首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
2.
目的:比较胃癌术后三维适形放疗(3D-CRT)与调强适形放疗(IMRT)对肾脏剂量学的分布影响.方法:选择9例根治术后的进展期胃癌患者,应用Pinnacal三维计划系统(TPS)分别为每例患者设计4野3D-CRT和5、7野IMRT,所有计划给予处方剂量95%的计划靶体积(PTV)>45 Gy; IMRT同时要求99%的PTV体积>42.75 Gy.应用等剂量曲线及剂量体积直方图(DVH)比较各个计划之间靶区剂量的分布和肾脏的剂量受量差异.结果:4野3D-CRT和5、7野IMRT的靶区V45分别为0.96±0.03、0.95±0.02和0.95±0.02.所有计划靶区均满足处方剂量,与4野3D-CRT相比,IMRT明显提高靶区的剂量的均匀性(HI)和适形度(CI),并且降低双侧肾脏18 Gy的剂量体积百分比(V18),但在低剂量(10 Gy)体积百分比(V10)3种放射方式之间差异无统计学意义,P>0.05.5和7野IMRT之间不论在靶区剂量分布还是危及器官的剂量受量上均差异无统计学意义,P>0.05.结论:与3D-CRT比较,IMRT明显提高靶区均匀性,降低肾脏剂量受量和剂量体积百分比,但在V10上3种计划间差异无统计学意义.  相似文献   

3.
Purpose: Conformal and intensity-modulated radiotherapy (IMRT) plans for 9 patients were compared based on characterization of plan quality and effects on the oncology department.

Methods and Materials: These clinical cases, treated originally with conformal radiotherapy (CRT), required extraordinary effort to produce conformal treatment plans using nonmodulated, shaped noncoplanar fields with multileaf collimators (MLCs). IMRT plans created for comparison included rotational treatments with slit collimator, and fixed-field MLC treatments using equispaced coplanar, and noncoplanar fields. Plans were compared based upon target coverage, target conformality, dose homogeneity, monitor units (MU), user-interactive planning time, and treatment delivery time. The results were subjected to a statistical analysis.

Results: IMRT increased target coverage an average of 36% and conformality by 10%. Where dose escalation was a goal, IMRT increased mean dose by 4–6 Gy and target coverage by 19% with the same degree of conformality. Rotational IMRT was slightly superior to fixed-field IMRT. All IMRT techniques increased integral dose and target dose heterogeneity. IMRT planning times were significantly less, whereas MU increased significantly; estimated delivery times were similar.

Conclusion: IMRT techniques increase dose and target coverage while continuing to spare organs-at-risk, and can be delivered in a time frame comparable to other sophisticated techniques.  相似文献   


4.
PURPOSE: To compare intensity-modulated radiotherapy (IMRT) treatment planning with three-dimensional conformal radiotherapy (3D-CRT) planning for paranasal sinus carcinoma. MATERIALS AND METHODS: Treatment plans using traditional 3-field technique, 3D-CRT planning, and inverse planning IMRT were developed for a case of paranasal sinus cancer requiring adjuvant radiotherapy. Plans were compared with respect to dose conformality, dose-volume histograms, doses to critical normal tissues, and ease of treatment delivery. RESULTS: The inverse-planned IMRT technique was more conformal around the tumor target volume than conventional techniques. The dose-volume histograms demonstrated significantly better critical normal-tissue sparing with the IMRT plans, while able to deliver a minimum dose of 60 Gy to the clinical tumor volume and 70 Gy to the gross tumor volume. Acute toxicities in our analysis were minimal. CONCLUSIONS: IMRT planning provided improved tumor target coverage when compared to 3D-CRT treatment planning. There was significant sparing of optic structures and other normal tissues, including the brainstem. Inverse planning IMRT provided the best treatment for all paranasal sinus carcinomas, but required stringent immobilization criteria. Further studies are needed to establish the true clinical advantage of this modality.  相似文献   

