首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A large proportion of cells that proliferate in the adult dentate gyrus under normal conditions or in response to brain insults exhibit only short-term survival. Here, we sought to determine which cell death pathways are involved in the degeneration of newly formed neurons in the rat dentate gyrus following 2 h of electrically induced status epilepticus. We investigated the role of three families of cysteine proteases, caspases, calpains, and cathepsins, which can all participate in apoptotic cell death. Status epilepticus increased the number of bromodeoxyuridine (BrdU)-positive proliferated cells in the subgranular zone of the dentate gyrus. At the time of maximum cell proliferation, immunohistochemical analyses revealed protein expression of active caspase-cleaved poly (ADP-ribose) polymerase (PARP) in approximately 66% of the BrdU-positive cells, while none of them expressed cathepsin B or the 150-kDa calpain-produced fodrin breakdown product. To evaluate the importance of cysteine proteases in regulating survival of the newly formed neurons, we administered intracerebroventricular infusions of a caspase inhibitor cocktail (zVAD-fmk, zDEVD-fmk and zLEHD-fmk) over a 2-week period, sufficient to allow for neuronal differentiation, starting 1 week after the epileptic insult. Increased numbers of cells double-labelled with BrdU and neuron-specific nuclear protein (NeuN) marker were detected in the subgranular zone and granule cell layer of the caspase inhibitor-treated rats. Our data indicate that caspase-mediated cell death pathways are active in progenitor cell progeny generated by status epilepticus and compromise survival during neuronal differentiation.  相似文献   

2.
Electroconvulsive shock (ECS) seizures provide an animal model of electroconvulsive therapy (ECT) in humans. Recent evidence indicates that repeated ECS seizures can induce long-term structural and functional changes in the brain, similar to those found in other seizure models. We have examined the effects of ECS on neurogenesis in the dentate gyrus of the adult rat using bromodeoxyuridine (BrdU) immunohistochemistry, which identifies newly generated cells. Cells have also been labeled for neuronal nuclear protein (NeuN) to identify neurons. One month following eight ECS seizures, ECS-treated rats had approximately twice as many BrdU-positive cells as sham-treated controls. Eighty-eight percent of newly generated cells colabeled with NeuN in ECS-treated subjects, compared to 83% in sham-treated controls. These data suggest that there is a net increase in neurogenesis within the hippocampal dentate gyrus following ECS treatment. Similar increases have been reported following kindling and kainic acid- or pilocarpine-induced status epilepticus. Increased neurogenesis appears to be a general response to seizure activity and may play a role in the therapeutic effects of ECT.  相似文献   

3.
The dentate gyrus is selectively reduced in size in the insulin-like growth factor 1 (IGF1) null mouse brain. The purpose of this study was to determine whether this defect is due to reduced granule cell numbers, and if so, to determine whether altered cell proliferation, survival, or both contribute to attenuation of dentate gyrus size. At postnatal day 10 (P10), granule cell numbers were not significantly different in IGF1 null and littermate wildtype (WT) dentate gyri. The subgranular zone cell population, however, was relatively increased, and the granule cell layer population relatively decreased in the IGF1 null dentate gyrus. By P50, total dentate cell numbers were decreased by 20% (P = 0.01) in the IGF1 null mouse, although IGF1 null subgranular zone progenitor cells remained relatively increased compared with WT (38%, P < 0.05). IGF1 null dentate cell proliferation, assessed by thymidine analogue incorporation, was actually increased at P10 (33%, P < 0.05) and P50 (167%, P = 0.001). Dentate granule cell death, assessed by the appearance of pycnotic cells and DNA fragmentation, was also significantly increased in the IGF1 null dentate (61%, P < 0.05 and 101%, P = 0.03). These data suggest that endogenous IGF1 serves an important role in dentate granule cell survival during the course of postnatal brain development. In addition, this work suggests the potential of a compensatory mechanism promoting increased dentate cell proliferation in the face of impaired cell survival during postnatal neurogenesis. J. Neurosci. Res. 64:341-347, 2001. Published 2001 Wiley-Liss, Inc.  相似文献   

