首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
P. Hammond  A.T. Smith   《Brain research》1984,301(2):287-298
Sensitivity of 95 complex cells to relative motion between oriented bars and textured backgrounds was investigated monocularly in the striate cortex of lightly anesthetized, paralyzed cats. Cells were classified conventionally. Those in deep layers were either direction-selective, or strongly preferred one direction of motion, and responded well to background texture motion alone: backgrounds potentiated the response to the bar in the cell's preferred direction when moved in phase, or in the opposite direction when moved in antiphase; other combinations depressed the level of response compared with that for the bar alone. The majority of direction-selective or strongly direction-biased cells in superficial layers behaved similarly. The most interesting superficial-layer cells were bidirectional or weakly direction-biased, and recorded closer to the cortical surface than the direction-selective neurons. A majority showed preference for relative motion, some for antiphase, others for in-phase motion, regardless of the absolute direction of motion across the receptive field, which could not be accounted for on the basis of separate responses to bars and backgrounds alone. Three of the superficial-layer direction-selective cells also showed preference for antiphase relative motion. In a few complex cells from superficial laminae, backgrounds were either without influence on responses to oriented stimuli, or purely suppressive. Visual backgrounds against which objects are perceived are usually neither featureless nor motionless: the results suggest that most complex cells in striate cortex are sensitive to the context in which objects are seen and susceptible to relationships between objects and their backgrounds in relative motion.  相似文献   

2.
Nongeniculate afferents to striate cortex in macaques   总被引:2,自引:0,他引:2  
Horseradish peroxidase (HRP) was injected in relatively massive amounts to cover most, or portions, of opercular striate cortex in four macaques. Absence of transcallosal or circumventricular labelling, plus discrete and consistent retrograde labelling in other areas in the four cases, assured the validity and specificity of the observations. Numerous labelled cells in regions directly bordering striate cortex, however, were excluded from the analysis because of the possibility of uptake consequent to physical diffusion. With this exception, all labelled cells were counted at roughly 2-mm intervals for one case with extensive unilateral injection of HRP. Even excluding the closely circumstriate population, the totals indicate that more than 30% of the afferent input to striate cortex arises from nongeniculate sources. Four areas of neocortex together make up about one-fourth of the total afferents: superior temporal sulcus 17.1%; inferior occipital area, 6.1%; intraparietal sulcus, 0.4%; and parahippocampal gyrus, 0.3%. Other areas projecting to striate cortex include claustrum, pulvinar, nucleus paracentralis, raphé system, locus coeruleus, and the nucleus basalis of Meynert. Cells of the latter were particularly striking with their very heavy uptake of HRP, and, even in cases of minimal effective injection, were scattered throughout an extensive area from the posterior edge of the globus pallidus passing rostrally beyond the chiasm and into the nucleus of the diagonal band. On the basis of their distribution and known cholinergic affinity, it is argued that this group also includes the cells labelled in and around lateral hypothalamus and cerebral peduncle, and that as a whole the group constitutes a cholinergic counterpart of the diffusely projecting monoaminergic systems. It seems possible that the basalis projection at first follows a fornical-subcallosal pathway to reach striate cortex via callosoperforant fibers.  相似文献   

3.
Cortical afferents to area V1 were studied in seven Cebus monkeys by means of retrograde fluorescent tracers. Injections were placed in V1, under electrophysiological guidance, in the regions of representation of both the upper and lower visual quadrants, at eccentricities that ranged from 0.5 to 64 degrees. In all cases retrogradely filled neurons were found in retinotopically corresponding portions of areas V2 and MT, as defined electrophysiologically (Rosa et al: J. Comp. Neurol. 275:326, 1988; Fiorani et al: J Comp Neurol 287:98, 1989). The results also revealed two other visual zones located anterior to V2 here named third and fourth visual areas. A topographical organization of the connections was observed in these areas, with upper quadrant located ventrally and lower quadrant located dorsally. A clear central-peripheral gradient, from the lateral to the medial cortical surface, was also observed in these areas. Lower field injections revealed crude topographic organization in area DZ and a diffuse projecting zone in the annectent gyrus. Peripheral injections in V1 revealed a clear upper and lower field segregation in areas PO and prostriata as well as a complex topography in MST. In addition, another region of labeling revealed the presence of an area, the temporal ventral posterior region, with an organized topographic representation of the upper field, with a central to peripheral gradient, from the lateral to the medial cortical surface. Three groups of cortical areas were distinguished according to the laminar distribution of neurons labeled from V1. In the first group, which is characterized by dense infra- and supragranular labeling, only V2 was included. The second group consists of areas V3, MT, and PO. These areas show dense labeling in the infragranular layers and occasionally sparse labeling in the supragranular layers. Finally, V4 and the other projecting areas, which are characterized by exclusive labeling of the infragranular layers were included in the third group.  相似文献   