5.
PURPOSE: To investigate, using comparative treatment planning, the potential improvements that could result through the use of intensity-modulated photons (intensity-modulated radiation therapy [IMRT]) and protons for the locoregional treatment of complex-target breast cancer. METHODS AND MATERIALS: Using CT data from a breast cancer patient, treatment plans were computed using "standard" photon/electron, IMRT, and forward-planned proton techniques. A dose of 50 Gy was prescribed to the target volume consisting of the involved breast, internal mammary, supraclavicular, and axillary nodes. The standard plan was designed using 6-MV X-ray beams to the breast, axillary, and supraclavicular areas and a mixture of 6-MV X-rays and 12-MeV electrons for the internal mammary nodes. Two IMRT (IMX1 and IMX2) plans were calculated for nine evenly spaced beams using dose-volume constraints to the organs at risk. For plan IMX1, precedence was given to optimizing the reduction in lung and heart dose while preserving target dose homogeneity. For plan IMX2, an increased precedence was given to the lungs, heart, and contralateral breast to further reduce doses to these organs and to study the effect on target coverage. The proton plan consisted of two oblique, energy-modulated fields. Target dose homogeneity and the doses to neighboring organs were both considered when comparing the different plans. RESULTS: For the standard plan, dose-volume histograms (DVHs) of the target volumes showed severe dose heterogeneity, whereas target coverage for the IMRT and proton plans was comparable. Lung DVHs for the standard and IMRT plans were also comparable, while the proton plan showed the best sparing over all dose levels. Mean doses to the ipsilateral lung for the three plans were found to be 17 Gy, 15 Gy, and 13 Gy for the standard, IMRT, and proton plans, respectively. For the heart, the IMRT plan delivered the highest mean dose (16 Gy), reflecting the extra dose delivered through this organ to spare the lungs. This was reduced somewhat by the standard plan (15 Gy), with the best sparing being provided by the proton plan (6 Gy). When the IMRT plan was reoptimized with an increased precedence to the normal tissues, the mean doses to all neighboring organs at risk could be reduced, but only at the cost of substantial target dose heterogeneity. CONCLUSIONS: In comparison with the standard plan, IMRT photons have the potential to greatly improve the target dose homogeneity with only a small increase in the doses delivered to the neighboring critical structures. However, when attempting to further reduce doses to the critical structures, substantial loss of target dose homogeneity was found. In conclusion, only the two-field, energy-modulated proton plan had the potential to preserve target dose homogeneity while simultaneously minimizing the dose delivered to both lungs, heart, and the contralateral breast.  相似文献   

6.
目的 评价直肠癌根治术后不同照射技术的靶区和正常组织剂量分布特点,为临床治疗方法的优选提供依据.方法 对10例男性、Ⅱ-Ⅲ期直肠癌经腹前切除(Dixon手术)术后患者分别进行t维适形放疗(3DCRT)、简化调强放疗(sIMRT)和调强放疗(IMRT)的计划设计,利用剂量体积直方图评价小同照射技术对靶Ⅸ和正常组织照射剂量、适形指数和小均匀指数.处方剂晕为50Gy.结果 靶区适形指数IMRT>sIMRT>3DCRT,靶区剂量不均匀指数3DCRT>sIMRT>IMRT.对危及器官保护sIMRT和IMRT优于3DCRT计划.sIMRT的子野跳数与3DCRT技术相当,但显著低于IMRT计划.3个野3DCRT、5个野3DCRT、5个野sIMRT、5个野IMRT和7个野IMRT的子野跳数平均值分别为482±13、504±11、455±42、841±36和884±46.结论 与3DCRT、IMRT计划相比sIM-RT计划具最优的时效比.此处方剂量水平下3种技术均能较好保护残端直肠和肛管.  相似文献   

