首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently, major achievements in creating decellularized whole tissue scaffolds have drawn considerable attention to decellularization as a promising approach for tissue engineering. Decellularized tissues are expected to have mechanical strength and structure similar to the native tissues from which they are derived. However, numerous studies have shown that mechanical properties change after decellularization. Often, tissue structure is observed by histology and electron microscopy, but the structural alterations that may have occurred are not always evident. Here, a variety of techniques were used to investigate changes in tissue structure and relate them to altered mechanical behavior in decellularized rabbit carotid arteries. Histology and scanning electron microscopy revealed that major extracellular matrix components were preserved and fibers appeared intact, although collagen appeared looser and less crimped after decellularization. Transmission electron microscopy confirmed the presence of proteoglycans (PG), but there was decreased PG density and increased spacing between collagen fibrils. Mechanical testing and opening angle measurements showed that decellularized arteries had significantly increased stiffness, decreased extensibility and decreased residual stress compared with native arteries. Small-angle light scattering revealed that fibers had increased mobility and that structural integrity was compromised in decellularized arteries. Taken together, these studies revealed structural alterations that could be related to changes in mechanical properties. Further studies are warranted to determine the specific effects of different decellularization methods on the structure and performance of decellularized arteries used as vascular grafts.  相似文献   

2.
动物血管脱细胞方法及细胞外基质材料评价研究   总被引:2,自引:1,他引:2  
采用独立设计的反复冻融方法,去除兔颈总动脉中的血管细胞,对所获得的细胞外基质进行组织、生化、力学等分析。在分离兔颈总动脉后,首先用低渗缓冲液处理,然后经低温反复冻融,最后用非离子型去污剂处理。所得的支架行组织染色和扫描电镜分析,显示基质的微观结构;荧光染色和基因组DNAPCR分析,检测细胞DNA残留;分别行羟脯氨酸定量分析和轴向拉伸强度分析,检测胶原蛋白和血管生物力学性能的变化;支架没有明显的细胞毒性,溶血率低于医用材料的标准;支架随时间缓慢降解。种植兔的骨髓干细胞,研究细胞在支架上的粘附生长能力。应用本方法能彻底去除血管细胞,没有细胞碎片和DNA的残留,并保留了较完整的细胞外基质和力学性能,具有开放的大孔径结构,细胞生物相容性好,是一种理想的组织工程血管支架材料。  相似文献   

3.
Liao J  Joyce EM  Sacks MS 《Biomaterials》2008,29(8):1065-1074
The potential for decellularized aortic heart valves (AVs) as heart valve replacements is based on the assumption that the major cellular immunogenic components have been removed, and that the remaining extracellular matrix (ECM) should retain the necessary mechanical properties and functional design. However, decellularization processes likely alter the ECM mechanical and structural properties, potentially affecting long-term durability. In the present study, we explored the effects of an anionic detergent (sodium dodecyl sulfate (SDS)), enzymatic agent (Trypsin), and a non-ionic detergent (Triton X-100) on the mechanical and structural properties of AV leaflets (AVLs) to provide greater insight into the initial functional state of the decellularized AVL. The overall extensibility represented by the areal strain under 60 N/m increased from 68.85% for the native AV to 139.95%, 137.51%, and 177.69% for SDS, Trypsin, and Triton X-100, respectively, after decellularization. In flexure, decellularized AVLs demonstrated a profound loss of stiffness overall, and also produced a nonlinear moment-curvature relation compared to the linear response of the native AVL. Effective flexural moduli decreased from 156.0+/-24.6 kPa for the native AV to 23.5+/-5.8, 15.6+/-4.8, and 19.4+/-8.9 kPa for SDS, Trypsin, and Triton X-100 treated leaflets, respectively. While the overall leaflet fiber architecture remained relatively unchanged, decellularization resulted in substantial microscopic disruption. In conclusion, changes in mechanical and structural properties of decellularized leaflets were likely associated with disruption of the ECM, which may impact the durability of the leaflets.  相似文献   

