首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Working memory (WM) is the ability to retain and associate information over brief time intervals. Functional imaging studies demonstrate that WM is mediated by a distributed network including frontal and posterior cortices, hippocampus, and cerebellum. In rodents, the presentation of stimuli in a WM task is followed by a reset of the phase of hippocampal theta. In this paper we report the observation of a similar phenomenon in normal human subjects. Neuromagnetic responses were recorded during presentation of a set of digits and a subsequent probe of the retained items. All stimuli were presented with a fixed temporal pattern. We observed phase reset of approximately 7 Hz theta in left hippocampus approximately 120 ms after probe stimuli, whereas reset of theta in right hippocampus was visible approximately 80 ms prior to these anticipated stimuli. The duration of stimulus-locked theta increased with memory load, with a limiting value of approximately 600 ms for 5-7 retained items. We suggest that, as in rats, stimulus-locked theta may index involvement of human hippocampal networks in the cognitive processing of sensory input. The anticipatory phase reset of theta indicates involvement of hippocampus in right hemisphere and cerebellar timing networks. Hippocampal structures are essential for orientation to perturbations in the sensory scene, a function that requires use of a context established by a constellation of stimuli. We suggest that the initiation and maintenance of stimulus-locked hippocampal theta observed here may facilitate processing of potentially salient and/or novel input with respect to a context established by the contents of WM.  相似文献   

2.
Both amplitude and phase of rhythmic slow-wave electroencephalographic activity are physiological correlates of learning and memory in rodents. In humans, oscillatory amplitude has been shown to correlate with memory; however, the role of oscillatory phase in human memory is unknown. We recorded intracranial electroencephalogram from human cortical and hippocampal areas while subjects performed a short-term recognition memory task. On each trial, a series of four list items was presented followed by a memory probe. We found agreement across trials of the phase of oscillations in the 7- to 16-Hz range after randomly timed stimulus events, evidence that these events either caused a phase shift in the underlying oscillation or initiated a new oscillation. Phase locking in this frequency range was not generally associated with increased poststimulus power, suggesting that stimulus events reset the phase of ongoing oscillations. Different stimulus classes selectively modulated this phase reset effect, with topographically distinct sets of recording sites exhibiting preferential reset to either probe items or to list items. These findings implicate the reset of brain oscillations in human working memory.  相似文献   

3.
Long-term potentiation (LTP) is one candidate for the mechanism underlying memory storage. In the present study, we carried out electrophysiological studies on hippocampal slices prepared from the senescence-accelerated mouse (SAM-P/8), a strain which shows accelerated senescence and failure of certain types of learning in behavioral tests. The findings were compared with those noted in the SAM-R/1 substrain without severe symptoms of senescence. No significant differences were found between SAM-R/1 and SAM-P/8 of the same ages in responses in the absence of tetanic stimulation, and in LTP after tetanic stimulation. However, there were marked decreases in the degree of potentiation with aging in both strains.  相似文献   

4.
The hippocampus is a cortical region thought to play an important role in learning and memory. Most of our knowledge about the detailed organization of hippocampal circuitry responsible for these functions is derived from anatomical studies. These studies present an incomplete picture, however, because the functional character and importance of connections are often not revealed by anatomy. Here, we used a physiological method (photostimulation with caged glutamate) to probe the fine pattern of functional connectivity between the CA3 and CA1 subfields in the mouse hippocampal slice preparation. We recorded intracellularly from CA1 and CA3 pyramidal neurons while scanning with photostimulation across the entire CA3 subfield with high spatial resolution. Our results show that, at a given septotemporal level, nearby CA1 neurons receive synaptic inputs from neighboring CA3 neurons. Thus, the CA3 to CA1 mapping preserves neighbor relations.  相似文献   