7.
PURPOSE: Three types of preoperative radiotherapy (RT) plans for extremity soft tissue sarcoma were compared to determine the amount of dose reduction possible to the planned surgical skin flaps required for tumor resection and wound closure, without compromising target coverage. METHODS AND MATERIALS: Twenty-four untreated patients with large, deep, lower extremity STS treated with preoperative RT and limb salvage surgery had their original conventional treatment plans re-created. The same clinical target volume was used for all three plans. The future surgical skin flaps were created virtually through contouring by the treating surgeon and regarded as an organ at risk. The original, conformal, and intensity-modulated RT (IMRT) plans were created to deliver 50 Gy in 25 fractions to the clinical target volume. Clinical target volume and organ-at-risk dose-volume histograms were calculated and the plans compared for conformality, target coverage, and dose sparing. RESULTS: The mean dose to the planned skin flaps was 42.62 Gy (range, 30.24-48.65 Gy) for the original plans compared with 40.12 Gy (range, 24.24-47.26 Gy) for the conformal plans and 26.71 Gy (range, 22.31-31.91 Gy) for the IMRT plans (p = 0.0008). An average of 86.4% (range, 53.2-97.4%) of the planned skin flaps received >or=30 Gy in the original plans compared with 83.4% (range, 36.2-96.2%) in the conformal plans and only 34.0% (range, 22.5-53.3%) in the IMRT plans (p = 0.0001). IMRT improved target conformality compared with the original and conformal plans (1.27, 2.34, and 1.76, respectively, p = 0.0001). CONCLUSION: In a retrospective review, preoperative IMRT substantially lowered the dose to the future surgical skin flaps, sparing a greater percentage of this structure's volume without compromising target (tumor) coverage.  相似文献   

8.
PurposeTo assess the most suitable value of a relative prescribed dose in clinical treatment plans of stereotactic body radiotherapy (SBRT) using dynamic conformal multiple arc therapy to treat lung tumors.Methods and MaterialsWe retrospectively generated alternative SBRT plans for typical examples of 8 patients who had been treated with SBRT for a lung tumor with a prescribed dose of 50 Gy in 5 fractions. The prescribed dose had been defined as 80% of the maximal dose in the planning target volume (PTV) (“the 80% isodose plan”). Alternative 20%-90% isodose plans at 10% intervals were generated (64 plans; 8 plans for each of the 8 patients), and factors related to leaf margins, target volume, normal lung volume, and monitor units were compared using dose-volume histogram analysis.ResultsWe could generate all the 64 plans. Compared with the 80% isodose plan, the V20 and mean lung dose (MLD) were both lower in the 60% plan; the V20 was approximately 19% lower (4.72% vs 3.84%) and the MLD was 13% lower (4.0 Gy vs 3.5 Gy). Mean PTV and ITV doses were higher in the lower percentage isodose plans. Compared with the 80% isodose plan, in the 60% isodose plan the mean PTV was 19% higher (56.1 Gy vs 66.8 Gy) and the mean ITV was 30% higher (59.6 Gy vs 77.4 Gy). The mean total monitor units increased more steeply than did the mean homogeneity index. The mean conformity index values in the 60% and 70% isodose plans were less than 1.15.ConclusionsThe 60% isodose plan was considered the best plan in this analysis because of the lower comparative dosimetric factors in normal lung tissue (including V20 and MLD) and the higher comparative mean PTV and internal target volume doses achieved, along with good conformity index values. In clinical use, accurate estimation and commissioning should be performed for the dose distribution prior to selecting a plan. Further investigation is warranted to determine whether the calculated dosimetric advantages result in improved outcomes.  相似文献   

9.
IMRT for adjuvant radiation in gastric cancer: A preferred plan?   总被引:1,自引:0,他引:1  
PURPOSE: To assess the potential advantage of intensity-modulated radiotherapy (IMRT) over conformal planning for postoperative adjuvant radiotherapy in patients with gastric carcinoma. METHODS AND MATERIALS: Twenty patients who had undergone treatment planning with conformal beam arrangements for 4500 cGy adjuvant radiotherapy between 2000 and 2001 underwent repeat planning using IMRT techniques. Conformal five-field plans were compared with seven- to nine-field coplanar sliding-window IMRT plans. For each patient, the cumulative dose-volume histograms and organ-dose summaries (without distributions or digitally reconstructed radiographs) were provided to two independent, "blinded" GI radiation oncologists. The oncologists indicated which plan provided better planning target volume coverage and critical organ sparing, any safety concerns with either plan, and which plan they would choose to treat the patient. RESULTS: In 18 (90%) of 20 cases, both oncologists chose the same plan. Cases with disagreement were given to a third "blinded" reviewer. A "preferred plan" could be determined in 19 (95%) of 20 cases. IMRT was preferred in 17 (89%) of 19 cases. In 4 (20%) of 20 IMRT plans at least one radiation oncologist had safety concerns because of the spinal cord dose (3 cases) or small bowel dose (2 cases). Of 42 ratings, IMRT was thought to provide better planning target volume coverage in 36 (86%) and better sparing of the spinal cord in 31 (74%) of 42, kidneys in 29 (69%), liver in 30 (71%), and heart in 29 (69%) of 42 ratings. The median underdose volume (1.7 vs. 4.1 cm3), maximal dose to the spinal cord (36.85 vs. 45.65 Gy), and dose to 50% of the liver (17.29 vs. 27.97), heart (12.89 vs. 15.50 Gy), and left kidney (15.50 vs. 16.06 Gy) were lower with IMRT than with the conformal plans. CONCLUSION: Compared with the conformal plans, oncologists frequently preferred IMRT plans when using dose-volume histogram data. The advantages of IMRT plans include both improved planning target volume coverage and improved sparing of critical organs. We are currently studying organ motion in the upper abdomen as a prerequisite to using IMRT for actual patient treatment.  相似文献   