4.
将天然血管经过脱细胞处理得到的脱细胞血管,被认为是一种具有广阔应用前景的组织工程血管支架材料.截至目前,细胞外基质(ECM)支架的制备方法仍缺乏统一标准.脱细胞方法的选择取决于组织来源和基质支架的用途,尤其对于脱细胞血管等需要长期承受血流冲击的基质支架材料来说,脱细胞方案的选择至关重要.细胞清除效率和细胞外基质支架的性...  相似文献   

5.
Woods T  Gratzer PF 《Biomaterials》2005,26(35):7339-7349
In this study, porcine bone-anterior cruciate ligament-bone (B-ACL-B) grafts were decellularized using one of three protocols incorporating surfactants lauryl sulfate (SDS), Triton X-100, and/or an organic solvent (tributyl phosphate (TnBP)). The effectiveness of Triton-SDS, Triton-Triton or Triton-TnBP treatments in removing cellular materials was determined and possible changes in biochemical composition and mechanical properties due to each treatment were investigated. Treatment with Triton-SDS was most effective at removing cell nuclei and intracellular protein (vimentin) from the ACL but affected both the collagen and glycosaminoglycan (GAG) components of the extracellular matrix while increasing the tensile stiffness of the ligament. Triton-Triton was the least effective of the three treatments in terms of cellular extraction, but did not significantly change the mechanical and biochemical properties of the ACL. Triton-TnBP matched the level of decellularization achieved by Triton-SDS in terms of visible cell nuclei; however, the extraction of intracellular vimentin was less consistent. TnBP treatment also slightly decreased the collagen content of the ACL but did not alter its mechanical properties. Overall, all three decellularization treatments maintained adequate mechanical and biochemical properties of B-ACL-B grafts to justify the further investigation of all three decellularization protocols. The selection of a superior treatment will depend on future studies of the propensity of treated tissues for repopulation by host ACL fibroblasts and, ultimately, on any immunogenic and/or remodeling host response induced in vivo.  相似文献   

6.
The utility of decellularized native tissues for tissue engineering has been widely demonstrated. Here, we examine the production of decellularized lung scaffolds from native rodent lung using two different techniques, principally defined by use of either the detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) or sodium dodecyl sulfate (SDS). All viable cellular material is removed, including at least 99% of DNA. Histochemical staining and mechanical testing indicate that collagen and elastin are retained in the decellularized matrices with CHAPS-based decellularization, while SDS-based decellularization leads to loss of collagen and decline in mechanical strength. Quantitative assays confirm that most collagen is retained with CHAPS treatment but that about 80% of collagen is lost with SDS treatment. In contrast, for both detergent methods, at least 60% of elastin content is lost along with about 95% of native proteoglycan content. Mechanical testing of the decellularized scaffolds indicates that they are mechanically similar to native lung using CHAPS decellularization, including retained tensile strength and elastic behavior, demonstrating the importance of collagen and elastin in lung mechanics. With SDS decellularization, the mechanical integrity of scaffolds is significantly diminished with some loss of elastic function as well. Finally, a simple theoretical model of peripheral lung matrix mechanics is consonant with our experimental findings. This work demonstrates the feasibility of producing a decellularized lung scaffold that can be used to study lung matrix biology and mechanics, independent of the effects of cellular components.  相似文献   

7.
In the development of tissue-engineered heart valves based on allograft decellularized extracellular matrix scaffolds, the material properties of the implant should be ideally comparable to the native semilunar valves. This investigation of the viscoelastic properties of the three functional aortic/pulmonary valve tissues (leaflets, sinus wall, and great vessel wall) was undertaken to establish normative values for fresh samples of human valves and to compare these properties after various steps in creating scaffolds for subsequent bioreactor-based seeding protocols. Torsional wave methods were used to measure the viscoelastic properties. Since preclinical surgical implant validation studies require relevant animal models, the tests reported here also include results for three pairs of both ovine and baboon aortic and pulmonary valves. For human aortic valves, four cryopreserved valves were compared with four decellularized scaffolds. Because of organ and heart valve transplant scarcity for pulmonary valves, only three cryopreserved and two decellularized pulmonary valves were tested. Leaflets are relatively soft. Loss angles are similar for all tissue samples. Regardless of species, the decellularization process used in this study has little effect on viscoelastic properties.  相似文献   

