative enzyme and myosin adenosine-triphosphatase (ATPase) staining profiles were also evaluated in the intrafusal and extrafusal fibers in each muscle. Even numbers of type I and type IIA extrafusal fibers were distributed homogeneously throughout all muscle cross-sections. Histochemical staining patterns varied along the lengths of the three intrafusal fiber types. Nuclear chain fibers possessed staining properties similar to the type IIA extrafusal fibers and exhibited no regional variations. Bag1 fibers displayed staining variability, particularly when treated for myosin ATPase under acid preincubation conditions. Some spindles were isolated under darkfield illumination and then either treated with 7-nitrobenz-2-oxa-1,3-diazole (NBD)-phallacidin to detect filamentous actin by fluorescence microscopy, or prepared for conventional scanning electron microscopy (SEM). By fluorescence microscopy, a registered actin banding-pattern was observed in the sarcomeres of the intrafusal fibers, and variations in the intensity of banding were noted amongst different fibers. SEM revealed punctate sensory nerve endings that adhered intimately to the surfaces of underlying intrafusal fibers in the equatorial and juxtaequatorial regions. By transmission electron microscopy (TEM) these endings appeared crescent-shaped and were enveloped by external laminae. Each profile contained numerous mitochondria and cytoskeletal organelles. The high spindle density observed in this muscle suggests that the hamster tenuissimus may function in hindlimb proprioception.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号