首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Volumetric modulated arc therapy: IMRT in a single gantry arc   总被引:2,自引:0,他引:2  
Otto K 《Medical physics》2008,35(1):310-317
In this work a novel plan optimization platform is presented where treatment is delivered efficiently and accurately in a single dynamically modulated arc. Improvements in patient care achieved through image-guided positioning and plan adaptation have resulted in an increase in overall treatment times. Intensity-modulated radiation therapy (IMRT) has also increased treatment time by requiring a larger number of beam directions, increased monitor units (MU), and, in the case of tomotherapy, a slice-by-slice delivery. In order to maintain a similar level of patient throughput it will be necessary to increase the efficiency of treatment delivery. The solution proposed here is a novel aperture-based algorithm for treatment plan optimization where dose is delivered during a single gantry arc of up to 360 deg. The technique is similar to tomotherapy in that a full 360 deg of beam directions are available for optimization but is fundamentally different in that the entire dose volume is delivered in a single source rotation. The new technique is referred to as volumetric modulated arc therapy (VMAT). Multileaf collimator (MLC) leaf motion and number of MU per degree of gantry rotation is restricted during the optimization so that gantry rotation speed, leaf translation speed, and dose rate maxima do not excessively limit the delivery efficiency. During planning, investigators model continuous gantry motion by a coarse sampling of static gantry positions and fluence maps or MLC aperture shapes. The technique presented here is unique in that gantry and MLC position sampling is progressively increased throughout the optimization. Using the full gantry range will theoretically provide increased flexibility in generating highly conformal treatment plans. In practice, the additional flexibility is somewhat negated by the additional constraints placed on the amount of MLC leaf motion between gantry samples. A series of studies are performed that characterize the relationship between gantry and MLC sampling, dose modeling accuracy, and optimization time. Results show that gantry angle and MLC sample spacing as low as 1 deg and 0.5 cm, respectively, is desirable for accurate dose modeling. It is also shown that reducing the sample spacing dramatically reduces the ability of the optimization to arrive at a solution. The competing benefits of having small and large sample spacing are mutually realized using the progressive sampling technique described here. Preliminary results show that plans generated with VMAT optimization exhibit dose distributions equivalent or superior to static gantry IMRT. Timing studies have shown that the VMAT technique is well suited for on-line verification and adaptation with delivery times that are reduced to approximately 1.5-3 min for a 200 cGy fraction.  相似文献   

2.
Helical tomotherapy delivers intensity modulated radiation therapy using a binary multileaf collimator (MLC) to modulate a fan beam of radiation. This delivery occurs while the linac gantry and treatment couch are both in constant motion, so the beam describes, from a patient/phantom perspective, a spiral or helix of dose. The planning system models this continuous delivery as a large number (51) of discrete gantry positions per rotation, and given the small jaw/fan width setting typically used (1 or 2.5 cm) and the number of overlapping rotations used to cover the target (pitch often <0.5), the treatment planning system (TPS) potentially employs a very large number of static beam directions and leaf opening configurations to model the modulated fields. All dose calculations performed by the system employ a convolution/superposition model. In this work the authors perform a full Monte Carlo (MC) dose calculation of tomotherapy deliveries to phantom computed tomography (CT) data sets to verify the TPS calculations. All MC calculations are performed with the EGSnrc-based MC simulation codes, BEAMnrc and DOSXYZnrc. Simulations are performed by taking the sinogram (leaf opening versus time) of the treatment plan and decomposing it into 51 different projections per rotation, as does the TPS, each of which is segmented further into multiple MLC opening configurations, each with different weights that correspond to leaf opening times. Then the projection is simulated by the summing of all of the opening configurations, and the overall rotational treatment is simulated by the summing of all of the projection simulations. Commissioning of the source model was verified by comparing measured and simulated values for the percent depth dose and beam profiles shapes for various jaw settings. The accuracy of the MLC leaf width and tongue and groove spacing were verified by comparing measured and simulated values for the MLC leakage and a picket fence pattern. The validated source and MLC configuration were then used to simulate a complex modulated delivery from fixed gantry angle. Further, a preliminary rotational treatment plan to a delivery quality assurance phantom (the "cheese" phantom) CT data set was simulated. Simulations were compared with measured results taken with an A1SL ionization chamber or EDR2 film measurements in a water tank or in a solid water phantom, respectively. The source and MLC MC simulations agree with the film measurements, with an acceptable number of pixels passing the 2%/1 mm gamma criterion. 99.8% of voxels of the MC calculation in the planning target volume (PTV) of the preliminary plan passed the 2%/2 mm gamma value test. 87.0% and 66.2% of the voxels in two organs at risk (OARs) passed the 2%/2 mm tests. For a 3%/3 mm criterion, the PTV and OARs show 100%, 93.2%, and 86.6% agreement, respectively. All voxels passed the gamma value test with a criterion of 5%/3 mm. The Tomo-Therapy TPS showed comparable results.  相似文献   