4.
It is controversial whether mouse extrastriate cortex has a "simple" organization in which lateral primary visual cortex (V1) is adjoined by a single area V2 or has a "complex" organization, in which lateral V1 is adjoined by multiple distinct areas, all of which share the vertical meridian with V1. Resolving this issue is important for understanding the evolution and development of cortical arealization. We have used triple pathway tracing combined with receptive field recordings to map azimuth and elevation in the same brain and have referenced these maps against callosal landmarks. We found that V1 projects to 15 cortical fields. At least nine of these contain maps with complete and orderly representations of the entire visual hemifield and therefore represent distinct areas. One of these, PM, adjoins V1 at the medial border. Five areas, P, LM, AL, RL, and A, adjoin V1 on the lateral border, but only LM shares the vertical meridian representation with V1. This suggests that LM is homologous to V2 and that the lateral extrastriate areas do not represent modules within a single area V2. Thus, mouse visual cortex is "simple" in the sense that lateral V1 is adjoined by a single V2-like area, LM, and "complex" in having a string of areas in lateral extrastriate cortex, which receive direct V1 input. The results suggest that large numbers of areas with topologically equivalent maps of the visual field emerge early in evolution and that homologous areas are inherited in different mammalian lineages.  相似文献   

5.
Visual cortical areas in the mammalian brain are linked through a system of interareal feedforward and feedback connections, which presumably underlie different visual functions. We characterized the refinement of feedback projections to primary visual cortex (V1) from multiple sources in juvenile ferrets ranging in age from 4–10 weeks postnatal. We studied whether the refinement of different aspects of feedback circuitry from multiple visual cortical areas proceeds at a similar rate in all areas. We injected the neuronal tracer cholera toxin B (CTb) into V1 and mapped the areal and laminar distribution of retrogradely labeled cells in extrastriate cortex. Around the time of eye opening at 4 weeks postnatal, the retinotopic arrangement of feedback appears essentially adult‐like; however, suprasylvian cortex supplies the greatest proportion of feedback, whereas area 18 supplies the greatest proportion in the adult. The density of feedback cells and the ratio of supragranular/infragranular feedback contribution declined in this period at a similar rate in all cortical areas. We also found significant feedback to V1 from layer IV of all extrastriate areas. The regularity of cell spacing, the proportion of feedback arising from layer IV, and the tangential extent of feedback in each area all remained essentially unchanged during this period, except for the infragranular feedback source in area 18, which expanded. Thus, while much of the basic pattern of cortical feedback to V1 is present before eye opening, there is major synchronous reorganization after eye opening, suggesting a crucial role for visual experience in this remodeling process. J. Comp. Neurol. 522:3208–3228, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

6.
Two visual areas, V1 and V2 (first and second visual areas), appear to be present in the posterior neocortex of all eutherian mammals investigated so far. However, previous studies have not established whether an area homologous to V2 also exists in metatherian mammals (marsupials). Using electrophysiological techniques, we mapped the visual receptive fields of neurons in the striate and peristriate cortices of the northern quoll, an Australian marsupial. We found that neurons in a 2-mm-wide strip of cortex rostrolateral to V1 form a single, relatively simple representation of the complete contralateral hemifield. This area resembles V2 of eutherians in several respects: (i) neurons in the medial half of the peristriate area represent the lower visual quadrant, whereas those in the lateral half represent the upper visual quadrant; (ii) the vertical meridian of the visual field is represented adjacent to V1, while the visual field periphery is represented along the lateral and rostrolateral borders of the peristriate area; (iii) there is a marked anisotropy in the representation, with a larger magnification factor parallel to the V1 border than perpendicular to this border; and (iv) receptive fields of multiunit clusters in the peristriate cortex are much larger than those of cells in V1 at comparable eccentricities. The cortex immediately rostral and lateral to V2 did not respond to visual stimulation under our recording conditions. These results suggest that V1 and V2 together form a 'core' of homologous visual areas, likely to exist in all therian mammals.  相似文献   