8.
Recently, decellularized tissue has been reported to have the potential to regenerate a variety of tissues. However, the optimal protocol for a decellularized esophagus has not been studied. Here, we investigated the effect of different decellularization protocols on the histology and biocompatibility of decellularized esophagi in view of future applications to tissue engineering. The esophageal mucosal epithelium (EP) from 4-week-old Wistar rats was enzymatically dissociated and cultured with growth-arrested feeder cells. Two methods for decellularization using deoxycholic acid (DEOX) or Triton X-100 (TRITON) were compared on esophagi from adult Wistar rats. Those treated with DEOX showed superior mechanical properties, maintenance of extracellular matrix, and lower DNA content than those treated with TRITON. To evaluate the biocompatibility of the scaffold, cultured (passage 3) esophageal epithelial cells were seeded inside the decellularized esophagus and cultured for 7 days. The cells seeded onto the decellularized esophagus were examined histologically and immunocytochemically. Esophageal epithelial cells were stratified into three to four cellular layers in vitro inside the decellularized esophagus, to show polarity. The results from immunocytochemistry indicated that the seeded epithelial cells expressed characteristic marker proteins for native esophageal EP. Decellularized esophagus showed suitable compatibility as a scaffold material for esophageal tissue engineering.  相似文献   

9.
To date, only two human laryngeal allotransplants have been reported and, although they were successful, both patients required life-long immunosuppression. A bioengineered human larynx could represent a possible alternative to allotransplantation. Human larynxes were decellularized enzymatically to obtain acellular matrices. Histological and molecular analysis demonstrated that all cellular components and nuclear material were removed. SEM showed that decellularized matrices retained the hierarchical structures of the native larynx, and mechanical tests demonstrated that the decellularization did not significantly impaired the biomechanically properties of the obtained matrices. Immunohistochemical staining found residual angiogenic factors after decellularization, and CAM analysis demonstrated that acellular laryngeal scaffolds induce a strong in vivo angiogenic response. Using a decellularization method, we are now able to obtain, in a short and clinically useful time, natural bioengineered laryngeal scaffolds which could be use for partial or total implantation in humans.  相似文献   

10.
The aim of this study was to develop a technique to decellularize a porcine cartilage bone construct with view to using this as a biological scaffold for cartilage substitution. The decellularization protocol applied freeze/thaw cycles; this was followed by cyclic incubation in hypotonic tris buffer and 0.1% (w/v) sodium dodecyl sulfate in hypotonic buffer plus protease inhibitors. Nucleases (RNase and DNase) were used to digest nucleic acids followed by disinfection using 0.1% (v/v) peracetic acid. Histological analysis confirmed the absence of visible cells within the decellularized tissue. DNA analysis revealed the near-complete removal of genomic DNA from the decellularized tissues. The decellularization process had minimal effect on the collagen content of the cartilage. However, there was a significant reduction in the glycosaminoglycan content in the decellularized tissues. There was no evidence of the expression of the major xenogeneic epitope, galactose-α-1,3-galactose. Biomechanical indentation testing of decellularized tissues showed a significant change in comparison to the fresh cartilage. This was presumed to be caused by the reduction in the glycosaminoglycan content. Biocompatibility of the acellular scaffold was determined using contact cytotoxicity assays and a galactosyltransferase knockout mouse model. Decellularized porcine cartilage tissue was found to exhibit favorable compatibility in both in vitro and in vivo tests. In conclusion, this study has generated data on the production of an acellular cartilage bone matrix scaffold for use in osteochondral defect repair. To our knowledge, this is the first study that has successfully removed whole cells and α-gal from xenogeneic cartilage and bone tissue.  相似文献   