5.
Aging is associated with deficits in long-term declarative memory formation, and wide differences in performance can be observed among aged individuals. The cellular substrates of these deficits and the reasons for such marked individual differences are not yet fully understood. In the present study, morphologic parameters of synapses and synaptic mitochondria in stratum molecolare of CA1 hippocampal region were investigated in aged (26- to 27-month-old) female rats after a single trial inhibitory avoidance task. In this memory protocol animals learn to avoid a dark compartment in which they received a mild, inescapable foot shock. Rats were tested 3 and 6 or 9 hours after the training, divided into good and bad responders according to their performance (retention times above or below 100 seconds, respectively) and immediately sacrificed. The number of synapses and synaptic mitochondria per cubic micrometer of tissue (numeric density), the average area of synapses and volume of synaptic mitochondria, the total area of synapses per cubic micrometer of tissue, the percentage of perforated synapses and the overall volume of mitochondria per cubic micrometer of tissue were evaluated. In the good responder group, the numeric density of synapses and mitochondria was significantly higher and the average mitochondrial volume was significantly smaller 9 hours versus 6 hours after the training. No significant differences were observed among bad responders. Thus, better performances in passive avoidance memory task are correlated with more efficient plastic remodeling of synaptic contacts and mitochondria in hippocampal CA1. Present findings indicate that maintenance of synaptic plastic reactivity during aging is a critical requirement for preserving long-term memory consolidation.  相似文献   

6.
目的 探讨老年人海马中钙结合蛋白 (CalbindinD 2 8K ,CaBP)的分布及表达 ,并分析其在人衰老过程中对神经元的生理、病理变化的影响。方法 收集 12例 6 0岁以上老年人非脑部疾病尸检左侧大脑半球的海马组织 ,经病理常规处理后 ,切片 ,用免疫组织化学ABC染色法检测海马CA1与CA3区CaBP的分布。结果 CaBP阳性产物出现在神经元的细胞质中 ,CA1区的CaBP免疫阳性细胞数多于CA3区。结论 CaBP在老年人海马CA1、CA3中均有表达 ,但有差别。提示CaBP在老年人海马的功能活动中可能起重要作用。  相似文献   

7.
电针对衰老模型大鼠学习记忆及海马CA1区LTP的影响   总被引:1,自引:0,他引:1  
目的 研究电针对D-半乳糖致衰老大鼠学习记忆障碍和海马CA1区突触传递长时程增强(LTP)效应的影响,探索电针改善学习和记忆的作用机制.方法 将SD大鼠随机分为正常对照组、模型组和电针组.采用腹腔注射D-半乳糖的方法建立衰老大鼠模型;电针组选取百会和足三里穴给予大鼠电针治疗,参数设定为:3 Hz,1 mA,连续波.采用Morris水迷宫观察大鼠行为学变化;并采用高频刺激Schaffer侧支,然后在同侧海马CA1区诱导LTP的方法检测大鼠海马突触可塑性的变化.结果 模型组与正常对照组相比水迷宫测试中的逃避潜伏期明显延长,距离百分比明显降低(P<0.05,P<0.01);而电针组与模型组相比潜伏期明显缩短,距离百分比明显增大(P<0.01).模型组与正常对照组相比海马CA1区LTP明显受到抑制(P<0.01),而电针组能减轻D-半乳糖对海马CA1区LTP的抑制作用,明显改善突触功能的可塑性(P<0.05).结论 电针可改善由D-半乳糖致衰老大鼠学习记忆能力,其作用机制之一可能与大鼠海马CA1区LTP的提高有关.  相似文献   

8.
Nicotine influences cognition and behavior, but the mechanisms by which these effects occur are unclear. By using positron emission tomography, we measured cognitive activation (increases in relative regional cerebral blood flow) during a working memory task [2-back task (2BT)] in 11 abstinent smokers and 11 ex-smokers. Assays were performed both after administration of placebo gum and 4-mg nicotine gum. Performance on the 2BT did not differ between groups in either condition, and the pattern of brain activation by the 2BT was consistent with reports in the literature. However, in the placebo condition, activation in ex-smokers predominated in the left hemisphere, whereas in smokers, it occurred in the right hemisphere. When nicotine was administered, activation was reduced in smokers but enhanced in ex-smokers. The lateralization of activation as a function of nicotine dependence suggests that chronic exposure to nicotine or withdrawal from nicotine affects cognitive strategies used to perform the memory task. Furthermore, the lack of enhancement of activation after nicotine administration in smokers likely reflects tolerance.  相似文献   