7.
Patterns of connections of dorsal and ventral portions of the second visual area (V2) were used to evaluate and extend current theories of cortical organization and processing streams in macaque monkeys. Injections of wheat germ agglutinin-horseradish peroxidase (WGA-HRP) and up to four different fluorochromes in V2 labeled neurons and terminations in V2 and in 1) caudal (DLc) and rostral (DLr) subdivisions of dorsolateral cortex between V2 and the middle temporal area (MT); 2) regions we define as dorsomedial (DM) and dorsointermediate (DI) areas; 3) MT, medial superior temporal area (MST), and fundal superior temporal area (FST); 4) the dorsal part of inferior temporal (TEO) cortex; and 5) two locations in posterior parietal cortex. The largest extrastriate connection zone was DLc, which occupied the caudal one-third to one-half of the fourth visual area (V4) region of other proposals. Based on the connection pattern, foveal vision in DLc is represented adjacent to foveal vision in V2, with the lower quadrant represented dorsally and the upper quadrant ventrally, as in V2, but within a much less extensive region of cortex. The sparser connections of DLr formed a more compressed but parallel visuotopic pattern. A third visuotopic pattern of connections was located in a moderately myelinated region of cortex just rostral to dorsomedial V2. Whereas the region would include parts of dorsal visual area 3 (V3), V3a, and possibly other areas of other proposals, we interpret the connection pattern as reflecting a dorsomedial visual area, DM, with foveal vision represented caudolaterally and other parts of the lower and upper quadrants represented more medially and rostrally. A fourth pattern of label in dorsointermediate cortex suggested the location and organization of another visual area (DI). Most of a fifth connection pattern with MT was congruent with the known visuotopic organization of MT area, but visuotopically mismatched foci of connections were observed as well. Sparser foci of label in MST suggested a rostrodorsal representation of foveal vision, with paracentral vision represented more caudally. Separate dorsal and ventral foci of label in FST were consistent with previous evidence for dorsal (FSTd) and ventral (FSTv) visual areas. Finally, connections with TEO and posterior parietal cortex were sparse. Our results suggest that much of visual cortex organization is similar in New and Old World monkeys. © 1996 Wiley-Liss, Inc.  相似文献   

8.
The visuotopic organization of the primary visual cortex (area 17) and the extrastriate visual regions surrounding it (areas 18a and 18) has been studied in gray rats using standard microelectrode mapping techniques. The results confirm and extend previous observations in the rat. Apart from the representation of the contralateral visual field (VF) in area 17, in which the upper VF is represented caudally and the nasal VF laterally, there are additional representations of the VF in the extrastriate cortex. In lateral extrastriate cortex (area 18a) there are at least 4 such representations, namely lateromedial (LM), anterolateral (AL), laterointermediate (LI) and laterolateral (LL). In LM (second visual area) the upper VF is represented caudally and the nasal VF medially, being thus a mirror image of V1. In AL (third visual area) the upper VF is represented rostrally and the nasal VF, medially, being thus a mirror image of LM. In LI, the upper VF is medial and the nasal VF, lateral, being thus a mirror image of LM, or a reduced copy of V1. In medial extrastriate cortex (area 18) there are two representations of the temporal VF, labeled anteromedial (AM) and posteromedial (PM). In AM, the upper temporal VF is medial and the lower temporal VF, lateral, the extreme temporal field being rostral. The 30° azimuth provides the boundary between AM and PM. Thus, AM is organized as a counter-clockwise rotation by 90° of the V1 representation. In PM, the upper lower VF topography is like in AM, but the extreme temporal VF is caudal, being thus a mirror image of AM.  相似文献   