3.
Helical tomotherapy (HT) delivers intensity-modulated radiation therapy (IMRT) using the simultaneous movement of the couch, the gantry and the binary multileaf collimator (MLC), a procedure that differs from conventional dynamic or step-and-shoot IMRT. A Monte Carlo (MC) simulation of HT in the helical mode therefore requires a new approach. Using validated phase-space files (PSFs) obtained through the MC simulation of the static mode with PENELOPE, an analytical model of the binary MLC, called the 'transfer function' (TF), was first devised to perform the transport of particles through the MLC much faster than time-consuming MC simulation and with no significant loss of accuracy. Second, a new tool, called TomoPen, was designed to simulate the helical mode by rotating and translating the initial coordinates and directions of the particles in the PSF according to the instantaneous position of the machine, transporting the particles through the MLC (in the instantaneous configuration defined by the sinogram), and computing the dose distribution in the CT structure using PENELOPE. Good agreement with measurements and with the treatment planning system of tomotherapy was obtained, with deviations generally well within 2%/1 mm, for the simulation of the helical mode for two commissioning procedures and a clinical plan calculated and measured in homogeneous conditions.  相似文献   

4.
At the time of treatment planning it would be useful to know whether part of the treatment beam passes through the patient/couch support assembly before it passes through the patient. In the previous work of Yorke, the range of gantry angles leading to beam-couch intersection was found as a function of couch translation for symmetric field sizes and for zero couch rotation. Yorke's method has been extended to include couch rotation, dual independent jaws, and multi-leaf collimator (MLC) field shapes. In addition, the new method is also applicable in the situation of the couch top located above the isocenter. For a clinically treatable, 20 x 20 cm field configuration in a linac, the range of gantry angles leading to beam-couch intersection are different by 6.7 degrees for a couch rotation angle of 25 degrees when compared to no couch rotation. The new method agrees with data within the setup and measurement uncertainties for a variety of field sizes including an oval shaped MLC field, and various couch locations, couch, and collimator rotation angles.  相似文献   

5.
Tomotherapy is the delivery of intensity modulated radiation therapy using rotational delivery of a fan beam in the manner of a CT scanner. In helical tomotherapy the couch and gantry are in continuous motion akin to a helical CT scanner. Helical tomotherapy is inherently capable of acquiring CT images of the patient in treatment position and using this information for image guidance. This review documents technological advancements of the field concentrating on the conceptual beginnings through to its first clinical implementation. The history of helical tomotherapy is also a story of technology migration from academic research to a university-industrial partnership, and finally to commercialization and widespread clinical use.  相似文献   

6.
Helical tomotherapy (HT) is a novel treatment approach that combines Intensity-Modulate Radiation Therapy (IMRT) delivery with in-built image guidance using megavoltage (MV) CT scanning. The technique utilises a 6 MV linear accelerator mounted on a CT type ring gantry. The beam is collimated to a fan beam, which is intensity modulated using a binary multileaf collimator (MLC). As the patient advances slowly through the ring gantry, the linac rotates around the patient with a leaf-opening pattern optimised to deliver a highly conformal dose distribution to the target in the helical beam trajectory. The unit also allows the acquisition of MVCT images using the same radiation source detuned to reduce its effective energy to 3.5 MV, making the dose required for imaging less than 3 cGy. This paper discusses the major features of HT and describes the advantages and disadvantages of this approach in the context of the commercial Hi-ART system.  相似文献   