9.
Longitudinally oriented axon collaterals of CA3 pyramidal cells may be critical for integrating distributed information in the hippocampus. To investigate the possible role of this pathway in the retention of spatial memory, we made a single transversely oriented cut through the dorsal CA3 region of each hippocampus. Although the lesion involved <3% of the hippocampal volume, it nonetheless disrupted memory retention in a water maze in preoperatively trained rats. New learning in a different water maze was attenuated. No significant impairment occurred in rats with longitudinally oriented cuts, or in animals with ibotenic acid-induced lesions of similar magnitude. To characterize the effect of a focal lesion on the integrity of longitudinally projecting axons, we stained degenerating cells and fibers in rats with unilateral CA3 transections by using FluoroJade-B. Degenerating terminals were seen across a wide region posterior to the cut, and were present in the strata of areas CA3 and CA1 that are innervated by CA3 pyramidal cells. These results suggest that the integrity of longitudinally oriented, translamellar axons of CA3 pyramidal cells may be necessary for efficient acquisition and retention of spatial memory.  相似文献   

10.
Long-term potentiation (LTP) in the CA1 region of the hippocampus is widely believed to occur through a strengthening of efficacy of excitatory synapses between afferent fibers and pyramidal cells. An alternative mechanism of LTP, reduction of efficacy of synaptic inhibition, was examined in the present report. The present study demonstrates that the maintenance of LTP in the CA1 hippocampal subfield of guinea pigs is accompanied by impairment of type A gamma-aminobutyric acid (GABA) receptor function, particularly at apical dendritic sites of CA1 pyramidal cells. Enhanced excitability of GABAergic interneurons during LTP represents a strengthening of inhibitory efficacy. The net effect of opposite modifications of synaptic inhibition during LTP of CA1 pyramidal cells is an overall impairment of the strength of GABAergic inhibition, and disinhibition could contribute importantly to CA1 pyramidal cell LTP.  相似文献   

11.
Oscillatory rhythms in different frequency ranges mark different behavioral states and are thought to provide distinct temporal windows that coherently bind cooperating neuronal assemblies. However, the rhythms in different bands can also interact with each other, suggesting the possibility of higher-order representations of brain states by such rhythmic activity. To explore this possibility, we analyzed local field potential oscillations recorded simultaneously from the striatum and the hippocampus. As rats performed a task requiring active navigation and decision making, the amplitudes of multiple high-frequency oscillations were dynamically modulated in task-dependent patterns by the phase of cooccurring theta-band oscillations both within and across these structures, particularly during decision-making behavioral epochs. Moreover, the modulation patterns uncovered distinctions among both high- and low-frequency subbands. Cross-frequency coupling of multiple neuronal rhythms could be a general mechanism used by the brain to perform network-level dynamical computations underlying voluntary behavior.  相似文献   

12.
Experimental work in animals has shown that memory formation depends on a cascade of molecular events. Here we show that variability of human memory performance is related to variability in genes encoding proteins of this signaling cascade, including the NMDA and metabotrobic glutamate receptors, adenylyl cyclase, CAMKII, PKA, and PKC. The individual profile of genetic variability in these signaling molecules correlated significantly with episodic memory performance (P < 0.00001). Moreover, functional MRI during memory formation revealed that this genetic profile correlated with activations in memory-related brain regions, including the hippocampus and parahippocampal gyrus. The present study indicates that genetic variability in the human homologues of memory-related signaling molecules contributes to interindividual differences in human memory performance and memory-related brain activations.  相似文献   