11.
Background/introductionDiseases of the aorta can alter the local mechanical properties of the tissue, leading to aneurysms and plaque instability. Local tissue properties are best evaluated from surgical samples or autopsy tissue using mechanical testing ex vivo. We examined whether formalin-fixed tissues preserve regional and local variations in tissue properties when compared to fresh tissues in order to determine if fixed tissue can be used to infer mechanical changes associated with tissue remodeling.MethodsEquibiaxial mechanical tests were performed on canine descending thoracic aorta to quantify the regional and local tissue stiffness. Samples were taken from four locations along the aorta and from the lateral and medial side at each location. Half of the samples were randomly formalin fixed and used to measure the effect of fixation on local thickness, stiffness, and anisotropy.ResultsIn fresh tissue, regional differences in tissue stiffness and thickness are present. Aortic tissue stiffens and thins along the aorta. Fixation did not alter thickness, significantly increased tissue stiffness, and altered the directional dependency of the mechanical properties (anisotropy) at low strain. Formalin fixation altered local stiffness of the aorta near the aortic arch.ConclusionThe changes in mechanical properties along the aorta were preserved in formalin-fixed samples. However, our results show that formalin fixation can change the variation in tissue stiffness and significantly affects the anisotropic properties of vascular tissues. Formalin fixation introduces spurious changes in mechanical properties, and we therefore strongly recommend the use of fresh aortic tissues for biomechanical analysis.  相似文献   

12.
In vivo the vasculature provides an effective delivery system for cellular nutrients; however, artificial scaffolds have no such mechanism, and the ensuing limitations in mass transfer result in limited regeneration. In these investigations, the regional mass transfer properties that occur through a model scaffold derived from the human umbilical vein (HUV) were assessed. Our aim was to define the heterogeneous behavior associated with these regional variations, and to establish if different decellularization technologies can modulate transport conditions to improve microenvironmental conditions that enhance cell integration. The effect of three decellularization methods [Triton X-100 (TX100), sodium dodecyl sulfate (SDS), and acetone/ethanol (ACE/EtOH)] on mass transfer, cellular migration, proliferation, and metabolic activity were assessed. Results show that regional variation in tissue structure and composition significantly affects both mass transfer and cell function. ACE/EtOH decellularization was shown to increase albumin mass flux through the intima and proximate-medial region (0-250 μm) when compared with sections decellularized with TX100 or SDS; although, mass flux remained constant over all regions of the full tissue thickness when using TX100. Scaffolds decellularized with TX100 were shown to promote cell migration up to 146% further relative to SDS decellularized samples. These results show that depending on scaffold derivation and expectations for cellular integration, specificities of the decellularization chemistry affect the scaffold molecular architecture resulting in variable effects on mass transfer and cellular response.  相似文献   

13.
《Acta biomaterialia》2014,10(12):5043-5054
Small intestine submucosa (SIS) has emerged as one of a number of naturally derived extracellular matrix (ECM) biomaterials currently in clinical use. In addition to clinical applications, ECM materials form the basis for a variety of approaches within tissue engineering research. In our preliminary work it was found that SIS can be consistently and reliably made into tubular scaffolds which confer certain potential advantages. Given that decellularization protocols for SIS are applied to sheet-form SIS, it was hypothesized that a tubular-form SIS would behave differently to pre-existing protocols. In this work, tubular SIS was produced and decellularized by the conventional peracetic acid–agitation method, peracetic acid under perfusion along with two commonly used detergent–perfusion protocols. The aim of this was to produce a tubular SIS that was both adequately decellularized and possessing the mechanical properties which would make it a suitable scaffold for oesophageal tissue engineering, which was one of the goals of this work. Analysis was carried out via mechanical tensile testing, DNA quantification, scanning electron and light microscopy, and a metabolic assay, which was used to give an indication of the biocompatibility of each decellularization method. Both peracetic acid protocols were shown to be unsuitable methods with the agitation-protocol-produced SIS, which was poorly decellularized, and the perfusion protocol resulted in poor mechanical properties. Both detergent-based protocols produced well-decellularized SIS, with no adverse mechanical effects; however, one protocol emerged, SDS/Triton X-100, which proved superior in both respects. However, this SIS showed reduced metabolic activity, and this cytotoxic effect was attributed to residual reagents. Consequently, the use of SIS produced using the detergent SD as the decellularization agent was deemed to be the most suitable, although the elimination of the DNase enzyme would give further improvement.  相似文献   