7.
The nature of stereotactic radiotherapy (SRT)/radiosurgery (SRS) requires the use of oblique non-coplanar beams to avoid critical structures and maximize target coverage. These beams are delivered via a combination of gantry, collimator, and couch rotations. Such beam orientations could result in the gantry colliding with the patient or couch. The outcome can be patient injury, damaged equipment, and unrealized treatment. Our objective in this work was to create a treatment planning tool that utilizes each unique patient geometry to quantify clearance for stereotactic beams. Emphasis was placed on developing a general platform that can completely, yet easily, define any user system. Gantry components were described by providing component dimensions to software that generates thousands of surface points. Table components were described as a combination of boxes and measured surface points. During the treatment planning process isocenter coordinates, patient dimensions and beam orientation were specified. Gantry components were then transformed into the table reference frame. The shortest distance between the gantry and patient or couch was computed and compared to a safety margin. This clearance assurance algorithm was developed in response to the need to reduce patient setup time, and to increase the range of potentially useful beams. The software was verified by measuring minimum gantry-table distances at multiple beam orientations and comparing to calculations. Differences between calculated and measured clearances were on the order of 1 cm. The software enabled the safe delivery of noncoplanar oblique beams that are difficult to visualize. The software was used successfully to assure clearance for 50 patients (366 beams). This useful clinical tool became an integral part of the stereotactic quality assurance protocol at St Luke's-Roosevelt Hospital Center.  相似文献   

8.
A treatment planning technique for calculation of dose distributions in dynamic stereotactic "radiosurgery" with a 10-MV isocentrically mounted linear accelerator is presented. The treatment planning for dynamic radiosurgery is a three-dimensional problem, since during treatment both the gantry and the couch rotate simultaneously, the gantry from 30 degrees to 330 degrees and the couch from 75 degrees to - 75 degrees. The patient surface and anatomical information is obtained from a family of computed tomography or magnetic resonance scans, and a stereotactic frame is used for target localization, treatment setup, and patient immobilization during the treatment. The dose calculational algorithm follows the gantry and couch rotation in an incremental fashion, and relies on measured stationary beam central axis percentage depth doses and dose profiles to calculate the normalized tissue-maximum-ratio distributions over a matrix of points defined on one of three orthogonal planes (transverse, sagittal, or coronal). The dose calculation algorithm is discussed in detail and calculated dose distributions for single plane and dynamic radiosurgery compared with measured data.  相似文献   

9.
Loose helical delivery is a potential solution to account for respiration-driven tumour motion in helical tomotherapy (HT). In this approach, a treatment is divided into a set of interlaced 'loose' helices commencing at different gantry angles. Each loose helix covers the entire target length in one gantry rotation during a single breath-hold. The dosimetric characteristics of loose helical delivery were investigated by delivering a 6 MV photon beam in a HT-like manner. Multiple scenarios of conventional 'tight' HT and loose helical deliveries were modelled in treatment planning software, and carried out experimentally with Kodak EDR2 film. The advantage of loose helical delivery lies in its ability to produce a more homogeneous dose distribution by eliminating the 'thread' effect-an inherent characteristic of HT, which results in dose modulations away from the axis of gantry rotation. However, loose helical delivery was also subjected to undesirable dose modulations in the direction of couch motion (termed 'beating' effect), when the ratio between the number of beam projections per gantry rotation (n) and pitch factor (p) was a non-integer. The magnitude of dose modulations decreased with an increasing n/p ratio. The results suggest that for the current HT unit (n = 51), dose modulations could be kept under 5% by selecting a pitch factor smaller than 7. A pitch factor of this magnitude should be able to treat a target up to 30 cm in length. Loose helical delivery should increase the total session time only by a factor of 2, while the planning time should stay the same since the total number of beam projections remains unchanged. Considering its dosimetric advantage and clinical practicality, loose helical delivery is a promising solution for the future HT treatments of respiration-driven targets.  相似文献   