4.
A large number of aberrant hilar granule cells (GCs) are found in the patients and animal models of adult temporal lobe epilepsy (TLE), and these “ectopic” GCs have synchronous epileptiform bursting with other hippocampal neurons. In this study, we investigated whether early-life status epilepticus (SE) induces hilar ectopic GCs that remain in the adulthood because TLE patients frequently experience seizures in the early childhood when a large number of postnatally born GCs migrate in the hilus. To label newborn GCs, bromodeoxyuridine (BrdU) was injected daily for three consecutive days to C57BL/6J mice at different postnatal days starting at postnatal-0-day-old (P0) (Group1), P7 (Group2), or P35 (Group3). Mice in each group underwent pilocarpine-induced SE at P14. Six months later, to determine whether SE induces ectopic GCs, we plotted the distribution of postnatally born GCs which were immunohistochemically defined as BrdU- and the GC marker Prox1-colabeled cells. We also examined whether SE causes the granule cell layer (GCL) dispersion and/or the mossy fiber (MF) sprouting, other representative pathologies of TLE hippocampus. Only SE-experiencing mice in Group1 had significantly more neonatally born ectopic GCs compared with control mice. Neither control nor SE mice had dispersed GCL. All mice that underwent SE had sprouted MFs in CA3. We conclude that early-life SE disrupts a normal incorporation of GCs born pre-SE but not post-SE, inducing ectopic GCs in the adult hilus. Interestingly, the results also indicate that developmentally earlier born GCs are more responsive to early-life SE in terms of the emergence of ectopic GCs.  相似文献   

5.
Long-term neuroplastic changes to dentate granule cells have been reported after seizures and were shown to contribute to recurrent excitatory circuitry. These changes include increased numbers of newborn granule cells, sprouted mossy fibers, granule cell layer dispersion, increased hilar ectopic granule cells and formation of hilar basal dendrites on granule cells. The goal of the current study was to determine the acute progression of neuroplastic changes involving newly generated granule cells after pilocarpine-induced seizures. Doublecortin (DCX) immunocytochemical preparations were used to examine the newly generated granule cells 1-5 days after seizures were induced. The results showed that there are rapid neuroplastic changes to the DCX-labeled cells. At 1 day after seizures were induced, there were significant increases in the percentage of DCX-labeled cells with hilar basal dendrites and in the progenitor cell population. At 2 days after seizures were induced, an increase in the thickness of the layer of DCX-labeled cells occurred. At 3 days after seizures were induced, the number of DCX-labeled cells was significantly increased. At 4 days after seizures were induced, developing synapses were observed on DCX-labeled hilar basal dendrites. Thus, newly generated granule cells in the adult dentate gyrus display neuroplastic changes by 1 day after pilocarpine-induced seizures and further changes occur to this population of cells in the subsequent 4 days. The presence of synapses, albeit developing ones, on hilar basal dendrites during this period indicates that newly generated granule cells become rapidly incorporated into dentate gyrus circuitry following seizures.  相似文献   

6.
The effect of recurrent seizures on the hippocampus has been controversial for many years. To determine the effect different seizure paradigms had on the structure of the dentate gyrus, we conducted histological studies on the dentate gyrus (DG) from three groups of rats: (1) those that had experienced 1500 intermittent kindled seizures; (2) those that had experienced a single episode of limbic status epilepticus (SE); and (3) control rats that had been implanted with electrodes. When compared to controls the DG of SE rats was overall slightly, but non-significantly, smaller, but the DG of rats with 1500 kindled seizures was significantly larger. The decrease of size following SE was attributable to a significant atrophy of the molecular layer. The increase in area associated with kindling was the result of an enlargement of the molecular layer and the hilus. Absolute neuronal counts showed a decrease in the hilus after SE but no change following kindling, but both groups had decreased neuronal densities in the hilus when compared to controls. The decreased density after SE was secondary to neuronal loss, but the decrease in neuronal density following kindling was the result of the expansion of the hilar neuropil without change in the number of neurons. This study extends our previous findings in Ammon's horn and indicates that SE induces significant neuronal loss, but numerous intermittent kindled seizures have no effect on neuronal numbers in the DG.  相似文献   