10.
PURPOSE: Investigating the impact of tumor regression on the dose within cervical tumors and surrounding organs, comparing conventional, conformal, and intensity-modulated radiotherapy (IMRT) and the need for repeated treatment planning during irradiation. METHODS AND MATERIALS: Fourteen patients with cervical cancer underwent magnetic resonance (MR) imaging before treatment and once during treatment, after about 30 Gy. Target volumes and critical organs were delineated. First conventional, conformal, and IMRT plans were generated. To evaluate the impact of tumor regression, we calculated dose-volume histograms for these plans, using the delineations of the intratreatment MR images. Second conformal and IMRT plans were made based on the delineations of the intratreatment MR images. First and second plans were compared. RESULTS: The average volume receiving 95% of the prescribed dose (43 Gy) by the conventional, conformal, and IMRT plans was, respectively, for the bowel 626 cc, 427 cc, and 232 cc; for the rectum 101 cc, 90 cc, and 60 cc; and for the bladder 89 cc, 70 cc, and 58 cc. The volumes of critical organs at this dose level were significantly reduced using IMRT compared with conventional and conformal planning (p < 0.02 in all cases). After having delivered about 30 Gy external beam radiation therapy, the primary gross tumor volumes decreased on average by 46% (range, 6.1-100%). The target volumes on the intratreatment MR images remained sufficiently covered by the 95% isodose. Second IMRT plans significantly diminished the treated bowel volume, if the primary gross tumor volumes decreased >30 cc. CONCLUSIONS: Intensity-modulated radiation therapy is superior in sparing of critical organs compared with conventional and conformal treatment, with adequate coverage of the target volumes. Intensity-modulated radiation therapy remains superior after 30 Gy external beam radiation therapy, despite tumor regression and internal organ motion. Repeated IMRT planning can improve the sparing of the bowel and rectum in patients with substantial tumor regression.  相似文献   

11.
PURPOSE: To determine the dosimetric impact of interfraction anatomic movements in prostate cancer patients receiving proton therapy. METHODS AND MATERIALS: For each of the 10 patients studied, 8 computed tomography (CT) scans were selected from sets of daily setup CT images that were acquired from a cohort of prostate cancer patients. The images were acquired in the treatment room using the CT-on-rails system. First, standard proton therapy and intensity-modulated radiation therapy (IMRT) plans were designed for each patient using standard modality-specific methods. The images, the proton plan, and the IMRT plan were then aligned to the eight CT images based on skin marks. The doses were recalculated on these eight CT images using beam from the standard plans. Second, the plans were redesigned and evaluated assuming a smaller clinical target volume to planning target volume margin (3 mm). The images and the corresponding plans were then realigned based on the center of volume of the prostate. Dose distributions were evaluated using isodose displays, dose-volume histograms, and target coverage. RESULTS: For the skin-marker alignment method, 4 of the 10 IMRT plans were deficient, whereas 3 of 10 proton plans were compromised. For the alignment method based on the center of volume of the prostate, only the proton plan for 1 patient was deficient, whereas 3 of the 10 IMRT plans were suboptimal. CONCLUSION: A comparison of passively scattered proton therapy and highly conformal IMRT plans for prostate cancer revealed that the dosimetric impact of interfractional anatomic motions was similar for both modalities.  相似文献   