10.
Iori M  Cagni E  Nahum AE  Borasi G 《Medical physics》2007,34(7):2759-2773
Dynamic-gantry multi-leaf collimator (MLC)-based, intensity-modulated radiotherapy (IMAT) has been proposed as an alternative to tomotherapy. In contrast to fixed-gantry, MLC-based intensity-modulated radiotherapy (IMRT), where commercial treatment planning systems (TPS) or dosimetric analysis software currently provide many automatic tools enabling two-dimensional (2D) detectors (matrix or electronic portal imaging devices) to be used as measurement systems, for the planning and delivery of IMAT these tools are generally not available. A new dosimetric method is proposed to overcome some of these limitations. By converting the MLC files of IMAT beams from arc to fixed gantry-angle modality, while keeping the leaf trajectories equal, IMAT plans can be both simulated in the TPS and executed as fixed-gantry, sliding-window DMLC treatments. In support of this idea, measurements of six IMAT plans, in their double form of original arcs and converted fixed-gantry DMLC beams (IMAT-SIM), have been compared among themselves and with their corresponding IMAT-SIM TPS calculations. Radiographic films and a 2D matrix ionization chamber detector rigidly attached to the accelerator gantry and set into a cubic plastic phantom have been used for these measurements. Finally, the TPS calculation-algorithm implementations of both conformal dynamic MLC arc (CD-ARC) modalities, used for clinical IMAT calculations, and DMLC modalities (IMAT-SIM), proposed as references for validating IMAT plan dose-distributions, have been compared. The comparisons between IMAT and IMAT-SIM delivered beams have shown very good agreement with similar shapes of the measured dose profiles which can achieve a mean deviation (+/-2sigma) of (0.35+/-0.16) mm and (0.37+/-0.14)%, with maximum deviations of 1.5 mm and 3%. Matching the IMAT measurements with their corresponding IMAT-SIM data calculated by the TPS, these deviations remain in the range of (1.01+/-0.28) mm and (-1.76+/-0.42)%, with maximums of 3 mm and 5%, limits generally accepted for IMRT plan dose validation. Differences in the algorithm implementations have been found, but by correcting CD-ARC calculations for the leaf-end transmission offset (LTO) effect the IMAT and IMAT-SIM simulations agree well in terms of final dose distributions. The differences found between IMAT and the IMAT-SIM beam measurements are due to the different controls of leaf motion (via electron gun delay in the latter) that cannot be used in the former to correct possible speed variations in the rotation of the gantry. As the IMAT delivered beams are identical to what the patient will receive during the treatment, and the IMAT-SIM beam calculations made by the TPS reproduce exactly the treatment plans of that patient, the accuracy of this new dosimetric method is comparable to that which is currently used for static IMRT. This new approach of 2D-detector dosimetry, together with the commissioning, quality-assurance, and preclinical dosimetric procedures currently used for IMRT techniques, can be applied and extended to any kind of dynamic-gantry MLC-based treatment modality either CD-ARC or IMAT.  相似文献   

11.
Gated radiotherapy of lung lesions is particularly complex for helical tomotherapy, due to the simultaneous motions of its three subsystems (gantry, couch and collimator). We propose a new way to implement gating for helical tomotherapy, namely multi-pass respiratory gating. In this method, gating is achieved by delivering only the beam projections that occur within a respiratory gating window, while blocking the rest of the beam projections by fully closing all collimator leaves. Due to the continuous couch motion, the planned beam projections must be delivered over multiple passes of radiation deliveries. After each pass, the patient couch is reset to its starting position, and the treatment recommences at a different phase of tumour motion to 'fill in' the previously blocked beam projections. The gating process may be repeated until the plan dose is delivered (full gating), or halted after a certain number of passes, with the entire remaining dose delivered in a final pass without gating (partial gating). The feasibility of the full gating approach was first tested for sinusoidal target motion, through experimental measurements with film and computer simulation. The optimal gating parameters for full and partial gating methods were then determined for various fractionation schemes through computer simulation, using a patient respiratory waveform. For sinusoidal motion, the PTV dose deviations of -29 to 5% observed without gating were reduced to range from -1 to 3% for a single fraction, with a 4 pass full gating. For a patient waveform, partial gating required fewer passes than full gating for all fractionation schemes. For a single fraction, the maximum allowed residual motion was only 4 mm, requiring large numbers of passes for both full (12) and partial (7 + 1) gating methods. The number of required passes decreased significantly for 3 and 30 fractions, allowing residual motion up to 7 mm. Overall, the multi-pass gating technique was shown to be a promising way to reduce the impact of lung tumour motion during helical tomotherapy.  相似文献   