7.
Neurogenesis in the adult rat dentate gyrus was studied following focal ischemic insults produced by middle cerebral artery occlusion (MCAO). Animals were subjected to either 30 min of MCAO, which causes damage confined to the striatum, or 2 h of MCAO, which leads to both striatal and cortical infarction. When compared to sham-operated rats, MCAO-rats showed a marked increase of the number of cells double-labelled for 5-bromo-2'-deoxyuridine-5'-monophosphate (BrdU; injected during 4-6 days postischemia) and neuronal-specific antigen (NeuN; a marker of postmitotic neurons) in the ipsilateral dentate granule cell layer and subgranular zone at 5 weeks following the 2 h insult. Only a modest and variable increase of BrdU-labelled cells was found after 30 min of MCAO. The enhanced neurogenesis was not dependent on cell death in the hippocampus, and its magnitude was not correlated to the degree of cortical damage. Systemic administration of the N-methyl-D-aspartate (NMDA) receptor blocker dizocilpine maleate (MK-801) completely suppressed the elevated neurogenesis following 2 h of MCAO. Our findings indicate that stroke leads to increased neurogenesis in the adult rat dentate gyrus through glutamatergic mechanisms acting on NMDA receptors. This modulatory effect may be mediated through changes in the levels of several growth factors, which occur after stroke, and could influence various regulatory steps of neurogenesis.  相似文献   

8.
Dentate gyrus (DG) neurogenesis is transiently increased during the first weeks after status epilepticus (SE). Survival of the new neurons is initially compromised by an acute inflammatory response, but the long-term fate of the remaining ones in the post-SE environment is unknown. Here adult rats were subjected to 2 h electrically evoked self-sustained SE and perfused after 5 weeks or 6 months. Rats exhibited partial or generalized SE followed by spontaneous behavioural seizures and abnormal electroencephalographic activity during 6 months. Numbers of activated microglia in the dentate subgranular zone (SGZ)-granule cell layer (GCL) and in the hilus declined after 5 weeks, but were still elevated at 6 months after SE, with no differences between the milder partial and the more severe generalized SE. At 6 months, partial and generalized SE rats showed a seven-fold increase in the number of mature SGZ-GCL neurons formed during the first 2 weeks along with aberrant neurons in the hilus. Total numbers of mature neurons in SGZ-GCL were unaltered, indicating that SE-generated neurons replaced dead granule cells. Neuroblast formation had returned to normal levels in SGZ-GCL but generation of aberrant neurons in the hilus was still ongoing at 6 months. Our data indicate that long-term impairment of neurogenesis, as reported previously after kainic acid-induced SE, is not a general feature of chronic epilepsy. We have found that a substantial proportion of the mature granule cells at 6 months are generated during the first 2 weeks after SE and survive despite chronic inflammation, and that SE triggers continuous production of aberrant hilar neurons.  相似文献   