12.
PURPOSE: To determine whether intensity-modulated radiotherapy (IMRT) treatment increases the total integral dose of nontarget tissue relative to the conventional three-dimensional conformal radiotherapy (3D-CRT) technique for high-grade gliomas. METHODS AND MATERIALS: Twenty patients treated with 3D-CRT for glioblastoma multiforme were selected for a comparative dosimetric evaluation with IMRT. Original target volumes, organs at risk (OAR), and dose-volume constraints were used for replanning with IMRT. Predicted isodose distributions, cumulative dose-volume histograms of target volumes and OAR, normal tissue integral dose, target coverage, dose conformity, and normal tissue sparing with 3D-CRT and IMRT planning were compared. Statistical analyses were performed to determine differences. RESULTS: In all 20 patients, IMRT maintained equivalent target coverage, improved target conformity (conformity index [CI] 95% 1.52 vs. 1.38, p < 0.001), and enabled dose reductions of normal tissues, including brainstem (D(mean) by 19.8% and D(max) by 10.7%), optic chiasm (D(mean) by 25.3% and D(max) by 22.6%), right optic nerve (D(mean) by 37.3% and D(max) by 28.5%), and left optic nerve (D(mean) by 40.6% and D(max) by 36.7%), p < or = 0.01. This was achieved without increasing the total nontarget integral dose by greater than 0.5%. Overall, total integral dose was reduced by 7-10% with IMRT, p < 0.001, without significantly increasing the 0.5-5 Gy low-dose volume. CONCLUSIONS: These results indicate that IMRT treatment for high-grade gliomas allows for improved target conformity, better critical tissue sparing, and importantly does so without increasing integral dose and the volume of normal tissue exposed to low doses of radiation.  相似文献   

13.
PURPOSE: To implement intensity-modulated radiation therapy (IMRT) for primary nasopharynx cancer and to compare this technique with conventional treatment methods. METHODS AND MATERIALS: Between May 1998 and June 2000, 23 patients with primary nasopharynx cancer were treated with IMRT delivered with dynamic multileaf collimation. Treatments were designed using an inverse planning algorithm, which accepts dose and dose-volume constraints for targets and normal structures. The IMRT plan was compared with a traditional plan consisting of phased lateral fields and a three-dimensional (3D) plan consisting of a combination of lateral fields and a 3D conformal plan. RESULTS: Mean planning target volume (PTV) dose increased from 67.9 Gy with the traditional plan, to 74.6 Gy and 77.3 Gy with the 3D and IMRT plans, respectively. PTV coverage improved in the parapharyngeal region, the skull base, and the medial aspects of the nodal volumes using IMRT and doses to all normal structures decreased compared to the other treatment approaches. Average maximum cord dose decreased from 49 Gy with the traditional plan, to 44 Gy with the 3D plan and 34.5 Gy with IMRT. With the IMRT plan, the volume of mandible and temporal lobes receiving more than 60 Gy decreased by 10-15% compared to the traditional and 3D plans. The mean parotid gland dose decreased with IMRT, although it was not low enough to preserve salivary function. CONCLUSION: Lower normal tissue doses and improved target coverage, primarily in the retropharynx, skull base, and nodal regions, were achieved using IMRT. IMRT could potentially improve locoregional control and toxicity at current dose levels or facilitate dose escalation to further enhance locoregional control.  相似文献   