12.
An accurate means of determining and correcting for daily patient setup errors is important to the cancer outcome in radiotherapy. While many tools have been developed to detect setup errors, difficulty may arise in accurately adjusting the patient to account for the rotational error components. A novel, automated method to correct for rotational patient setup errors in helical tomotherapy is proposed for a treatment couch that is restricted to motion along translational axes. In tomotherapy, only a narrow superior/inferior section of the target receives a dose at any instant, thus rotations in the sagittal and coronal planes may be approximately corrected for by very slow continuous couch motion in a direction perpendicular to the scanning direction. Results from proof-of-principle tests indicate that the method improves the accuracy of treatment delivery, especially for long and narrow targets. Rotational corrections about an axis perpendicular to the transverse plane continue to be implemented easily in tomotherapy by adjustment of the initial gantry angle.  相似文献   

13.
As an alternative between manual planning and beamlet-based IMRT, we have developed an optimization system for inverse planning with anatomy-based MLC fields. In this system, named Ballista, the orientation (table and gantry), the wedge filter and the field weights are simultaneously optimized for every beam. An interesting feature is that the system is coupled to Pinnacle3 by means of the PinnComm interface, and uses its convolution dose calculation engine. A fully automatic MLC segmentation algorithm is also included. The plan evaluation is based on a quasi-random sampling and on a quadratic objective function with penalty-like constraints. For efficiency, optimal wedge angles and wedge orientations are determined using the concept of the super-omni wedge. A bound-constrained quasi-Newton algorithm performs field weight optimization, while a fast simulated annealing algorithm selects the optimal beam orientations. Moreover, in order to generate directly deliverable plans, the following practical considerations have been incorporated in the system: collision between the gantry and the table as well as avoidance of the radio-opaque elements of a table top. We illustrate the performance of the new system on two patients. In a rhabdomyosarcoma case, the system generated plans improving both the target coverage and the sparing of the parotide, as compared to a manually designed plan. In the second case presented, the system successfully produced an adequate plan for the treatment of the prostate while avoiding both hip prostheses. For the many cases where full IMRT may not be necessary, the system efficiently generates satisfactory plans meeting the clinical objectives, while keeping the treatment verification much simpler.  相似文献   

14.
RapidArc radiotherapy technology from Varian Medical Systems is one of the most complex delivery systems currently available, and achieves an entire intensity-modulated radiation therapy (IMRT) treatment in a single gantry rotation about the patient. Three dynamic parameters can be continuously varied to create IMRT dose distributions-the speed of rotation, beam shaping aperture and delivery dose rate. Modeling of RapidArc technology was incorporated within the existing Vancouver Island Monte Carlo (VIMC) system (Zavgorodni et al 2007 Radiother. Oncol. 84 S49, 2008 Proc. 16th Int. Conf. on Medical Physics). This process was named VIMC-Arc and has become an efficient framework for the verification of RapidArc treatment plans. VIMC-Arc is a fully automated system that constructs the Monte Carlo (MC) beam and patient models from a standard RapidArc DICOM dataset, simulates radiation transport, collects the resulting dose and converts the dose into DICOM format for import back into the treatment planning system (TPS). VIMC-Arc accommodates multiple arc IMRT deliveries and models gantry rotation as a series of segments with dynamic MLC motion within each segment. Several verification RapidArc plans were generated by the Eclipse TPS on a water-equivalent cylindrical phantom and re-calculated using VIMC-Arc. This includes one 'typical' RapidArc plan, one plan for dual arc treatment and one plan with 'avoidance' sectors. One RapidArc plan was also calculated on a DICOM patient CT dataset. Statistical uncertainty of MC simulations was kept within 1%. VIMC-Arc produced dose distributions that matched very closely to those calculated by the anisotropic analytical algorithm (AAA) that is used in Eclipse. All plans also demonstrated better than 1% agreement of the dose at the isocenter. This demonstrates the capabilities of our new MC system to model all dosimetric features required for RapidArc dose calculations.  相似文献   