13.
14.
目的观察早期恐惧声音应激对大鼠远期学习记忆功能及海马CA1区5-羟色胺1A受体(5-HT1AR)、环磷腺苷效应元件结合蛋白(CREB)、脑源性神经营养因子(BDNF)表达的影响。方法 40只出生后1 d的健康新生SD雄性大鼠随机分为对照组和应激组各20只。应激组以恐惧的声音为应激源,于每日上、下午各播放2 h,持续21 d,建立早期恐惧声音应激模型;对照组于正常环境下饲养。应激结束后5 w行Morris水迷宫实验检测学习记忆能力;水迷宫实验结束后断头取脑,苏木精-伊红(HE)染色观察海马区的病理情况,免疫荧光组织化学法和蛋白免疫印迹法检测大鼠海马CA1区5-HT1AR、CREB和BDNF蛋白表达。结果与对照组相比,应激组学习记忆能力明显下降(P<0.01);对照组海马CA1区的神经元结构整齐、排列紧密,而应激组海马CA1区的神经元排列疏松并且出现了神经元的丢失;与对照组相比,应激组海马CA1区的5-HT1AR、CREB和BDNF蛋白表达均明显降低(P<0.01)。结论早期恐惧声音应激可导致大鼠成年后学习记忆功能障碍,其机制可能与早期恐惧声音应激抑制5-HT1AR-CREB-BDNF信号通路有关。  相似文献   

15.
The striatum and hippocampus are conventionally viewed as complementary learning and memory systems, with the hippocampus specialized for fact-based episodic memory and the striatum for procedural learning and memory. Here we directly tested whether these two systems exhibit independent or coordinated activity patterns during procedural learning. We trained rats on a conditional T-maze task requiring navigational and cue-based associative learning. We recorded local field potential (LFP) activity with tetrodes chronically implanted in the caudoputamen and the CA1 field of the dorsal hippocampus during 6-25 days of training. We show that simultaneously recorded striatal and hippocampal theta rhythms are modulated differently as the rats learned to perform the T-maze task but nevertheless become highly coherent during the choice period of the maze runs in rats that successfully learned the task. Moreover, in the rats that acquired the task, the phase of the striatal-hippocampal theta coherence was modified toward a consistent antiphase relationship, and these changes occurred in proportion to the levels of learning achieved. We suggest that rhythmic oscillations, including theta-band activity, could influence not only neural processing in cortico-basal ganglia circuits but also dynamic interactions between basal ganglia-based and hippocampus-based forebrain circuits during the acquisition and performance of learned behaviors. Experience-dependent changes in coordination of oscillatory activity across brain structures thus may parallel the well known plasticity of spike activity that occurs as a function of experience.  相似文献   

16.
Poor glucose tolerance and memory deficits, short of dementia, often accompanies aging. The purpose of this study was to ascertain whether, among nondiabetic, nondemented middle-aged and elderly individuals, poorer glucose tolerance is associated with reductions in memory performance and smaller hippocampal volumes. We studied 30 subjects who were evaluated consecutively in an outpatient research setting. The composition of the participant group was 57% female and 68.6 +/- 7.5 years of age; the participants had an average education of 16.2 +/- 2.3 years, a score on the Mini Mental State Examination of 28.6 +/- 1.5, a glycosylated hemoglobin (HbA1C) of 5.88 +/- 0.74%, and a body mass index of 24.9 +/- 4.1 kg/m(2). Glucose tolerance was measured by an i.v. glucose tolerance test. Memory was tested by using the Wechsler Paragraphs recall tests at the time of administering the i.v. glucose tolerance test. The hippocampus and other brain volumes were measured by using validated methods on standardized MRIs. Decreased peripheral glucose regulation was associated with decreased general cognitive performance, memory impairments, and atrophy of the hippocampus, a brain area that is key for learning and memory. These associations were independent of age and Mini Mental State Examination scores. Therefore, these data suggest that metabolic substrate delivery may influence hippocampal structure and function. This observation may bring to light a mechanism for aging brain injury that may have substantial medical impact, given the large number of elderly individuals with impaired glucose metabolism.  相似文献   

17.
18.
目的通过观察5-羟色胺(5-HT)在海马神经环路的分布和表达,为研究5-HT参与学习记忆的作用机制提供形态学依据。方法采用免疫组织化学技术观测抗5-HT的抗体阳性神经元在海马CA1、CA2和CA3区的分布特征。结果①抗5-HT的抗体在海马CA1、CA2和CA3的细胞中广泛分布。②海马中分子层阳性细胞数较少,排列不规则。锥体层细胞从内到外排列整齐,密集成带,染色强烈。多形层细胞染色细胞散在分布。③空白对照切片未见抗5-HT抗体的阳性神经元胞体。结论 5-HT在大鼠海马分布广泛,可能参与了海马学习记忆有关的过程。  相似文献   

