首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
 目的:初步探讨远志皂苷元(senegenin, Sen)对抗缺氧/复氧(hypoxia/reoxygenation, H/R)诱导大鼠原代皮层神经元凋亡的作用及机制。方法:提取原代大脑皮层神经元,培养至第6 d,进行相应的实验处理,分为正常对照组(control组)、模型组(H/R组)、Sen保护处理组(Sen+H/R组)和Sen处理组(Sen组)。流式细胞术检测各组凋亡率。采用Western blotting检测JNK、p-JNK、c-Jun、p-c-Jun、Bcl-2和Bax的表达变化。结果:H/R组与control组比较,细胞凋亡率显著升高(P<0.05);而H/R+Sen组细胞凋亡率显著低于H/R组(P<0.05),提示Sen可对抗H/R诱导的皮层神经元凋亡,模型构建成功;Western blotting结果显示Sen可显著增强H/R模型中JNK和c-Jun蛋白表达,抑制其磷酸化(P<0.05),上调Bcl-2蛋白表达并抑制Bax蛋白表达(P<0.05)。结论:Sen抗H/R诱导神经细胞凋亡,发挥保护作用的可能机制是通过上调JNK和c-Jun蛋白表达,并抑制其磷酸化,进而上调Bcl-2表达并抑制Bax表达等来实现的。  相似文献   

2.
A primitive protozoan parasite Trichomonas vaginalis selectively activates the signal transduction pathways in macrophages (RAW264.7). This study evaluated the correlation of these signaling pathways and T. vaginalis-induced cell apoptosis. In macrophages infected with T. vaginalis, apoptosis was assessed on the basis of DNA fragmentation on agarose gel electrophoresis. Infection of macrophages with T. vaginalis induced tyrosine phosphorylation of several proteins. Infected cells with T. vaginalis were shown to associate with phosphorylation of the extracellular signal-regulated (ERK)1/2 kinase, p38, c-Jun N-terminal kinase (JNK) mitogen-activated protein (MAP) kinases on Western blot analysis. The present finding also demonstrated a link between the ERK1/2, JNK and p38 apoptotic pathways that was modulated by T. vaginalis infection.  相似文献   

3.
Shi L  Gong S  Yuan Z  Ma C  Liu Y  Wang C  Li W  Pi R  Huang S  Chen R  Han Y  Mao Z  Li M 《Neuroscience letters》2005,375(1):7-12
Bcl-2-interacting mediator of cell death (Bim), a proapoptotic BH3-only protein, plays a critical role in neuronal apoptosis. Cerebellar granule neurons (CGNs) depend on activity for their survival and undergo apoptosis when deprived of depolarizing concentration of KCl. While it has been proposed that the activation of c-Jun NH2-terminal protein kinase (JNK)/c-Jun pathway contributes to the upregulation of bim gene in neurons subjected to survival signaling withdrawal, here we show that neither inhibition of JNK activity nor expression of dominant-negative c-Jun suppresses the expression of bim gene induced by activity deprivation in CGNs. We conclude that induction of bim gene is independent of the activation of JNK/c-Jun signaling pathway by activity deprivation during apoptosis of CGNs.  相似文献   

4.
Xie Y  Liu Y  Ma C  Yuan Z  Wang W  Zhu Z  Gao G  Liu X  Yuan H  Chen R  Huang S  Wang X  Zhu X  Wang X  Mao Z  Li M 《Neuroscience letters》2004,367(3):355-359
Previous studies have demonstrated that c-Jun NH2-terminal protein kinase (JNK) plays a crucial role in neuronal apoptosis. Here, we report that indirubin-3'-oxime, a known effective inhibitor of cyclin-dependent kinases (CDKs) and glycogen synthase kinase 3-beta (GSK-3beta), has a significant inhibitory effect on JNK. Kinase assay showed that indirubin-3'-oxime directly inhibited the activity of all three isoforms of JNK (JNK1, and JNK3) in vitro, with half inhibition dose (IC50) of 0.8 microM, 1.4 microM, and 1.0 microM, respectively. In cerebellar granule neurons (CGNs), indirubin-3'-oxime blocked c-Jun phosphorylation induced by potassium withdrawal and prevented CGNs from apoptosis in a dose dependent manner. However, inhibitors of CDKs and GSK-3beta were ineffective in reducing c-Jun phosphorylation both in vitro and in vivo, suggesting that indirubin-3'-oxime prevents c-Jun phosphorylation independent of its inhibition on CDKs and GSK-3beta. Our studies give further supports for JNK-targeting strategy in preventing neuronal apoptosis.  相似文献   