15.
Patient treatment in a medical linear accelerator is characterized by many angular and translational movements of the gantry and couch. The direction and orientation of each treatment beam is specified by a set of gantry, turntable, and collimator angles. It is possible that some selected treatment field configurations will result in gantry/couch or gantry/patient collisions that remain undetected during the treatment planning process. In this work, a digital camera has been used to record all the workable gantry/ patient set-up images, and a Windows programming language is used to edit and display these images on a personal computer for the treatment planner to screen the treatment plans. These graphical displays enable the planner to be aware of any potential collision hazards by an actual visualization of each selected gantry/turntable or gantry/patient angle configuration.  相似文献   

16.
Intra-fraction target motion hits the fundamental basis of IMRT where precise target positions are assumed. Real-time motion compensation is necessary to ensure that the same dose is delivered as planned. Strategies for conventional IMRT delivery for moving targets by dynamic multi-leaf collimators (MLC) tracking are well published. Binary MLC-based IMRT,such as TomoTherapy , requires synchronized motion of MLC, the couch and the gantry, which suggests a unique motion management strategy. Thanks to it sultra-fast leaf response and fast projection rate, real-time motion compensation for binary MLC-based IMRT is feasible. Topotherapy is a new IMRT delivery technique, which can be implemented in commercial helical TomoTherapy machines using only fixed gantry positions. In this paper, we present a novel approach for TopoTherapy delivery that adjusts for moving targets without additional hardware and control requirement. This technique uses the planned leaf sequence but rearranges the projection and leaf indices. It does not involve time-consuming operations, such as reoptimization. Unlike gating or breath hold-based methods, this technique can achieve nearly a 100% duty cycle with little breath control. Unlike dynamic MLC-based tracking methods, this technique requires neither the whole target motion trajectory nor the velocity of target motion. Instead, it only requires instantaneous target positions, which greatly simplifies the system implementation. Extensive simulations, including the worst-case scenarios, validated the presented technique to be applicable to relatively regular or mild irregular respirations. The delivered dose conforms well to the target, and significant margin reduction can be achieved provided that accurate, real-time tumor localization is available.  相似文献   

17.
We have previously developed a tumour tracking system, which adapts the aperture of a Siemens 160 MLC to electromagnetically monitored target motion. In this study, we exploit the use of a novel linac-mounted kilovoltage x-ray imaging system for MLC tracking. The unique in-line geometry of the imaging system allows the detection of target motion perpendicular to the treatment beam (i.e. the directions usually featuring steep dose gradients). We utilized the imaging system either alone or in combination with an external surrogate monitoring system. We equipped a Siemens ARTISTE linac with two flat panel detectors, one directly underneath the linac head for motion monitoring and the other underneath the patient couch for geometric tracking accuracy assessments. A programmable phantom with an embedded metal marker reproduced three patient breathing traces. For MLC tracking based on x-ray imaging alone, marker position was detected at a frame rate of 7.1 Hz. For the combined external and internal motion monitoring system, a total of only 85 x-ray images were acquired prior to or in between the delivery of ten segments of an IMRT beam. External motion was monitored with a potentiometer. A correlation model between external and internal motion was established. The real-time component of the MLC tracking procedure then relied solely on the correlation model estimations of internal motion based on the external signal. Geometric tracking accuracies were 0.6 mm (1.1 mm) and 1.8 mm (1.6 mm) in directions perpendicular and parallel to the leaf travel direction for the x-ray-only (the combined external and internal) motion monitoring system in spite of a total system latency of ~0.62 s (~0.51 s). Dosimetric accuracy for a highly modulated IMRT beam--assessed through radiographic film dosimetry--improved substantially when tracking was applied, but depended strongly on the respective geometric tracking accuracy. In conclusion, we have for the first time integrated MLC tracking with x-ray imaging in the in-line geometry and demonstrated highly accurate respiratory motion tracking.  相似文献   