9.
10.
Previous studies suggest that reducing the numbers of adult‐born neurons in the dentate gyrus (DG) of the mouse increases susceptibility to severe continuous seizures (status epilepticus; SE) evoked by systemic injection of the convulsant kainic acid (KA). However, it was not clear if the results would be the same for other ways to induce seizures, or if SE‐induced damage would be affected. Therefore, we used pilocarpine, which induces seizures by a different mechanism than KA. Also, we quantified hippocampal damage after SE. In addition, we used both loss‐of‐function and gain‐of‐function methods in adult mice. We hypothesized that after loss‐of‐function, mice would be more susceptible to pilocarpine‐induced SE and SE‐associated hippocampal damage, and after gain‐of‐function, mice would be more protected from SE and hippocampal damage after SE. For loss‐of‐function, adult neurogenesis was suppressed by pharmacogenetic deletion of dividing radial glial precursors. For gain‐of‐function, adult neurogenesis was increased by conditional deletion of pro‐apoptotic gene Bax in Nestin‐expressing progenitors. Fluoro‐Jade C (FJ‐C) was used to quantify neuronal injury and video‐electroencephalography (video‐EEG) was used to quantify SE. Pilocarpine‐induced SE was longer in mice with reduced adult neurogenesis, SE had more power and neuronal damage was greater. Conversely, mice with increased adult‐born neurons had shorter SE, SE had less power, and there was less neuronal damage. The results suggest that adult‐born neurons exert protective effects against SE and SE‐induced neuronal injury.  相似文献   

11.
【背景】药物抗性癫痫的病理生理机制目前还不清楚。现有的证据提示P糖蛋白可能参与了药物抗性癫痫的形成。【目的】观察锂-匹罗卡品诱导的大鼠慢性颞叶内侧癫痫模型中海马不同分区P糖蛋白是否出现过度表达,并进而探讨其表达与癫痫发作频度是否相关。【方法】选择6-8周雌性SD大鼠,予锂-匹罗卡品诱导大鼠形成颞叶内侧癫痫慢性模型,对大鼠进行行为学观察及视频脑电记录;Western-Blot、实时定量RT-PCR及免疫组化方法分别检测P糖蛋白在处理组、假处理组、空白对照组中不同时间点(1d及60d)海马不同分区(CA1、CA3及DG)的表达情况。【结果】87.5%(35/40)的大鼠在锂-匹罗卡品诱导的急性期出现惊厥持续状态,伴有与临床癫痫全身发作类似的脑电变化;慢性期出现自主发作,发作间期脑电记录可见到痫性放电;与对照组相比,模型鼠急性期及慢性期在海马CA1、CA3及DG区均出现P糖蛋白的过度表达,增加约70%以上(p<0.05);应用免疫组化染色发现P糖蛋白阳性显色定位于锥体细胞层神经元上。【结论】在慢性颞叶内侧癫痫模型中急性期及慢性期海马锥体细胞层神经元均出现P糖蛋白的过度表达,并证实P糖蛋白的过度表达可能与痫性发作密切相关,但非发现其表达程度与发作频度相关。  相似文献   

12.
Recent observations indicate that drugs of abuse, including alcohol and opiates, impair adult neurogenesis in the hippocampus. We have studied in rats the impact of cocaine treatment (20 mg/kg, daily, i.p.) on cell proliferation, survival and maturation following short-term (8-day) and long-term (24-day) exposure. Using 5'-bromo-2-deoxyuridine (BrdU) and Ki-67 as mitotic markers at the end of the drug treatments, we found that both short- and long-term cocaine exposures significantly reduced cell proliferation in the dentate gyrus (DG) of the hippocampus. By labelling mitotic cells with BrdU pulses before or during the early stages of the drug treatment, we determined that long-term cocaine exposure did not affect the survival of newly generated cells. In register with this finding, cocaine chronic exposure did not increase the number of apoptotic cells labelled by TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling). Using doublecortin (DCX) immunocytochemistry and electron microscopy, we next examined the effects of cocaine exposure on the maturation of the neural precursors and on synaptic output to CA3. DCX immunocytochemistry showed that immature hippocampal cells of rats exposed to cocaine displayed normal arborization patterns and similar degrees of colocalization with BrdU at two different developmental stages. Moreover, cocaine did not produce significant morphological alterations of the mossy fibre projection system to stratum lucidum in the CA3 area of the hippocampus. The results presented demonstrate that chronic cocaine exposure impairs proliferation dynamics in the DG without significantly altering either the survival and growth of immature cells or the structural features of terminal projections to CA3.  相似文献   