9.
The organization of projections from V1 to areas V2 and V3 in the macaque monkey was studied with a combination of anatomical techniques, including lesions and tracer injections made in different portions of V1 and V2 in 20 experimental hemispheres. Our results indicate that dorsal V1 (representing the inferior contralateral visual quadrant) consistently projects in topographically organized fashion to V3 in the lunate and parietooccipital sulci as well as to the middle temporal area (MT) and dorsal V2. In contrast, ventral V1 (representing the superior contralateral quadrant) projects only to MT and ventral V2. A corresponding dorsoventral asymmetry in myeloarchitecture supports the idea that V3 is an area that is restricted to dorsal extrastriate cortex and lacks a complete representation of the visual field. The average surface area of myeloarchitectonically identified V3 was 89 mm2. Additional information was obtained concerning the laminar distribution of connections from V1 to V2 and V3, the patchiness of these projections, and the consistency of projections to other extrastriate areas, including V4 and V3A.  相似文献   

10.
Once the visual pathway reaches striate cortex, it fans out to a number of extrastriate areas. The projections to the second visual area (V2) are known to terminate in a patchy manner. V2 contains a system of repeating pale-thin-pale- thick stripes of cytochrome oxidase (CO) activity. We examined whether the patchy terminal fields arising from primary visual cortex (V1) projections are systematically related to the CO stripes in V2. Large injections of an anterograde tracer, [(3)H]proline, were made into V1 of both hemispheres in 5 macaques. The resulting V2 label appeared in layers 2-6, with the densest concentration in layer 4. In 21/29 injections, comparison of adjacent flatmount sections processed either for autoradiography or CO activity showed that the heaviest [(3)H]proline labeling was located in pale CO stripes. In 7/29 injections, there was no clear enrichment of labeling in the CO pale stripes. In 1 injection, the proline label correlated with dark CO stripes. On a fine scale, CO levels vary within V2 stripes, giving them an irregular, mottled appearance. In all stripe types, the density of proline label would often wax and wane in opposing contrast to these local fluctuations in CO density. Our data showed that V1 input is generally anti-correlated with the intensity of CO staining in V2, with strongest input to pale stripes. It is known that the pulvinar projects preferentially to dark stripes. Therefore, V2 receives interleaved projections from V1 and the pulvinar. Because these projections favor different stripe types, they may target separate populations of neurons.  相似文献   

11.
Auditory neurons are often characterized by their spectro-temporal receptive field (STRF), a linear measure that captures overall trends of neural responses to modulations of the spectro-temporal envelopes of sounds. We have previously shown that primary auditory cortex neurons of the awake ferret are better characterized by STRFs followed by a non-trivial non-linearity. This non-linearity is a half-wave rectification followed by a squaring function, indicating that cortical neurons probably encode higher-order statistics of the spectrum of sounds. In this article, we introduce the concept of a contrast receptive field (CRF) and show that neurons in the auditory cortex encode quadratic statistics of the spectro-temporal envelope of sounds, which we call auditory contrast. We reveal phase-dependent contrast tuning in single units. Most units with a reliable STRF also possess a reliable CRF, such that the response to stimulus contrast complements the linear response described by the STRF. The relationship between the STRF and the CRF is analyzed in terms of orthogonality, co-localization in time-frequency, feature orientation selectivity, and output non-linearity interdependence. Our study shows that contrast can be used by auditory cortex neurons to sharpen, in a noise-resistant fashion, their responses to dynamic spectral profiles.  相似文献   

12.
We used patterns of connections of primary visual cortex (V1) to reevaluate differing proposals on the organization of extrastriate cortex in three species of New World monkeys. Several fluorescent tracers and the bidirectional tracer cholera toxin B subunit (CTB) were injected into dorsal V1 (representing the lower visual quadrant) and ventral V1 (representing the upper visual quadrant) of titi, squirrel, and owl monkeys. Labeled cells and terminals were plotted on brain sections cut parallel to the surface of flattened cortex and were related to architectonic boundaries. The results provided compelling evidence for both dorsal V3 with dorsal V1 connections and ventral V3 with ventral V1 connections. The connection pattern indicated that V3 represents the visual hemifield as a mirror image of V2. In addition, V3 could be recognized by a weak banding pattern in brain sections processed for cytochrome oxidase. V1 has connections with at least 12 subdivisions of visual cortex, with half of the connections involving V2 and 20% V3. Comparable results were obtained from all three species, suggesting that visual cortex is similarly organized.  相似文献   