18.
Topographic treatment is a radiation therapy delivery technique for fixed-gantry (nonrotational) treatments on a helical tomotherapy system. The intensity-modulated fields are created by moving the treatment couch relative to a fan-beam positioned at fixed gantry angles. The delivered dose distribution is controlled by moving multileaf collimator (MLC) leaves into and out of the fan beam. The purpose of this work was to develop a leaf-sequencing algorithm for creating topographic MLC sequences. Topographic delivery was modeled using the analogy of a water faucet moving over a collection of bottles. The flow rate per unit length of the water from the faucet represented the photon fluence per unit length along the width of the fan beam, the collection of bottles represented the pixels in the treatment planning fluence map, and the volume of water collected in each bottle represented the delivered fluence. The radiation fluence per unit length delivered to the target at a given position is given by the convolution of the intensity distribution per unit length over the width of the beam and the time per unit distance along the direction of travel that an MLC leaf is open. The MLC opening times for the desired dose profiles were determined using a technique based on deconvolution using a genetic algorithm. The MLC opening times were expanded in terms of a Fourier series, and a genetic algorithm was used to find the best expansion coefficients for a given dose distribution. A series of wedge shapes (15, 30, 45, and 60 deg) and "dose well" test fluence maps were created to test the algorithm's ability to generate topographic leaf sequences. The accuracy of the leaf-sequencing algorithm was measured on a helical tomotherapy system using radiographic film placed at depth in water equivalent material. The measured dose profiles were compared with the desired dose distributions. The agreement was within +/- 2% or 2 mm distance-to-agreement (DTA) in the high dose gradient regions for all test cases. The central axis measured dose was between 3.6% and 4.2% higher than the expected dose for the wedge cases. For the "dose well" test cases, the calculated and measured doses agreed to within +/- 0.5% at the peak and within +/- 1.6% in the "dose well." The topographic leaf-sequencing algorithm produced deliverable dose distributions that agreed well with the calculated dose distributions. This delivery technique could be used for treatment of whole intact breast. However, additional work is needed to further improve the algorithm in order to get better agreement between the calculated, deliverable, and measured dose distributions.  相似文献   

19.
Hua C  Chang J  Yenice K  Chan M  Amols H 《Medical physics》2004,31(7):2128-2134
Gantry-couch collision is a serious concern for treatment planning of the linear accelerator (linac) based stereotactic radiosurgery (SRS). The ability to detect collision at the time of planning eliminates the need for backup plans and preserves the useful beam angles that would be deemed unsafe and discarded otherwise. Most collision-detection schemes embedded in commercial planning software guard only against the most apparent collisions. On the other hand, a fool-proof collision-map or lookup table often requires detailed measurement of machine geometry and complex graphic operations. In this study, we have developed a simple analytical method for collision detection with the use of quick machine-specific measurements. The collision detection is mathematically solved by determining whether two facets in three-dimensional space, representing gantry and couch surfaces, intersect with each other. A computer code was implemented and tested on a Varian Clinac 600C linac equipped with a BrainLab micromultileaf collimator (MLC) device. To measure machine-specific parameters, the lesion isocenter was set to the origin of the stereotactic coordinate system. The reference coordinates of couch bracket corners and micro-MLC to the linac isocenter were measured only once in the treatment room before they were incorporated into the computer program. Couch, gantry, and collimator were subsequently translated and rotated to study the clearance of various beam arrangements and lesion locations. Predicted results were verified at the machine. Our method correctly confirmed clearance for a retrospective study of 54 previously treated SRS plans (76 isocenters). It also accurately predicted the collisions for all ten artificially created cases. In conclusion, we have developed an analytical method for SRS collision detection that is accurate, easy to implement, and computationally inexpensive.  相似文献   

20.
Cadman P 《Medical physics》2007,34(10):3838-3843
The effect of various physical beam parameters for Co-60 tomotherapy is examined, including: Cylindrical source size, source-to-collimator distance (SCD) and collimator leaf width. In general, beam profile effects are seen with larger Co-60 sources that are not seen with conventional linacs and multileaf collimators that are used for IMRT, including a broadening of the profile width as the source width increases. A treatment planning study was conducted to evaluate the effect of various beam parameter combinations with planning regions of interest typical of a simultaneous boost head and neck treatment. Combinations of SCD and source FWHM that produce an 80%-20% profile distance less than approximately 0.85 cm at 0.5 cm depth produced a Co-60 tomotherapy plan with better DVH results than a conventional 7-field linac plan for a 1 cm leaf width. Further improvement may be achieved by reducing the leaf width. In general it may be concluded that commercially available cylindrical Co-60 sources of 1.5-2.0 cm diameter may be appropriate for tomotherapy if the proper combination of beam parameters is chosen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号