13.
Short-term and long-term survival of new neurons in the rat dentate gyrus   总被引:22,自引:0,他引:22  
New neurons continue to be generated in the dentate gyrus throughout adulthood. Previous studies have shown that a significant proportion of new granule cells labeled with the thymidine analogue bromodeoxyuridine (BrdU) are lost from the adult dentate gyrus within 2 weeks. How long this loss continues and the extent to which it represents cell death, as opposed to dilution of label, is unclear. To address these questions, adult rats were injected with BrdU, and BrdU labeling in the dentate gyrus was compared at several survival time points. Double labeling with BrdU and the cell cycle marker Ki-67 showed that BrdU is detectable for up to 4 days in some cells that continue to divide, indicating that any decrease in the number of BrdU-labeled cells after 4 days is likely to reflect cell death rather than BrdU dilution. Death of new cells in the granule cell layer occurred at a steady rate between 6 and 28 days after labeling, resulting in loss of 50% of BrdU-labeled cells over this 22-day period. New granule cells that survived this first month lived for at least 5 additional months. In contrast, 26% of the granule cells labeled with BrdU at the peak of dentate gyrus development on postnatal day (P) 6 died between 1 and 6 months after labeling. These findings suggest that granule cells born during adulthood that become integrated into circuits and survive to maturity are very stable and may permanently replace granule cells born during development.  相似文献   

14.
A single episode of status epilepticus (SE) induces neuropathological changes in the brain that may lead to the development of a permanent epileptic condition. Most studies of this plasticity have focused on the hippocampus, where both synaptic function and intrinsic neuronal excitability have been shown to be persistently modified by SE. However, many other brain structures are activated during SE and may also be involved in the subsequent epileptogenic process. Here we have investigated whether SE, induced in rats with pilocarpine and terminated after 40 min with diazepam, persistently modifies the intrinsic excitability of pyramidal neurons in the subiculum. Subicular slices were prepared from control and SE-experienced rats (2-5 weeks after SE). In the control group, only 4% of the neurons fired bursts in response to intrasomatic, threshold-straddling depolarizing current pulses (low-threshold bursters). The remaining neurons either fired bursts in response to strong (3x threshold) depolarizations (35%; high-threshold bursters) or fired in a completely regular mode (61%; nonbursters). In the SE-experienced group, the fractions of low- and high-threshold bursters markedly increased to 29% and 53%, respectively. This change in firing behaviour was associated with a marked increase in the size of the spike after depolarization, particularly in low-threshold bursters. Experimental suppression of Ca2+ currents selectively blocked low-threshold bursting but did not affect high-threshold bursting, suggesting that a dual Ca2+- dependent and Ca2+- independent mechanism controls bursting in these neurons. The persistent up-regulation of intrinsic bursting in the subiculum, in concert with similar changes in the hippocampus, undoubtedly contributes to epileptogenesis following pilocarpine-induced SE.  相似文献   

15.
Yuji Ikegaya 《Glia》2016,64(9):1508-1517
Microglia, which are the brain's resident immune cells, engulf dead neural progenitor cells during adult neurogenesis in the subgranular zone (SGZ) of the dentate gyrus (DG). The number of newborn cells in the SGZ increases significantly after status epilepticus (SE), but whether and how microglia regulate the number of newborn cells after SE remain unclear. Here, we show that microglia rapidly eliminate newborn cells after SE by primary phagocytosis, a process by which viable cells are engulfed, thereby regulating the number of newborn cells that are incorporated into the DG. The number of newborn cells in the DG was increased at 5 days after SE in the adult mouse brain but rapidly decreased to the control levels within a week. During this period, microglia in the DG were highly active and engulfed newborn cells. We found that the majority of engulfed newborn cells were caspase‐negative viable cells. Finally, inactivation of microglia with minocycline maintained the increase in the number of newborn cells after SE. Furthermore, minocycline treatment after SE induced the emergence of hilar ectopic granule cells. Thus, our findings suggest that microglia may contribute to homeostasis of the dentate neurogenic niche by eliminating excess newborn cells after SE via primary phagocytosis. GLIA 2016;64:1508–1517  相似文献   