13.
In Experiments 1 and 2, monkeys received 3-stage operations intended to serially disconnect parieto-preoccipital from striate cortex. At each stage (unilateral parieto-preoccipital removal, contralateral striate removal and posterior callosal transection) the monkeys were tested for retention of the landmark task, a visuospatial discrimination sensitive to the effects of bilateral parieto-preoccipital damage. To check the effectiveness of the disconnection, the monkeys were also tested after removal of the remaining parieto-preoccipital cortex. The results demonstrated that corticocortical inputs from striate cortex are crucial for the visuospatial functions of parieto-preoccipital cortex, just as they had been shown earlier to be crucial for the pattern discrimination functions of inferior temporal cortex. Relative to inferior temporal cortex, however, parieto-preoccipital cortex was found to be especially dependent on ipsilateral (as compared with contralateral) striate inputs. In Experiment 3, monkeys received bilateral lesions of either lateral or medial striate cortex and were tested on both a pattern discrimination task, to assess residual inferior temporal function, and the landmark task, to assess residual parieto-preoccipital function. The results indicated that the pattern discrimination functions of inferior temporal cortex are especially dependent on inputs from lateral striate cortex, whereas the visuospatial functions of parieto-preoccipital cortex are equally dependent on inputs from lateral and medial striate cortex. The relatively greater contribution to parieto-preoccipital than to inferior temporal cortex made by ipsilateral and medial striate inputs (representing contralateral and peripheral visual fields, respectively) can also be seen in the receptive field properties of parieto-preoccipital and inferior temporal neurons. The differences in the organization of striate inputs to these two cortical association areas presumably reflect differences in the processing required for spatial vs object vision.  相似文献   

14.
To study the circuitry related to the ventral stream of visual information processing and its relation to the cytochrome oxidase (CytOx) modules in visual area V2, we injected anterograde and retrograde cholera toxin subunit B (CTb) tracer into nine sites in area V4 in five Cebus apella monkeys. The injection site locations ranged from 2° to 10° eccentricity in the lower visual field representation of V4. Alternate cortical sections, cut tangentially to the pial surface or in the coronal plane, were stained for CTb immunocytochemistry or for CytOx histochemistry or for Nissl. Our results indicate that the V4‐projecting cells and terminal‐like labeling were located in interstripes and thin CytOx‐rich stripes and avoided the CytOx‐rich thick stripes in V2. The feedforward projecting cell bodies in V2 were primarily located in the supragranular layers and sparsely located in the infragranular layers, whereas the feedback projections (i.e., the terminal‐like labels) were located in the supra‐ and infragranular layers. V4 injections of CTb resulted in labeling of the thin stripes and interstripes of V2 and provided an efficient method of distinguishing the V2 modules that were related to the ventral stream from the CytOx‐rich thick stripes, related to the dorsal stream. In V2, there was a significant heterogeneity in the distribution of projections: feedforward projections were located in CytOx‐rich thin stripes and in the CytOx‐poor interstripes, whereas the feedback projections were more abundant in the thin stripes than in the interstripes. J. Comp. Neurol. 522:3091–3105, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

15.
Pathways from a variety of structures to the largest of the cat's suprasylvian visual areas, the Clare-Bishop area, were found to patchy. These inputs arose from the lateral geniculate complex, from area 18, from area 19, and, as noted by Montero (Brain Behav. Evol. 18:194-218, '81), from area 17. The Clare-Bishop area was previously delineated on the basis of its uniform pattern of connections with cortex and thalamus (Sherk: J. Comp. Neurol. 247:1-31, '86) and found to incorporate pieces of several retinotopically defined areas (Tusa, Palmer, Rosenquist: Cortical Sensory Organization. Vol 2. Multiple Visual Areas. Clifton, NJ: Humana Press, pp. 1-31, '81). However, since individual patches did not correspond to particular retinotopically defined areas, other explanations of afferent patchiness were sought. An obvious question is whether the patches originating from different sources are systematically related to each other. Two hypotheses were considered. First, different inputs--for example, from the lateral geniculate nucleus (LGN) and from area 17--might terminate in intermingled but mutually exclusive zones in the Clare-Bishop area. Second, multiple patches of input might reflect duplicate representations of the corresponding visual field segment in the Clare-Bishop area. Both hypotheses were tested by injecting the lateral geniculate complex and either area 17 or area 19 with different anterograde tracers. In each case the two injections involved regions of the visual field that coincided to some degree, ranging from near-total overlap to almost complete exclusion. The first hypothesis predicted that the different labels in the Clare-Bishop area would never be found to overlap, while the second hypothesis predicted that when injections were closely matched retinotopically, there would be extensive overlap between patches. The results supported the second hypothesis: the better the retinotopic match between injections, the greater the overlap found between labeled geniculate and cortical input in the Clare-Bishop area. However, the multiplicity of patches seen in some experiments, and the close spacing between some patches, suggested that an additional, nonretinotopic mechanism also contributes to patchiness in the projections to the Clare-Bishop area.  相似文献   