5.
6.
7.
As an opportunistic bacterial pathogen, Pseudomonas aeruginosa mainly affects immunocompromised individuals as well as patients with cystic fibrosis. In a previous study, we showed that ExoS of P. aeruginosa, when injected into host cells through a type III secretion apparatus, functions as an effector molecule to trigger apoptosis in various tissue culture cells. Here, we show that injection of the ExoS into HeLa cells activates c-Jun NH(2)-terminal kinase (JNK) phosphorylation while shutting down ERK1/2 and p38 phosphorylation. Inhibiting JNK activation by expression of a dominant negative JNK1 or with a specific JNK inhibitor abolishes ExoS-triggered apoptosis, demonstrating the requirement for JNK-mediated signaling. Following JNK phosphorylation, cytochrome c is released into the cytosol, leading to the activation of caspase 9 and eventually caspase 3. Although c-Jun phosphorylation is also observed as a result of JNK activation, ongoing host protein synthesis is not essential for the apoptotic induction, suggesting that c-Jun- or other AP-1-driven activation of gene expression is dispensable in this process. Therefore, ExoS has opposing effects on different cellular pathways that regulate apoptosis: it shuts down host cell survival signal pathways by inhibiting ERK1/2 and p38 activation, and it activates proapoptotic pathways through activation of JNK1/2 leading ultimately to cytochrome c release and activation of caspases. These results highlight the modulation of host cell signaling by the type III secretion system during interaction between P. aeruginosa and host cells.  相似文献   

8.
9.
缺氧复氧诱导大鼠大脑皮层神经细胞凋亡的形态学研究   总被引:2,自引:0,他引:2  
目的  应用原代分离培养的Wistar胎鼠大脑皮层神经细胞缺氧复氧模型,探讨缺氧复氧诱导神经细胞凋亡的形态学变化。方法  采用光镜、透射电镜观察并用原位末端标记法(TUNEL)检测DNA断裂。结果  缺氧复氧可使胎鼠大脑皮层神经细胞发生凋亡,凋亡的细胞皱缩,细胞核染色质凝集、边聚呈半月形等多种形式形成核碎块,内质网扩张,线粒体肿长,其它细胞器未见明显变化。结论  凋亡参与了缺氧复氧诱导大脑皮层神经细胞死亡过程。  相似文献   

10.
p38 mitogen-activated protein kinases (MAPKs), together with extracellular signal-regulated kinases (ERKs) and c-Jun N-terminal kinases (JNKs), constitute the MAPK family. Multiple intracellular signalling pathways that converge on MAPKs exist in all eukaryotic cells and play pivotal roles in a wide variety of cellular functions. p38 MAPKs and JNKs, also termed stress-activated protein kinases (SAPKs), are preferentially activated by various cytotoxic stresses and cytokines and appear to be potent regulators of stress-induced apoptosis. Whereas JNKs have been shown to play pivotal roles in the regulation of neuronal apoptosis, the role of p38 MAPKs in the nervous system is poorly understood. However, accumulating evidence from mammalian cell culture systems and the strong genetic tool C. elegans suggests that neuronal p38 signalling has diverse functions beyond the control of cell death and survival. This review focuses on possible roles for the p38 pathway in the nervous system, with principal emphasis placed on the roles in neuronal cell fate decision and function.  相似文献   