19.
The effects of the 29-amino acid neuropeptide galanin [GAL (1-29)], GAL(1-15), GAL(1-16), and the GAL subtype 2 receptor agonist D-tryptophan(2)-GAL(1-29) were studied in the dorsal hippocampus in vitro with intracellular recording techniques. GAL(1-15) induced, in the presence of tetrodotoxin, a dose-dependent hyperpolarization in hippocampal CA3 neurons. Most of the GAL(1-15)-sensitive neurons did not respond to GAL(1-29), GAL(1-16), or D-tryptophan(2)-GAL(1-29). These results indicate the presence of a distinct, yet-to-be cloned GAL(1-15)-selective receptor on CA3 neurons in the dorsal hippocampus.  相似文献   

20.
The spiking output of interneurons is key for rhythm generation in the brain. However, what controls interneuronal firing remains incompletely understood. Here we combine dynamic clamp experiments with neural network simulations to understand how tonic GABAA conductance regulates the firing pattern of CA3 interneurons. In baseline conditions, tonic GABAA depolarizes these cells, thus exerting an excitatory action while also reducing the excitatory postsynaptic potential (EPSP) amplitude through shunting. As a result, the emergence of weak tonic GABAA conductance transforms the interneuron firing pattern driven by individual EPSPs into a more regular spiking mode determined by the cell intrinsic properties. The increased regularity of spiking parallels stronger synchronization of the local network. With further increases in tonic GABAA conductance the shunting inhibition starts to dominate over excitatory actions and thus moderates interneuronal firing. The remaining spikes tend to follow the timing of suprathreshold EPSPs and thus become less regular again. The latter parallels a weakening in network synchronization. Thus, our observations suggest that tonic GABAA conductance can bidirectionally control brain rhythms through changes in the excitability of interneurons and in the temporal structure of their firing patterns.Rhythmic activity paces signal transfer within brain circuits. Brain rhythms are believed to depend heavily on the networks of inhibitory interneurons (14). In addition to synaptic inputs, interneuron excitability in the hippocampus is determined by tonic GABAA conductance (5, 6), which could thus contribute to hippocampal rhythmogenesis. Indeed, GABA transaminase inhibitor vigabatrin increases the ambient GABA concentration, enhancing the power of the theta-rhythm in rats (7). In mice expressing GFP under the GAD67 promoter the reduced levels of ambient GABA correlate with a decreased power of kainate-induced oscillations in vitro (8). The latter decrease is reversed by a GABA uptake inhibitor, guvacine, which raises ambient GABA. GABA release by astrocytes also increases the gamma oscillation power in hippocampal area CA1 in vivo (9). Intriguingly, in hippocampal slices of animals lacking δ subunit-containing GABAA receptors (which mediate tonic conductance in many local cell types including interneurons) the average frequency of cholinergically induced gamma oscillations is increased, whereas the oscillation power tends to drop (10). However, cellular mechanisms underlying such phenomena remain poorly understood.One possible explanation is the influence of tonic GABAA conductance on the firing pattern of interneurons. Activation of GABAA receptors inhibits most neurons, through either membrane hyperpolarization or shunting or both (11). In the adult brain, a depolarizing action of GABA has also been reported in various cell types, including hippocampal interneurons (3, 1215). GABAergic depolarization can prompt spike generation, thus countering the shunting effects (14, 16). Therefore, experimental evidence indicates that the net effect of GABAA receptor activation combines the excitatory action of depolarization and the inhibitory consequences of shunting, with the latter prevailing when the GABAA receptor conductance is sufficiently strong. As a result, increasing the tonic GABAA signaling can have a biphasic effect on individual hippocampal interneurons: excitatory at weak conductances and inhibitory at strong (14). Here we find that weak tonic GABAA conductance favors a more regular firing pattern of interneurons, thus facilitating synchronization of the CA3 network. In contrast, strong GABAA conductance makes the firing pattern more dependent on the stochastic excitatory synaptic input, thus reducing network synchrony.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号