16.
Cortical inhibition is determined in part by the organization of synaptic inputs to gamma-aminobutyric acidergic (GABAergic) neurons. In adult rat visual cortex, feedforward (FF) and feedback (FB) connections that link lower with higher areas provide approximately 10% of inputs to parvalbumin (PV)-expressing GABAergic neurons and approximately 90% to non-GABAergic cells (Gonchar and Burkhalter [1999] J. Comp. Neurol. 406:346-360). Although the proportions of these targets are similar in both pathways, FF synapses prefer larger PV dendrites than FB synapses, which may result in stronger inhibition in the FF than in the FB pathway (Gonchar and Burkhalter [1999] J. Comp. Neurol. 406:346-360). To determine when during postnatal (P) development FF and FB inputs to PV and non-PV neurons acquire mature proportions, and whether the pathway-specific distributions of FF and FB inputs to PV dendrites develop from a similar pattern, we studied FF and FB connections between area 17 and the higher order lateromedial area (LM) in visual cortex of P15-42 mice. We found that the innervation ratio of PV and non-PV neurons is mature at P15. Furthermore, the size distributions of PV dendrites contacted by FF and FB synapses were similar at P15 but changed during the third to sixth postnatal weeks so that, by P36-42, FF inputs preferred thick dendrites and FB synapses favored thin PV dendrites. These results suggest that distinct FF and FB circuits develop after eye opening by rearranging the distribution of excitatory synaptic inputs on the dendritic tree of PV neurons. The purpose of this transformation may be to adjust differentially the strengths of inhibition in FF and FB circuits.  相似文献   