11.
Tau phosphorylation was examined in argyrophilic grain disease (AGD) by using the phosphospecific tau antibodies Thr181, Ser202, Ser214, Ser 396 and Ser422, and antibodies to non-phosphorylated and phosphorylated mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinases (ERK), stress-activated kinase (SAPK), c-Jun N-terminal kinase (JNK), p38 kinase (p-38), alpha-calcium/calmodulin-dependent kinase II (alphaCaM kinase II), and glycogen synthase kinase-3 (GSK-3), all of which regulate phosphorylation at specific sites of tau. This is the first study in which the role of protein kinases in tau phosphorylation has been examined in AGD. Hyperphosphorylated tau accumulated in grains and pre-tangles in the hippocampus, dentate gyrus, entorhinal and trans-entorhinal cortices, and amygdala in all cases. Ballooned neurons in the amygdala, entorhinal, insular and cingulate cortex, and claustrum contained alphaB-crystallyn and phosphorylated neurofilament epitopes. Some astrocytes and scattered oligodendrocytes containing coiled bodies were recognized with anti-tau antibodies. A few tangles were observed in the entorhinal cortex and hippocampus corresponding to Alzheimer's disease (AD) stages I-III of Braak and Braak. None of the present cases was associated with progressive supranuclear palsy or with alpha-synuclein pathology. Two bands of phospho-tau of 64 and 68 kDa were observed in Western blots of sarkosyl-insoluble fractions enriched with abnormal filaments in AGD, a pattern that contrasts with the 4-band pattern obtained in AD. No modifications in the expression of non-phosphorylated MEK-1, ERK2 and GSK-3alpha/beta, as revealed by immunohistochemistry, were seen in AGD, but sarkosyl-insoluble fractions were particularly enriched in JNK-1 and alphaCaM kinase II. Increased expression of the phosphorylated (P) forms of MAPK/ERK, SAPK/JNK, p38 and GSK-3beta was found in grains and tau-containing cells in AGD. MAPK/ERK-P immunoreactivity was observed in pre-tangles and, diffusely, in the cytoplasm of ballooned neurons, but not in grains. Strong SAPK/JNK-P and P38-P, and moderate GSK-3b-P immunoreactivities selectively occured in grains, in neurons with pre-tangles and in the peripheral region of the cytoplasm of ballooned neurons. MAPK/ERK-P, SAPK/JNK-P, p38-P and GSK-3beta-P were expressed in tau-containing astrocytes and in oligodendrocytes with coiled bodies. Western blots revealed kinase expression in sarkosyl-insoluble fractions but none of the phospho-kinase antibodies recognized hyper-phosphorylated tau protein. These findings indicate complex, specific profiles of tau phosphorylation and concomitant activation of precise kinases that have the capacity to phosphorylate tau at specific sites in AGD. These kinases co-localize abnormal tau in selected structures and cells, including neurons with pre-tangles, ballooned neurons, astrocytes and oligodendrocytes. Most of these kinases are involved in cell death and cell survival in certain experimental paradigms. However, double-labeling studies with the method of in situ end-labeling of nuclear DNA fragmentation and cleaved (active) caspase-3 immunohistochemistry show no expression of apoptosis and death markers in cells bearing phosphorylated kinases.  相似文献   

12.
The present study investigated the activation of c-Jun NH2-terminal kinases (JNK), p38 mitogen-activated protein kinases (p38) and extracellular signal-regulated kinases (ERK) in the gerbil hippocampus by immunohistochemistry to clarify the role of these kinases in ischemic tolerance induced by3-NP. Intraperitoneal administration of 3-NP (3 or 10 mg/kg) caused the activation of JNK in CA1 subfield, which induced tolerance to subsequent ischemia and prevented delayed neuronal death (DND). As concerns p38 and ERK, no activation was induced by intoxication of 3-NP. Our results show the activation of JNK following chemical preconditioning with low dose of 3-NP is closely related to the acquisition of resistance to DND.  相似文献   