16.
Glial cells provide energy substrates to neurons, in part from glycogen metabolism, which is influenced by glycogen phosphorylase (GP). To gain insight into the potential subfield and laminar-specific expression of GP, histochemistry can be used to evaluate active GP (GPa) or totalGP (GPa + GPb). Using this approach, we tested the hypothesis that changes in GP would occur under pathological conditions that are associated with increased energy demand, i.e. severe seizures (status epilepticus or 'status'). We also hypothesized that GP histochemistry would provide insight into changes in the days and weeks after status, particularly in the hippocampus and entorhinal cortex, where there are robust changes in structure and function. One hour after the onset of pilocarpine-induced status, GPa staining was reduced in most regions of the hippocampus and entorhinal cortex relative to saline-injected controls. One week after status, there was increased GPa and totalGP, especially in the inner molecular layer, where synaptic reorganization of granule cell mossy fibre axons occurs (mossy fibre sprouting). In addition, patches of dense GP reactivity were evident in many areas. One month after status, levels of GPa and totalGP remained elevated in some areas, suggesting an ongoing role of GP or other aspects of glycogen metabolism, possibly due to the evolution of intermittent, recurrent seizures at approximately 3-4 weeks after status. Taken together, the results suggest that GP is dynamically regulated during and after status in the adult rat, and may have an important role in the pilocarpine model of epilepsy.  相似文献   

17.
Status epilepticus (SE) has a high mortality and morbidity rate in children. Disturbances in learning and memory are frequently associated with SE although it is not clear when the cognitive deficits occur. If cognitive dysfunction occurs immediately following the seizure, the window of opportunity for therapeutic intervention is limited. The first goal of this study was to determine the timing of cognitive dysfunction following SE in weanling rats. As there is evidence that enriching the environment can improve cognitive and motor deficits following brain injury, our second goal was to determine whether environmental enrichment improves cognitive function following SE. Rats underwent lithium-pilocarpine-induced SE at postnatal (P) day 20 and were then tested for visual-spatial memory in the water maze at P22, P25, P30, or P50. Rats with SE performed significantly worse in the water maze than control rats at all time points. Once the time-courses of visual-spatial memory deficits were determined, a second group of P20 rats were subjected to SE and were then placed in an enriched environment (enriched group) or remained in standard cages in the vivarium (nonenriched group) for 28 days. Following environmental manipulation, the animals were tested in the water maze. Rats housed in an enriched environment following the SE performed substantially better in the water maze than rats housed in standard cages. However, no differences were found between the enriched and nonenriched groups in EEG or histological evaluation. Although SE results in cognitive impairment within days of the seizure, housing in an enriched environment after SE has a beneficial effect on cognitive performance in rats.  相似文献   