14.
胸上段食管癌调强放疗与适形放疗计划的剂量学比较   总被引:8,自引:0,他引:8  
张武哲  陈志坚  李德锐  林志雄  李东升  陈创珍 《癌症》2009,28(11):1127-1131
背景与目的:胸上段食管癌所处的解剖特点导致其放疗计划的制订难度很大,而调强放疗(intensity-modulated radiotherapy,IMRT)有可能克服上述难题。本研究比较分析IMRT和三维适形放疗(conformal radiotherapy,CRT)在胸上段食管癌的剂量学优劣,为IMRT在食管癌的临床应用提供参考。方法:选择胸上段食管癌11例进行研究。在实际治疗采用的CRT计划基础上,每一病例再设计-5野IMRT计划进行对比。对比内容包括相关靶区和危及器官的剂量体积直方图参数。结果:肿瘤及相邻组织的计划靶区可见IMRT和CRT计划之间的平均剂量、最大剂量、包含99%和95%靶区的剂量均很接近(P〉0.05),但IMRT较CRT的适形指数好(0.68±0.04vs.0.46±0.11,P〈0.01)。IMRT对锁骨上区的剂量均匀性较CRT更好,二者的非均匀指数分别为1.17±0.05和1.33±0.15(P=0.01)。IMRT计划中脊髓计划区的最高受量明显较CRT的低(44.4Gyvs.52.5Gy,P〈0.05):10Gy以上的肺受照体积为(32±6)%.也明显较CRT计划的(35±9)%低(P〈0.05)。结论:对胸上段食管癌,调强放疗较适形放疗有更好的剂量适形性,可更有效保护脊髓,并显著降低肺10Gy以上剂量的受照体积。  相似文献   

15.
PURPOSE: To compare three-dimensional (3D) and four-dimensional (4D) computed tomography (CT)-based treatment plans for proton therapy or intensity-modulated radiation therapy (IMRT) for esophageal cancer in terms of doses to the lung, heart, and spinal cord and variations in target coverage and normal tissue sparing. METHODS AND MATERIALS: The IMRT and proton plans for 15 patients with distal esophageal cancer were designed from the 3D average CT scans and then recalculated on 10 4D CT data sets. Dosimetric data were compared for tumor coverage and normal tissue sparing. RESULTS: Compared with IMRT, median lung volumes exposed to 5, 10, and 20 Gy and mean lung dose were reduced by 35.6%, 20.5%, 5.8%, and 5.1 Gy for a two-beam proton plan and by 17.4%, 8.4%, 5%, and 2.9 Gy for a three-beam proton plan. The greater lung sparing in the two-beam proton plan was achieved at the expense of less conformity to the target (conformity index [CI], 1.99) and greater irradiation of the heart (heart-V40, 41.8%) compared with the IMRT plan(CI, 1.55, heart-V40, 35.7%) or the three-beam proton plan (CI, 1.46, heart-V40, 27.7%). Target coverage differed by more than 2% between the 3D and 4D plans for patients with substantial diaphragm motion in the three-beam proton and IMRT plans. The difference in spinal cord maximum dose between 3D and 4D plans could exceed 5 Gy for the proton plans partly owing to variations in stomach gas filling. CONCLUSIONS: Proton therapy provided significantly better sparing of lung than did IMRT. Diaphragm motion and stomach gas-filling must be considered in evaluating target coverage and cord doses.  相似文献   

16.
PURPOSE: To investigate the potential for intensity-modulated radiotherapy (IMRT) to spare the bowel in rectal tumors. METHODS AND MATERIALS: The targets (pelvic nodal and rectal volumes), bowel, and bladder were outlined in 5 patients. All had conventional, three-dimensional conformal RT and forward-planned multisegment three-field IMRT plans compared with inverse-planned simultaneous integrated boost nine-field equally spaced IMRT plans. Equally spaced seven-field and five-field and five-field, customized, segmented IMRT plans were also evaluated. RESULTS: Ninety-five percent of the prescribed dose covered at least 95% of both planning target volumes using all but the conventional plan (mean primary and pelvic planning target volume receiving 95% of the prescribed dose was 32.8 +/- 13.7 Gy and 23.7 +/- 4.87 Gy, respectively), reflecting a significant lack of coverage. The three-field forward planned IMRT plans reduced the volume of bowel irradiated to 45 Gy and 50 Gy by 26% +/- 16% and 42% +/- 27% compared with three-dimensional conformal RT. Additional reductions to 69 +/- 51 cm(3) to 45 Gy and 20 +/- 21 cm(3) to 50 Gy were obtained with the nine-field equally spaced IMRT plans-64% +/- 11% and 64% +/- 20% reductions compared with three-dimensional conformal RT. Reducing the number of beams and customizing the angles for the five-field equally spaced IMRT plan did not significantly reduce bowel sparing. CONCLUSION: The bowel volume irradiated to 45 Gy and 50 Gy was significantly reduced with IMRT, which could potentially lead to less bowel toxicity. Reducing the number of beams did not reduce bowel sparing and the five-field customized segmented IMRT plan is a reasonable technique to be tested in clinical trials.  相似文献   