13.
Wang W  Shi L  Xie Y  Ma C  Li W  Su X  Huang S  Chen R  Zhu Z  Mao Z  Han Y  Li M 《Neuroscience research》2004,48(2):195-202
Increasing evidence suggests that c-Jun N-terminal kinase (JNK) is an important kinase mediating neuronal apoptosis in Parkinson's disease (PD) model induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). In order to study roles of JNK activity in neuronal apoptosis in this model, we blocked JNK activity in vivo using a specific inhibitor of JNK, SP600125. Our data showed that MPTP-induced phospho-c-Jun of substantial nigral neurons, caused apoptosis of dopaminergic neurons, and decreased the dopamine level in striatal area. We found that inhibiting JNK with SP600125 reduced the levels of c-Jun phosphorylation, protected dopaminergic neurons from apoptosis, and partly restored the level of dopamine in MPTP-induced PD in C57BL/6N mice. These results indicate that JNK pathway is the major mediator of the neurotoxic effects of MPTP in vivo and inhibiting JNK activity may represent a new and effective strategy to treat PD.  相似文献   

14.
CREB activation and CREB-dependent signaling pathways are crucial for neuronal survival. The term ICER (inducible cAMP early repressor) refers to four protein isoforms that are all endogenous, inducible antagonists of CREB. Jaworski and others (2003) have previously shown that one of those isoforms, ICER IIgamma, is highly expressed in apoptotic neurons in vitro and its overexpression evokes neuronal death. In this study we investigated the role of all four ICER isoforms in cortical neuronal culture, comparing their expression level in serum-deprived/MK-801-treated neurons and their pro-apoptotic properties towards transfected cortical neurons. We have found that all four isoforms are induced upon pro-apoptotic treatment, and also that each of them separately evokes neuronal cell death following cortical culture transfection with the genes. The most efficiently induced, as well as the most effective in evoking neuronal cell death, were both ICER Igamma and IIgamma isoforms.  相似文献   

15.
Mitogen-activated protein (MAP) kinase cascades are multifunctional signalling networks that influence cell growth, differentiation, apoptosis and cellular responses to stress. Apoptosis signal-regulating kinase 1 (ASK1) is a MAP kinase kinase kinase that triggers apoptogenic kinase cascade leading to the phosphorylation/activation of c-Jun N-terminal kinases (JNK) and p38-MAP kinase, which are responsible to induce apoptotic cell death. This pathway plays a pivotal role in the transduction of signals from different apoptotic stimuli. Recently, it has become evident that ASK1 and its downstream pathway are employed in the transduction of signals from Toll-like receptors (TLR) - multistep processes that interfere with different intracellular signalling pathways. TLR are the key proteins that allow mammals to detect pathogens and mediate innate immune responses. In addition, ASK1 and its downstream pathway play a target role in the regulation of apoptosis in some cases of viral infection - AIDS, influenza, hepatitis C and others. In the present review, we summarize current knowledge about the role of ASK1 and its downstream pathway in innate immune responses and viral infection.  相似文献   

16.
Cell cycle regulation of neuronal apoptosis in development and disease   总被引:27,自引:0,他引:27  
Apoptosis of neurons is indispensable to the normal development of the nervous system and contributes to neuronal loss in neurologic injury and disease. Life and death decisions are imposed upon neurons by extracellular and intracellular stimuli including the lack of trophic support, exposure to neurotoxins, oxidative stress, and DNA damage. These stimuli induce signaling pathways that are integrated at the mitochondrial apoptotic machinery culminating in cell survival or death. Growing evidence suggests that cell cycle proteins are expressed in dying neurons in the developing and adult brain. However, the role and mechanisms by which re-activation of cell cycle pathways in postmitotic neurons propagates an apoptotic signal to the cell death machinery are just beginning to be characterized. Here, we will review the molecular mechanisms of neuronal cell death and survival with a focus on recent findings on cell cycle regulation of neuronal apoptosis in primary cultures of neurons, mouse models of neuronal diseases, and human neurodegenerative diseases.  相似文献   