18.
Structural and functional dissociation between the septal and the temporal part of the dentate gyrus predispose for possible differentiations in the ongoing neurogenesis process of the adult hippocampus. In this study, BrdU‐dated subpopulations of the rat septal and temporal dentate gyrus (coexpressing GFAP, DCX, NeuN, calretinin, calbindin, S100, caspase‐3 or fractin) were quantified comparatively at 2, 5, 7, 14, 21, and 30 days after BrdU administration in order to examine the successive time‐frames of the neurogenesis process, the glial or neuronal commitment of newborn cells and the occurring apoptotic cell death. Newborn neurons' migration from the neurogenic subgranular zone to the inner granular cell layer and expression of glutamate NMDA and AMPA receptors were also studied. BrdU immunocytochemistry revealed comparatively higher numbers of BrdU+ cells in the septal part, but stereological analysis of newborn and total granule cells showed an identical ratio in the two parts, indicating an equivalent neurogenic ability, and a common topographical pattern along each part's longitudinal and transverse axis. Similarly, both parts exhibited extremely low levels of newborn glial and apoptotic cells. However, despite the initially equal division rate and pattern of the septal and temporal proliferating cells, their later proliferative profile diverged in the two parts. Dynamic differences in the differentiation, migration and maturation process of the two BrdU‐incorporating subpopulations of newborn neurons were also detected, along with differences in their survival pattern. Therefore, we propose that various factors, including developmental date birth, local DG microenvironment and distinct functionality of the two parts may be the critical regulators of the ongoing neurogenesis process, leading the septal part to a continuous, rapid, and less‐disciplined genesis rate, whereas the quiescent temporal microenvironment preserves a quite steady, less‐demanding neurogenesis process. © 2014 Wiley Periodicals, Inc.  相似文献   

19.
Following status epilepticus in the rat, dentate granule cell neurogenesis increases greatly, and many of the new neurons appear to develop ectopically, in the hilar region of the hippocampal formation. It has been suggested that the ectopic hilar granule cells could contribute to the spontaneous seizures that ultimately develop after status epilepticus. However, the population has never been quantified, so it is unclear whether it is substantial enough to have a strong influence on epileptogenesis. To quantify this population, the total number of ectopic hilar granule cells was estimated using unbiased stereology at different times after pilocarpine-induced status epilepticus. The number of hilar neurons immunoreactive for Prox-1, a granule-cell-specific marker, was estimated using the optical fractionator method. The results indicate that the size of the hilar ectopic granule cell population after status epilepticus is substantial, and stable over time. Interestingly, the size of the population appears to be correlated with the frequency of behavioral seizures, because animals with more ectopic granule cells in the hilus have more frequent behavioral seizures. The hilar ectopic granule cell population does not appear to vary systematically across the septotemporal axis, although it is associated with an increase in volume of the hilus. The results provide new insight into the potential role of ectopic hilar granule cells in the pilocarpine model of temporal lobe epilepsy.  相似文献   

20.
The storage and persistence of memories depends on plasticity in the hippocampus. Adult neurogenesis produces new neurons that mature through critical periods for plasticity and cellular survival, which determine their contributions to learning and memory. However, most granule neurons are generated prior to adulthood; the maturational timecourse of these neurons is poorly understood compared to adult‐born neurons but is essential to identify how the dentate gyrus (DG), as a whole, contributes to behavior. To characterize neurons born in the early postnatal period, we labeled DG neurons born on postnatal day 6 (P6) with BrdU and quantified maturation and survival across early (1 hr to 8 weeks old) and late (2–6 months old) cell ages. We find that the dynamics of developmentally‐born neuron survival is essentially the opposite of neurons born in adulthood: P6‐born neurons did not go through a period of cell death during their immature stages (from 1 to 8 weeks). In contrast, 17% of P6‐born neurons died after reaching maturity, between 2 and 6 months of age. Delayed death was evident from the loss of BrdU+ cells as well as pyknotic BrdU+caspase3+ neurons within the superficial granule cell layer. Patterns of DCX, NeuN, and activity‐dependent Fos expression indicate that developmentally‐born neurons mature over several weeks and a sharp peak in zif268 expression at 2 weeks suggests that developmentally‐born neurons mature faster than adult‐born neurons (which peak at 3 weeks). Collectively, our findings are relevant for understanding how developmentally‐born DG neurons contribute to memory and disorders throughout the lifespan. High levels of early survival and zif268 expression may promote learning, while also rendering neurons sensitive to insults at defined stages. Late neuronal death in young adulthood may result in the loss of hundreds of thousands of DG neurons, which could impact memory persistence and contribute to hippocampal/DG atrophy in disorders such as depression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号