17.
Is uniform target dose possible in IMRT plans in the head and neck?   总被引:3,自引:0,他引:3  
: Various published reports involving intensity-modulated radiotherapy (IMRT) plans developed using automated optimization (inverse planning) have demonstrated highly conformal plans. These reported conformal IMRT plans involve significant target dose inhomogeneity, including both overdosage and underdosage within the target volume. In this study, we demonstrate the development of optimized beamlet IMRT plans that satisfy rigorous dose homogeneity requirements for all target volumes (e.g., ±5%), while also sparing the parotids and other normal structures.

: The treatment plans of 15 patients with oropharyngeal cancer who were previously treated with forward-planned multisegmental IMRT were planned again using an automated optimization system developed in-house. The optimization system allows for variable sized beamlets computed using a three-dimensional convolution/superposition dose calculation and flexible cost functions derived from combinations of clinically relevant factors (costlets) that can include dose, dose-volume, and biologic model-based costlets. The current study compared optimized IMRT plans designed to treat the various planning target volumes to doses of 66, 60, and 54 Gy with varying target dose homogeneity while using a flexible optimization cost function to minimize the dose to the parotids, spinal cord, oral cavity, brainstem, submandibular nodes, and other structures.

: In all cases, target dose uniformity was achieved through steeply varying dose-based costs. Differences in clinical plan evaluation metrics were evaluated for individual cases (eight different target homogeneity costlets), and for the entire cohort of plans. Highly conformal plans were achieved, with significant sparing of both the contralateral and ipsilateral parotid glands. As the homogeneity of the target dose distributions was allowed to decrease, increased sparing of the parotids (and other normal tissues) may be achieved. However, it was shown that relatively few patients would benefit from the use of increased target inhomogeneity, because the range of improvement in the parotid dose is relatively limited. Hot spots in the target volumes are shown to be unnecessary and do not assist in normal tissue sparing.

: Sparing of both parotids in patients receiving bilateral neck radiation can be achieved without compromising strict target dose homogeneity criteria. The geometry of the normal tissue and target anatomy are shown to be the major factor necessary to predict the parotid sparing that will be possible for any particular case.  相似文献   


18.
PURPOSE: To investigate potential dose calculation errors in the low-dose regions and identify causes of such errors for intensity-modulated radiotherapy (IMRT). METHODS AND MATERIALS: The IMRT treatment plans of 23 patients with lung cancer and mesothelioma were reviewed. Of these patients, 15 had severe pulmonary complications after radiotherapy. Two commercial treatment-planning systems (TPSs) and a Monte Carlo system were used to calculate and compare dose distributions and dose-volume parameters of the target volumes and critical structures. The effect of tissue heterogeneity, multileaf collimator (MLC) modeling, beam modeling, and other factors that could contribute to the differences in IMRT dose calculations were analyzed. RESULTS: In the commercial TPS-generated IMRT plans, dose calculation errors primarily occurred in the low-dose regions of IMRT plans (<50% of the radiation dose prescribed for the tumor). Although errors in the dose-volume histograms of the normal lung were small (<5%) above 10 Gy, underestimation of dose <10 Gy was found to be up to 25% in patients with mesothelioma or large target volumes. These errors were found to be caused by inadequate modeling of MLC transmission and leaf scatter in commercial TPSs. The degree of low-dose errors depends on the target volumes and the degree of intensity modulation. CONCLUSIONS: Secondary radiation from MLCs contributes a significant portion of low dose in IMRT plans. Dose underestimation could occur in conventional IMRT dose calculations if such low-dose radiation is not properly accounted for.  相似文献   