17.
Increasing evidence implicates the c-Jun NH2-terminal kinase (JNK) pathway in the regulation of apoptosis in neurodegenerative diseases. In this study, we examined the neuroprotective effect of SP600125, a selective JNK inhibitor, in cerebellar granule cells (CGNs) deprived of serum and potassium (S/K withdrawal). S/K withdrawal-induced apoptosis occurs via activation of multiple pro-apoptotic pathways, including re-entry into the cell cycle, activation of glycogen synthase kinase-3 beta (GSK-3β), cyclin-dependent kinase 5 (cdk5/p35) breakdown, formation of cdk5/p25 and JNK activation. Here we demonstrate that SP600125 is able to inhibit all these pro-apoptotic pathways via the inhibition of JNK. Further, we found that JNK inhibition maintains the phosphorylation/activation of Akt after S/K withdrawal. For further confirmation of this result, we studied several targets downstream of Akt including GSK-3β, p-FOXO1, p-CREB and p35. In addition, the specific PI3K/Akt inhibitor LY294002 greatly diminished the antiapoptotic effects of SP600125 upon S/K withdrawal, confirming that Akt is involved in the neuroprotection achieved by SP600125. These results suggest that the maintenance of the PI3-kinase/Akt pathway by inhibition of JNK contributes to the prevention of apoptosis in rat cerebellar granule neurons mediated by S/K withdrawal. Furthermore, we propose that JNK may regulate the cell cycle re-entry by a novel mechanism that involves Akt, GSK-3β and Rb phosphorylation.  相似文献   

18.
BACKGROUND: It has been shown that the inhibition of eosinophilic apoptosis is an important mechanism for the development of blood and tissue eosinophilia in allergic diseases. Considerable attention has recently been focused on the role played by different intracellular kinase cascades in the control of apoptosis. In the present study, we investigated the effect of sodium salicylate (NaSal), a nonsteroidal anti-inflammatory drug, on mitogen-activated protein kinases (MAPK) and apoptosis of human eosinophils. METHODS: Human blood eosinophils were purified from buffy coat. NaSal-induced apoptosis of eosinophils was assessed by morphological changes and Annexin-V binding assay. Changes of MAPK activity upon treatment with NaSal were measured by kinase activity assay and Western blot. RESULTS: NaSal could induce apoptosis of human blood eosinophils in a dose- and time-dependent manner. It could also activate c-Jun N-terminal kinase (JNK) and p38 MAPK but not extracellular signal-regulated protein kinase (ERK) activity within 1 h. Pretreatment of eosinophils with p38 MAPK and JNK anti-sense (AS) phosphorothioate oligodeoxynucleotides (ODN) or specific p38 MAPK inhibitor SB 203580 did not have any significant effect on NaSal-induced apoptosis. However, ERK AS ODNs could trigger the apoptosis of normal eosinophils. CONCLUSION: There is no direct relationship between the activation of JNK and p38 MAPK pathways and NaSal-induced apoptosis in human peripheral blood eosinophils.  相似文献   

19.
Yin S  Huo Y  Dong Y  Fan L  Yang H  Wang L  Ning Y  Hu H 《Virus research》2012,166(1-2):103-108
Apoptosis of host cells plays a critical role in pathogenesis of virus infection. MAPK kinases especially stress-activated protein kinases c-Jun NH(2)-terminal kinase (SAPK/JNK) and p38 are often involved in virus-mediated apoptosis. It has been shown that porcine reproductive and respiratory syndrome virus (PRRSV) infection resulted in apoptosis of the host cells both in vitro and in vivo. The current investigation was initiated to determine whether stress-activated protein kinases JNK and p38 play a role in apoptosis induction by PRRSV infection. We examined phosphorylation of JNK and p38, and found that JNK but not p38 was activated in response to PRRSV infection. We then examined effects of this kinase on apoptosis induction and virus replication by using specific inhibitor. We found that JNK inhibition by its inhibitor SP600125 led to the abolishment of PRRSV-mediated apoptosis, but did not suppress virus replication. Further studies demonstrated that ROS generation was involved in JNK activation, and Bcl-2 family anti-apoptotic proteins Mcl-1 and Bcl-xl were downstream targets of JNK to mediate apoptosis. We conclude that activation of JNK signaling pathway is essential for PRRSV-mediated apoptosis but not for virus replication.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号