17.
Cortical connections of visual area MT in the macaque   总被引:23,自引:0,他引:23  
We have identified the cortical connections of area MT and determined their topographic organization and relationship to myeloarchitectural fields. Efferents of MT were examined in seven macaques that had received injections of tritiated amino acids, and afferents were examined in one macaque that had received injections of two fluorescent dyes. The injection sites formed an orderly sequence from the representation of central to that of peripheral vision in the upper and lower visual fields. In addition to connections with the striate cortex (V1), connections were found between MT and a variety of extrastriate areas, including V2, V3, V3A, V4, V4t, VIP, MST, FST, possibly PO, and, finally, the frontal eye field. The connections of MT with V1, V2, and the dorsal and ventral portions of V3 were topographically organized and consistent with the visuotopic arrangement reported previously in these areas. V2 could be distinguished from V3 by the distinctive myeloarchitectural appearance of the former. Connections with areas V4 and V4t also displayed at least a coarse visuotopic organization, in that the central representation of MT projected laterally in these areas and the peripheral representation projected medially. The lower visual field representation of V4 was located dorsally, on the prelunate convexity, while the upper field representation was located primarily on the ventral aspect of the hemisphere. V4t had a distinctively light myeloarchitecture and received projections from only the lower field representation of MT. The remaining connections of MT were with areas located entirely in the dorsal half of the hemisphere. There were widespread connections with areas MST and FST in the superior temporal sulcus, with some evidence for a crude visuotopic organization in MST. Connections were also found with area VIP in the intraparietal sulcus, with area V3A on the annectent gyrus, possibly with area PO in the dorsomedial prestriate cortex, and, finally, with the frontal eye field on the anterior bank of the lower limb of the arcuate sulcus. Area FST and parts of both MST and VIP had a distinctive myeloarchitecture. The pattern of laminar connections with V1, V2, and V3 indicated that MT projects "back" to these areas and they project "forward" to MT. That is, the projections to these areas from MT terminated in both the supragranular and infragranular layers and the projections to MT from these areas originated predominantly from cells located above granular layer IV (above layer IVC in V1).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
We have studied glutamate receptor levels during very early phases of cortical formation by using quantitative in vitro autoradiography to map the expression of NMDA, AMPA and kainate receptors in the developing primary visual cortex of the ferret. NMDA and non-NMDA receptors exhibit very different developmental profiles in primary visual cortex. NMDA receptor density is low at birth and increases throughout the first 2 postnatal months, rising between threefold (layers II/III) and ninefold (layer VI). In contrast, AMPA receptors are abundant at birth and their density remains constant for the first postnatal month, before rising by a maximum of 1.7-fold (layer I) at around the time of eye-opening (postnatal day 32). Kainate receptors are also present in high levels at birth and their expression levels rise in the early postnatal period by between 1. 5-fold (layer I) and threefold (layers V/VI) to a peak just after eye-opening. The proportion of the total ionotropic glutamate receptor binding contributed by NMDA receptors thus rises from 5% at birth to a maximum of 22% at 2 months of age, while the AMPA receptor contribution falls from 87% to 72% over the same period. Below cortex, all three glutamate receptor subtypes are expressed in the subplate region for the first 3 postnatal weeks. These developmental patterns, combined with the fact that AMPA receptors are densely expressed in the proliferative zones underlying presumptive area 17, indicate that non-NMDA receptor expression levels in primary visual cortex are mostly specified much earlier than those of NMDA receptors.  相似文献   

19.
In macaque monkeys, lesions involving the posterior portion of the inferior temporal cortex, cytoarchitectonic area TEO, produce a severe impairment in visual pattern discrimination. Recently, this area has been shown to contain a complete, though coarse, representation of the contralateral visual field (Boussaoud, Desimone, and Ungerleider: J. Comp. Neurol. 306:554–575, '91). Because the inputs and outputs of area TEO have not yet been fully described, we injected a variety of retrograde and anterograde tracers into 11 physiologically identified sites within TEO of seven rhesus monkeys and analyzed the areal and laminar distribution of its cortical connections. Our results show that TEO receives feedforward, topographically organized inputs from prestriate areas V2, V3, and V4. Additional sparser feedforward inputs arise from areas V3A, V4t, and MT. Each of these inputs is reciprocated by a feedback projection from TEO. TEO was also found to have reciprocal intermediate-type connections with the fundus of the superior temporal area (area FST), cortex in the most posteromedial portion of the superior temporal sulcus (the posterior parietal sulcal zone [area PP]), cortex in the intraparietal sulcus (including the lateral intraparietal area [area LIP]), the frontal eye field, and area TF on the parahippocampal gyrus. The connections with V3A, V4t, and PP were found only after injections in the peripheral field representations of TEO. Finally, TEO was found to project in a feedforward pattern to area TE and to areas anterior to FST on the lateral bank and floor of the superior temporal sulcus (areas TEm, TEa, and IPa, Seltzer and Pandya: Brain Res. 149:1–24, '78), all of which send feedback projections to TEO. Feedback projections also arise from parahippocampal area TH, and areas TG, 36, and possibly 35. These are complemented by only sparse feedforward projections to TG from central field representations in TEO and to TH from peripheral field representations. The results thus indicate that TEO forms an important link in the occipitotemporal pathway for object recognition, sending visual information forward from V1 and prestriate relays in V2–V4 to anterior inferior temporal area TE. © 1993 Wiley-Liss, Inc.
  • 1 This article is a US Goveriiment work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    20.
    Following single injections of horseradish peroxidase (HRP) in the superior colliculus (SC) and [3H]proline in the striate cortex of rats, a close correspondence was observed in the topographical arrangements of extrastriate cortical fields of HRP retrograde label and of isotope anterograde label. These results support the notion that extrastriate cortex is divided into multiple physiologically and anatomically defined areas, and they suggest that these areas project separately to SC.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号