14.
It has been suggested that residual cytotoxic sodium dodecyl sulfate (SDS) is responsible for the low levels of cell in-growth observed in SDS decellularized tissues. To determine whether this is the case, we used 2 washing methods to remove residual SDS and extensive biochemical, mechanical, and structural analyses to determine the effects of SDS-based decellularization on porcine anterior cruciate ligament (ACL) tissue and its propensity for cellular repopulation. The level of residual SDS in decellularized tissue was reduced using 2 different washing techniques (pH = 9 buffer, 75% ethanol). After washing in pH = 9 or 75% ethanol, residual SDS concentrations in decellularized tissues were found to be approximately 8 and 23 times less than reported SDS cytotoxic levels, respectively. It was found that SDS treatment significantly reduced glycosaminoglycan levels, increased collagen crimp amplitude and periodicity, and increased susceptibility of collagen to degradation by the gelatinase enzyme trypsin. The level of repopulation and viability of autologous ACL fibroblasts in the decellularized tissue after 28 days of culture were found to be the same regardless of the washing technique and resulting level of residual SDS in the tissue. This strongly indicates that alterations in tissue matrix biochemistry or structure from SDS treatment and not residual SDS cytotoxicity are responsible for the low cell re-population observed in SDS decellularized tissues.  相似文献   

15.
Yoshida R  Vavken P  Murray MM 《The Knee》2012,19(5):672-675
Rupture of ACL is a common injury. While the current surgical treatments are effective, many patients still suffer from precocious osteoarthritis, and there is an increasing interest in bioengineering approaches to improve ACL repair. Bovine collagen is a material currently in use for tissue engineering of ligaments. The alpha-gal epitopes found on bovine cells are a source of immunogenic stimulus for human cells. In this study, we wished to determine if those epitopes could be removed sufficiently to mitigate an immunogenic response using either a decellularization protocol or decellularization followed by alpha-galactosidase treatment. Bovine ACLs were treated with Triton-X, sodium deoxycholate, ribonuclease, and deoxyribonuclease to remove cells. A subset of the decellularized tissues was further treated with alpha-galactosidase. Human peripheral blood mononuclear cells (PBMCs) were exposed to untreated, decellularized, and alpha-galactosidase-treated tissues, and PBMC migration and IL-6 release were measured. PBMCs were significantly more attracted to untreated ACL compared to decellularized or alpha-galactosidase-treated tissue, but no difference was seen between the two treatment groups. PBMCs also released significantly more IL-6 when exposed to untreated tissue compared to decellularized ACL or alpha-galactosidase-treated ACL, but no difference was seen between the two treatment groups. Immunohistochemistry using anti-alpha-gal antibody detected the epitopes throughout the untreated ACL, but similar areas of reaction were not seen on decellularized or alpha-galactosidase-treated ACL. These results suggest that our decellularization protocol minimizes the immunogenic reactions of human PBMCs to bovine ACL tissue. Therefore, decellularized bovine ACL tissue may be a safe, effective biomaterial for ACL injury treatments.  相似文献   

16.
The in vitro biocompatibility of decellularized bone marrow extracellular matrix was evaluated. Following a freeze-thaw cycle, sectioned discs of fresh frozen rat metaphyseal bone were sequentially incubated in solutions of hypertonic, then hypotonic Ringer's solution, followed by deoxycholic acid, then DNAase I. The adequacy of decellularization of marrow stroma was examined by light microscopy. Marrow stromal fibroblastic cells were harvested by dispersion of rat long bone marrow, followed by concentration by discontinuous Ficoll-Paque gradient centrifugation. The fibroblastic cells were expanded by in vitro cultivation, and second passage cells were cryopreserved until needed. Cryopreserved marrow stromal cells were applied dropwise to sections of decellularized bone marrow extracellular matrix, and cultured in BJGb medium with 20% fetal bovine serum for ten days. Mature cultures were formalin fixed, decalcified, and embedded in paraffin. Light microscopy of hematoxylin and eosin stained sections showed individual spindle cells invading the upper portion of the decellularized extracellular matrix, and also a monolayer of spindle cells on the upper surfaces of exposed trabecular and cortical bone. This experiment showed that decellularized marrow extracellular matrix is a biocompatible three dimensional in vitro substrate for marrow stromal fibroblastic cells.  相似文献   