19.
AIM: To prospectively compare volumetric intensity-modulated arc therapy (VMAT) and conventional intensity-modulated radiation therapy (IMRT) in coverage of planning target volumes and avoidance of multiple organs at risk (OARs) in patients undergoing definitive chemoradiotherapy for advanced (stage III or IV) squamous cell cancer of the head and neck.METHODS: Computed tomography scans of 20 patients with advanced tumors of the larynx, naso-, oro- and hypopharynx were prospectively planned using IMRT (7 field) and VMAT using two arcs. Calculated doses to planning target volume (PTV) and OAR were compared between IMRT and VMAT plans. Dose-volume histograms (DVH) were utilized to obtain calculated doses to PTV and OAR, including parotids, cochlea, spinal cord, brainstem, anterior tongue, pituitary and brachial plexus. DVH’s for all structures were compared between IMRT and VMAT plans. In addition the plans were compared for dose conformity and homogeneity. The final treatment plan was chosen by the treating radiation oncologist.RESULTS: VMAT was chosen as the ultimate plan in 18 of 20 patients (90%) because the plans were thought to be otherwise clinically equivalent. The IMRT plan was chosen in 2 of 20 patients because the VMAT plan produced concentric irradiation of the cord which was not overcome even with an avoidance structure. For all patients, VMAT plans had a lower number of average monitor units on average (MU = 542.85) than IMRT plans (MU = 1612.58) (P < 0.001). Using the conformity index (CI), defined as the 95% isodose volume divided by the PTV, the IMRT plan was more conformal with a lower conformity index (CI = 1.61) than the VMAT plan (CI = 2.00) (P = 0.003). Dose homogeneity, as measured by average standard deviation of dose distribution over the PTV, was not different with VMAT (1.45 Gy) or IMRT (1.73 Gy) (P = 0.069). There were no differences in sparing organs at risk.CONCLUSION: In this prospective study, VMAT plans were chosen over IMRT 90% of the time. Compared to IMRT, VMAT plans used only one third of the MUs, had shorter treatment times, and similar sparing of OAR. Overall, VMAT provided similar dose homogeneity but less conformity in PTV irradiation compared to IMRT. This difference in conformity was not clinically significant.  相似文献   

20.
PURPOSE: To compare intensity-modulated radiotherapy (IMRT) with two-dimensional RT (2D-RT) and three-dimensional conformal radiotherapy (3D-CRT) treatment plans in different stages of nasopharyngeal carcinoma and to explore the feasibility of dose escalation in locally advanced disease. MATERIALS AND METHODS: Three patients with different stages (T1N0M0, T2bN2M0 with retrostyloid extension, and T4N2M0) were selected, and 2D-RT, 3D-CRT, and IMRT treatment plans (66 Gy) were made for each of them and compared with respect to target coverage, normal tissue sparing, and tumor control probability/normal tissue complication probability values. In the Stage T2b and T4 patients, the IMRT 66-Gy plan was combined with a 3D-CRT 14-Gy boost plan using a 3-mm micromultileaf collimator, and the dose-volume histograms of the summed plans were compared with their corresponding 66-Gy 2D-RT plans. RESULTS: In the dosimetric comparison of 2D-RT, 3D-CRT, and IMRT treatment plans, the T1N0M0 patient had better sparing of the parotid glands and temporomandibular joints with IMRT (dose to 50% parotid volume, 57 Gy, 50 Gy, and 31 Gy, respectively). In the T2bN2M0 patient, the dose to 95% volume of the planning target volume improved from 57.5 Gy in 2D-RT to 64.8 Gy in 3D-CRT and 68 Gy in IMRT. In the T4N2M0 patient, improvement in both target coverage and brainstem/temporal lobe sparing was seen with IMRT planning. In the dose-escalation study for locally advanced disease, IMRT 66 Gy plus 14 Gy 3D-CRT boost achieved an improvement in the therapeutic ratio by delivering a higher dose to the target while keeping the normal organs below the maximal tolerance dose. CONCLUSIONS: IMRT is useful in treating all stages of nonmetastatic nasopharyngeal carcinoma because of its dosimetric advantages. In early-stage disease, it provides better parotid gland sparing. In locally advanced disease, IMRT offers better tumor coverage and normal organ sparing and allows room for dose escalation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号