17.
The objectives of this study were to characterize fresh porcine menisci and develop a decellularization protocol with a view to the generation of a biocompatible and biomechanically functional scaffold for use in tissue engineering/regeneration of the meniscus. Menisci were decellularized by exposing the tissue to freeze-thaw cycles, incubation in hypotonic tris buffer, 0.1% (w/v) sodium dodecyl sulfate in hypotonic buffer plus protease inhibitors, nucleases, hypertonic buffer followed by disinfection using 0.1% (v/v) peracetic acid and final washing in phosphate-buffered saline. Histological, immunohistochemical, and biochemical analyses of the decellularized tissue confirmed the retention of the major structural proteins. There was, however, a 59.4% loss of glycosaminoglycans. The histoarchitecture was unchanged, and there was no evidence of the expression of the major xenogeneic epitope, galactose-alpha-1,3-galactose. Biocompatibility of the acellular scaffold was determined by using contact cytotoxicity and extract cytotoxicity tests. Decellularized tissue and extracts were not cytotoxic to cells. Biomechanical properties were determined by indentation and tensile tests, which confirmed the retention of biomechanical properties following decellularization. In conclusion, this study has generated data on the production of a biocompatible, biomechanically functional scaffold for use in meniscal repair.  相似文献   

18.
Aortic valve degeneration and dysfunction is one of the leading causes for morbidity and mortality. The conventional heart-valve prostheses have significant limitations with either life-long anticoagulation therapeutic associated bleeding complications (mechanical valves) or limited durability (biological valves). Tissue engineered valve replacement recently showed encouraging results, but the unpredictable outcome of tissue degeneration is likely associated to the extensive tissue processing methods. We believe that optimized decellularization procedures may provide aortic valve/root grafts improved durability. We present an improved/innovative decellularization approach using a detergent-enzymatic perfusion method, which is both quicker and has less exposure of matrix degenerating detergents, compared to previous protocols. The obtained graft was characterized for its architecture, extracellular matrix proteins, mechanical and immunological properties. We further analyzed the engineered aortic root for biocompatibility by cell adhesion and viability in vitro and heterotopic implantation in vivo. The developed decellularization protocol was substantially reduced in processing time whilst maintaining tissue integrity. Furthermore, the decellularized aortic root remained bioactive without eliciting any adverse immunological reaction. Cell adhesion and viability demonstrated the scaffold's biocompatibility. Our optimized decellularization protocol may be useful to develop the next generation of clinical valve prosthesis with a focus on improved mechanical properties and durability.  相似文献   

19.
探索利用搏动流对小口径血管进行脱细胞的方法。首先将脐动脉连接到搏动流管道中进行灌注,结合0.25%胰蛋白酶和0.01%乙二胺四乙酸混合溶液的共同作用,以1%十二烷基硫酸钠为脱细胞试剂对脐动脉洗脱3h。洗脱3h后的病理切片显示脐动脉细胞被全部脱去;拉伸实验测定脐动脉脱细胞前极限应力为(3.55±0.42)N,脱细胞后其极限应力为(3.50±0.43)N(P0.05);在300mmHg压强作用下,脐动脉脱细胞前后两组(各30根血管)均有2根破裂,28根保持完好(P0.05)。此结果预示,脐动脉在脱细胞前后的力学特性无显著差异。成纤维细胞静态培养显示,成纤维细胞能在脱细胞脐动脉支架表面良好生长。研究结果表明利用搏动流将小口径血管脱细胞是一种简便、快速、有效的方法。  相似文献   

20.
The ability to probe fresh tissue is a key feature to biomedical Raman spectroscopy. However, it is unclear how Raman spectra of calcified tissues are affected by freezing. In this study, six transverse sections of femoral cortical bone were subjected to multiple freeze∕thaw cycles and probed using a custom Raman microscope. Significant decreases were observed in the amide I and amide III bands starting after two freeze thaw cycles. Raman band intensities arising from proline residues of frozen tissue appeared consistent with fresh tissue after four cycles. Crystallinity values of bone mineral diminished slightly with freezing and were noticeable after only one freezing. Mineral carbonate levels did not deviate significantly with freezing and thawing. The authors recommend freezing and thawing bone tissue only once to maintain accurate results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号